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Abstract—In this paper, we present a novel method of esti-
mating a room impulse response (RIR) in noisy environments
by playing a known periodic signal and recording it for a long
time. As is well known, a periodic signal can be easily enhanced,
even in a noisy environment, by synchronous averaging. How-
ever, in a long-time recording, the sampling frequency of the
recording device might fluctuate temporally, which leads to a
synchronization error in averaging and degrades the performance
of enhancement. To solve this problem, we estimate the time
shift between the played-back periodic waveform and the ob-
served signal by their cross-correlation, period by period, and
apply synchronous averaging while compensating for the shift
dynamically. We also introduce an iterative approach in dynamic
synchronous averaging to further improve the performance. In
simulation experiments, we confirm that the proposed method
effectively enhances the signal and contributes to RIR estimation
with high accuracy.

I. INTRODUCTION

A room impulse response (RIR) is an important factor in
determining the acoustic characteristics in a room. Generally,
high-energy signals, such as a time-stretched pulse [1] and a
maximum length sequence [2], and a white noise signal with a
high signal-to-noise ratio (SNR) are used to measure an RIR.
When we measure an RIR, for example, in a concert hall, it
would be desirable to consider the presence of the audience
in the hall. It is, however, difficult to measure it in such a
situation because a high-energy signal can be annoying to the
audience. On the other hand, a low-energy signal cannot be
perceived. But, to estimate RIR accurately, it is necessary to
enhance the signal because of the low SNR.

Synchronous averaging along the time direction is com-
monly used for such enhancement. The longer the averaging
time is, i.e., the greater the number of additions, the greater
the enhancement is. However, we need to consider the fact that
synchronous averaging requires accurate synchronization and
that inaccurate synchronization degrades a signal. There are
some obstacles to accurate synchronization. In this study, we
handle the following two problems: the effect of discretization
in digital signal processing and the sampling cycle variation of
recording devices. Generally, we discretize a continuous-time
signal and treat the discrete sample signal. A discrete sample
signal is easy to use in a computer, while the discretization
of time information complicates synchronization because a
gap between the samples is often necessary, that is, sub-
sample (non-integer sample) information is needed for accu-
rate synchronization. Non-integer sample estimation based on
the correlation between two signals has been proposed [3, 4].

Regarding the problem of sampling cycle variation, it is
well known that the sampling frequency of recording devices
changes temporally from a few ppm (parts per million, 10−6)
to many hundreds of ppm [5, 6]. This problem, the so-called
“mismatch of sampling frequency”, has been examined in
previous studies [7–10]. This mismatch is also a problem
in various fields such as blind source separation and speech
enhancement [11,12]. This small fluctuation markedly affects
the performance of synchronization, especially in the case of
long-time recording, and the signal enhancement performance
also deteriorates as a result.

In this paper, we propose a signal enhancement method with
synchronous averaging considering the two aforementioned
problems as an initial investigation for measuring an RIR
using weak signals. We assume the following situation in
this study: we play a known signal repeatedly with a known
time interval, which we call a weak periodic signal, from
a loudspeaker, we record it for a long time with a distant
single-channel microphone whose sampling cycle may vary
with time, we enhance one cycle signal using the recorded
signal, and we estimate the RIR signal. For enhancement the
signal, we propose dynamic synchronous averaging based on
the non-integer sample estimate, that is important to achieve
the highest correlation between recorded signal and periodic
signals. Using the enhanced signal, we estimate the RIR signal.
We evaluate the performance of the proposed method in an
experimental simulation.

II. PROBLEM FORMULATION

Let us consider playing a source signal from a loudspeaker,
recording it with a distant microphone, and estimating the
impulse response from the loudspeaker to the microphone in
a noisy environment. Let s(t) and h(t) be the source signal
and the impulse response in the continuous-time domain,
respectively. Then, the observed signal y(t) is expressed as

y(t) = x(t) + v(t), (1)

x(t) =

∫ ∞

0

s(t− τ)h(τ)dτ, (2)

where x(t) is the source image of s(t) and v(t) is the
background noise. If s(t) is a periodic signal with period Pc,
then x(t) is also a periodic signal because x(t+ Pc) = x(t).

Let T be the nominal sampling cycle, namely, the reciprocal
of the nominal sampling frequency of the recording device,
and assume that it is a constant. The effect of its mismatch
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or temporal variation will be discussed in the next section.
Let P = Pc/T be the period in the discrete time domain and
assume that P is an integer. Then, (1) and (2) can be expressed
in the discrete domain as

y[n] = x[n] + v[n], (3)

x[n] =

∞∑
m=0

s[n−m]h[m], (4)

where s[n] is the discrete signal obtained by sampling s(t),
as s[n] = s(nT ), and x[n], y[n], v[n], and h[n] are defined in
the same way.

If the impulse response h[m] is shorter than P , (4) can be
expressed as

X(k) = S(k)H(k), (5)

where X(k), S(k), and H(k) are the discrete Fourier trans-
forms (DFTs) of x[n], s[n], and h[n] with length P (n =
0, . . . , P − 1), respectively. Then, we have

H(k) =
X(k)

S(k)
. (6)

Because s[n] is a known signal, S(k) can be computed. Then,
h(m) can be estimated by the inverse DFT of (6).

The problem is that we obtain a noisy signal y[n] rather
than x[n] directly. Since x[n] is a periodic signal with period
P , we can estimate it by applying synchronous averaging to
y[n].

First, we segment the recorded signal y[n] by period P as

ym[n] = y[n+mP ], n = 0, . . . , P − 1, (7)

where ym[n] is the segmented signal in the mth frame. Then,
the synchronous average can be written as

x̂[n] =
1

M

M∑
m=1

ym[n], (8)

where M is the total number of frames. Replacing X(k) in
(6) by the DFT of x̂[n] (n = 0, . . . , P − 1), we can estimate
the impulse response h[n].

III. EFFECT OF SAMPLING FREQUENCY VARIATION

First, let us consider what happens if the sampling cycle is
slightly different from a nominal cycle. Let y1[n] and y2[n] be
sampled signals that are obtained by sampling with sampling
cycles T and T+ε, respectively, where ε is the sampling cycle
mismatch. The relationship between y1[n], y2[n], and y(t) can
be expressed as

y1[n] = y(nT ), y2[n] = y(n(T + ε)). (9)

The difference between the sampling times nT and n(T + ε)
increases over time, as shown in Fig. 1. This will distort the
synchronous averaging.

If the sampling cycle mismatch ε is constant, it can be easily
estimated and compensated for because y2[n] is still a periodic
signal. However, in a long recording, the sampling cycle T
could vary slightly. Let T + ε[n] be the sampling cycle from

signal sampled at interval red:
green:

T

y[n]

y(t)

T

signal sampled at interval 

T + ε

T + ε

Fig. 1. Conceptual diagram of sampling with different sampling cycles. y(t)
and y[n] are continuous and discrete time signals, respectively.

Recorded signal

Segmented signal

Fig. 2. Difficulty in synchronous averaging under time-varying sampling
frequency.

the (n − 1)th sample to the nth sample, where ε[n] is the
fluctuation of the sampling cycle. Then, the discrete signal
y[n] obtained by sampling y(t) can be expressed as

y[n] = y(nT + τ [n]), τ [n] =

n∑
l=1

ε[l], (10)

where τ [n] represents the temporal shift of the nth sample
from the nth sampling point when the sampling cycle T does
not vary. Even if the variations of sampling cycle ε[n] are
small, they accumulate over a long time and become non-
negligible. Therefore, the sampling frequency variation distorts
the synchronization of the segmented signals over a period,
and then, synchronous averaging cannot enhance the signal,
as shown in Fig. 2. This is the problem with the synchronous
averaging of a long recording.

IV. PROPOSED METHOD

A. Dynamic synchronous averaging using cross-correlation

In general, synchronous averaging with sampling cycle
variation is a difficult task because ε[n] is unknown. To solve
this problem, we propose a dynamic synchronous averaging
method with compensation for sampling frequency variation,
which consists of four steps, namely, frame segmentation, time
delay estimation, synchronous averaging, and their iteration.

First, we segment the recorded signal y[n] by period P
of s[n] as in (3). Unlike the discussion in Section II, each
frame-by-frame signal waveform does not synchronize owing
to expansion and contraction along the time direction caused
by sampling frequency variation, as described in Section III.
Because the variation of the sampling cycle within one period
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Expected frame

Actual frame

Circular-shift

Fig. 3. Conceptual diagram of circular-shift

is very small, it can be considered negligible, and only a
circular time shift in a period in ym[n] is considered. Then, we
can estimate the time shift sample τm between s[n] and ym[n]
using the cross-correlation between them and its maximum as

τ (1)m = arg max
τ

P−1∑
n=0

s[n]ym[n+ τ ]. (11)

Moreover, we estimate the non-integer sample value of τ to
obtain it with non-integer sample accuracy. We perform non-
integer sample time delay estimation using parabolic function-
based interpolation [13]. This method interpolates the discrete
cross-correlation using quadratic functions and estimates a
non-integer sample delay using its maximum. The segmented
signals are synchronized by the circular-shift for the estimated
sample delay τ

(1)
m , as shown in Fig. 3. Since the circular-

shifted signals ym[n+τ
(1)
m ] are synchronized, we can enhance

one period of a signal by synchronous averaging of these
signals as

x̂(1)[n] =
1

M

M∑
m=1

ym[n+ τ (1)m ], (12)

where M is the total number of frames.

B. Iterative estimation of impulse response and synchroniza-
tion

The performance of the signal enhancement in (12) depends
on the accuracy of the time delay estimation by (11). In a
reverberant environment, the convolution of the RIR makes it
difficult to estimate the time delay τ because the peaks in the
cross-correlation do not occur clearly. Fig. 4 shows the cross-
correlation function between the source signal s[n] and the
observed signal y[n] when there is no background noise. We
can see that there are multiple peaks due to the convolution
of the RIR, which complicates finding the correlation between
the two signals.

To improve this situation, we consider the re-estimation of
the time delay by replacing s[n] in (11) with the enhanced
signal x̂(1)[n] in the previous step as follows;

τ (2)m = arg max
τ

P−1∑
n=0

x̂(1)[n]ym[n+ τ ]. (13)
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Fig. 4. Cross-correlation function between source and observed signals.

0 0.2 0.4 0.6 0.8 1
Time [s]

-500

0

500

A
m

pl
itu

be

Fig. 5. Source signal s[n].

As described in Section II, we can obtain the signal that is
convolved with the RIR from (12). The peaks of the cross-
correlation are relatively easy to detect. This iterative approach
makes it easy to find the correlation and estimate the time
shift. Therefore, we can achieve more accurate synchronous
averaging by using τ

(2)
m as follows:

x̂(2)[n] =
1

M

M∑
m=1

ym[n+ τ (2)m ]. (14)

To improve the accuracy of the synchronization, it is possible
to repeat (13) and (14).

V. EXPERIMENTAL EVALUATION

We conducted simulation experiments to verify the efficacy
of the proposed method. The experiments consist of two
parts. The first part evaluates the enhancement performance
of the proposed method without the iterative approach with
(13) and (14) (Section V-B). In the second part, we evaluate
the performance of signal enhancement and impulse response
estimation by using dynamic synchronous averaging with the
iterative approach (Section V-C).

A. Experimental conditions

We supposed a real environment and used a reverberation
signal, which was convolved with an impulse response gener-
ated by the Polack method [14], and we set the reverberation
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Fig. 6. Time-varying sampling cycle in discrete domain, T = 1/44100 [s].

TABLE I
LIST OF FIVE METHODS USED IN COMPARISON METHODS

Name Time shift Median filter Sampling freq.
variation

baseline × × not considered
int sft integer ×

consideredint sft+med ◦
non-int sft non-integer ×

non-int sft+med ◦

time to about 300 [ms]. The reverberation time has to be
shorter than period of source signal P . We used the following
periodic signals with a sufficiently wide bandwidth for the
source signal s[n] shown in Fig. 5:

s[n] =

K∑
k=1

cos(2πkfn+ ϕk), (15)

where K is the number of harmonic components, ϕk is the
initial random phase of each harmonic component, and f is
the fundamental frequency. In this experiment, we set K =
22, 050 and f = 1 [Hz]. We repeated playing of s[n] 7, 200
times while convolving it with the impulse response to create
a 2h signal. We set the sampling frequency fs to 44, 100 [Hz]
as the initial value. The sampling cycle T = 1/fs was varied
in the range of T (1 − 10−5) to T (1 + 10−5), as shown in
Fig. 6. By resampling the 2h signal with this variation, we
generated the recorded signal x(t) with sampling frequency
variation. The period P of the synchronous averaging was
1/fT = 44, 100 samples. We generated noisy speech y[n] by
mixing x[n] and an additive white noise signal with a SNR
ranging from −60 to 0 [dB]. We used the output SNR as an
evaluation measure.

We compared four variants of the proposed method, which
are listed in Table I, and a baseline method. As the baseline
method, we used synchronous averaging that does not consider
the sampling frequency variation. As shown in this table,
we employed four types of dynamic synchronous averaging,
which include cases in which a median filter is used or not
used and cases in which the circular sample shift is conducted
with integer precision or non-integer sample precision. We
used a median filter under the assumption that the variation
of the sampling cycle is small and gradual to reduce the
volatility of the estimated τ caused by noise signals. We
designed the median filter that the median of the sequence
τm−50, · · · , τm+49 is set to τm.
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Fig. 7. Relationship between input and output SNRs with five synchronous
averaging methods.
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Fig. 8. Relationship between input and output SNRs in each iteration when
dynamic synchronous averaging is applied with iterative approach and non-
integer sample shift (non-int sft).

B. Comparison of signal enhancement with five methods

Fig. 7 illustrates the output SNR with the different methods
as a function of the input SNR. Since we add the segmented
signals 7, 200 times in all the synchronous averaging methods,
the SNR can be expected to improve by 20 log10(

√
7200) =

38 [dB]. The tendency of the performance is different for
input SNRs of more and less than −20 [dB], and with the
cases that the median filter is used and not. At an input
SNR of less than −20 [dB], the large estimation errors of
the time shift τ when using cross-correlation made accurate
synchronous averaging difficult and degraded the enhance-
ment performance, and therefore, the two methods without
a median filter, int sft and non-int sft, were inferior to
the baseline method. However, the methods with a median
filter, int sft+med and non-int sft+med, and the baseline
method improved SNR by approximately 38 [dB]. Although

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

866



1 2 3 4 5 6 7
Iteration

-5

0

5

10

15

20

25

30

O
ut

pu
t S

N
R

 [d
B

]

-30 dB -20 dB -10 dB 0 dB
input SNR

Fig. 9. Change in the enhancement performance at each iteration.

-2000

0

2000

(a) Clean signal

-2000

0

2000

(b) Enhanced signal in 1st iteration

-2000

0

2000

(c) Enhanced signal in 2nd iteration

0 1 2 3 4 5
-2000

0

2000

(d) Enhanced signal in 3rd iteration
Time [ms]

A
m

pl
itu

de

Fig. 10. Change in enhanced signal at 1st, 2nd, and 3rd iterations when input
SNR is −20 [dB].

the median filter reduced the errors caused by noise, as we
expected, int sft+med, non-int sft+med, and the baseline
method exhibited the same performance. This is because even
if the sampling frequency variation is compensated for, the
effects of time-shift estimation accuracy on noises are larger
than the variation. On the other hand, when the input SNR
was more than −20 [dB], all the proposed methods improved
the output SNR compared with the baseline method. The
output SNRs with int sft+med and non-int sft+med were
lower than those with int sft and non-int sft because the
median filter degraded the estimation accuracy of τ because
τ is accurately estimated without a median filter in such

higher-SNR environments. Among the methods without a
median filter, non-int sft outperformed int sft. It was
confirmed that more accurate synchronization was possible by
determining the non-integer sample time shift.

C. Comparison of signal enhancement and RIR estimation by
synchronous averaging with the iterative approach

In this section, we evaluate the performance of both signal
enhancement and RIR signal estimation with the iterative
approach. Here, we used the non-int sft method, which
achieved the best performance at an input SNR of more than
−20 [dB] in Section V-B. The output SNR at each iteration is
shown in Figs. 8–9. The result of the first iteration in Fig. 8
is the same as that of non-int sft in Fig. 7. As shown,
the output SNR improved with each iteration. We confirmed
that the accuracy of synchronous averaging is increased by
updating the reference signal to estimate the time shift. Also,
since Fig. 9 illustrates the performance does not change after
the third update, we can see that three updates are sufficient
to achieve accurate synchronous averaging. The reason why
the enhancement performance does not improve after the third
update is that we have achieved marginal performance under
the assumption that no variation of the sampling cycle occurs
within a frame. Fig. 10 shows the change in enhanced signal
at each iteration when the input SNR is −20 [dB]. In this
figure, the clean signal (a) is the signal that is obtained by
convolving the impulse response and the source signal s[n]
with no sampling frequency variation, which is the target
signal that we want to obtain by enhancement. We can see that
the waveform of the enhanced signal becomes more similar to
that of the clean signal with each iteration.

Next, Fig. 11 shows the output SNR of RIR estimation at
each iteration. As the performance of synchronous averaging
improves, the RIR estimation accuracy also improves. Even
when the input SNR was as low as −10 [dB], it was confirmed
that we can estimate the RIR with an accuracy exceeding
20 [dB] in the output SNR. Fig. 12 shows the change in esti-
mated RIR at each iteration when the input SNR is −20 [dB].
We can also see that the waveform of the estimated signal is
approaches the actual impulse response with each iteration.

VI. CONCLUSION

In this paper, we proposed a dynamic synchronous averag-
ing method for impulse response estimation in the situation of
time-varying sampling frequency. We used cross-correlation
and a frame-by-frame circular shift to dynamically detect the
time shift caused by the variation of the sampling frequency.
We achieved a more accurate synchronization by updating the
reference signal to estimate the time shift. Experimental results
showed that the proposed method can enhance the target signal
even with a low SNR. It was also confirmed that the proposed
method is useful for impulse response estimation. In our future
work, we will verify the performance of the proposed method
in a real environment.
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Fig. 11. Output SNR of RIR estimation in each iteration when dynamic
synchronous averaging is applied with iterative approach and non-integer
sample shift (non-int sft).
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Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

868


