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Abstract—A method to effectively capture desired sound sig-
nals from an unmanned aerial vehicle (UAV)-mounted audio
recording system by utilising accurate rotor noise power spectral
density (PSD) estimations of a UAV is proposed. The method
seeks to improve the estimation accuracy and robustness of
rotor noise PSD by incorporating UAV rotor characteristics in
conjunction with microphone signals. Experiment results show
rotor noise PSD estimation accuracy to within 5.5 dB log
spectral distortion regardless of the presence of surrounding
sound sources, with consistent ∼28 dB improvement in signal-to-
noise ratio, in particular, reduction of rotor noise from the noisy
microphone recordings.

Index Terms—Microphone array, unmanned aerial vehicle,
source enhancement, power spectral density, rotor noise

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have shown a significant
increase in popularity over the past few years across a range
of applications, such as filming [1], search and rescue [2], and
more recently, security and surveillance [3]. Such applications
take advantage of capturing visual information (i.e. video and
imagery) that are otherwise impossible without making use
of UAVs. Audio capturing, on the other hand, remains a
challenging task, due to the high levels of noise radiated by
the UAVs rotors, as well as environmental noise such as wind
or traffic.

Numerous studies attempt to perform clear audio extraction
or related applications using UAVs. These include sound
source localisation, [4], [5], [6], [7], [8], [9], or sound source
separation [10], for which most studies make use of a single or
an array of microphones [11] mounted on the UAV. Recently,
there has been an increase in attention on studies focusing
on directly improving audio recording quality [12], [13], [14].
Among these, one such series of studies was presented by the
authors in [15], [16], utilising the well-known beamforming
with Wiener postfilter framework [11]. By designing a Wiener
filter via accurate estimation of each source’s power spectral
density (PSD), the desired signals can be extracted from
its noisy mixture. However, these estimated PSDs have to
be as accurate as possible, which is a challenging task for
approaches purely dependent on acoustical information, as
each microphone would receive a mixture of sound arriving
from both the desired and undesired sources. Therefore, a
means of predicting the PSDs that is uninfluenced by these
practical constraints is necessary, namely, by using non-
acoustical information.

Fortunately, rotor noise possesses a relatively structured
and predictable behaviour, with aerodynamic and aeroacoustic
studies showing that there exists a strong correlation between
rotor noise and the characteristics of the rotor’s behaviour
such as rotor speed [17], [18]. In addition, some studies have
attempted to suppress rotor noise by utilising various non-
acoustical parameters [4], [14], [19]. Therefore, with appro-
priate utilisation of sensors, these parameters can be measured
and, most importantly, they are immune to acoustical interfer-
ences. However, when it is used for source enhancement, such
parameters require mapping to their desired output (i.e. rotor
noise PSD), and typically such a mapping function would be
a non-linear process.

A recent trend to model complex, non-linear, input-output
mapping that has gained much attention is machine learning-
based methods. Many works have been carried out utilising
such techniques, such as deep neural networks (DNN) for
source separation [20], [21], multichannel speech enhancement
[22], [23] and speech recognition [24], [25], with considerable
performance improvement over conventional methods. Esti-
mating the PSD of sound sources from beamformer outputs
using DNN [26], [27] has also shown promising results.

In the case of rotor noise PSD estimation, studies carried out
in [28] and [29] combat the practical challenges seen in [15]
by taking both the UAV rotor’s state and microphone signals
(i.e. acoustical and non-acoustical information) into account,
and utilising machine learning approaches such as regression
trees (RT) [30] and DNN as its mapping function. In this study,
we extend these two studies by 1) further developing the rotor
noise PSD estimation algorithm towards a source enhancement
problem with a multi-sensory framework and, 2) evaluate
the algorithm with a one-rotor practical experiment setup
against rotor noise PSD accuracy and source enhancement
performance.

II. UAV SYSTEM AND PROBLEM SETUP

Fig. 1 shows an overview of the audio recording UAV,
including the microphone array setup used in this study.

A. Problem Setup

The problem assumes a UAV-mounted M -sensor micro-
phone array, receiving a target source S(ω, t), K spatially
coherent interfering noise sources Nθ(ω, t) (including noise
generated by U (≤ K) UAV rotors) arriving from different
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Fig. 1: Audio recording UAV overview (top view).

angles, and ambient spatially incoherent noise. The system
aims to extract a clear target source signal from the M -
channel noisy recordings [15]. The short-time Fourier trans-
form (STFT) of the array’s input signals are expressed in
vector form as

x(ω, t) :=
[
X1(ω, t), · · · , XM (ω, t)

]T
= aθ0(ω)S(ω, t) +

U∑
u=1

aθu(ω)Nθu(ω, t)

+

K∑
n=U+1

aθn(ω)Nθn(ω, t) + v(ω, t), (1)

where T denotes the transpose, and Xm(ω, t) is the STFT
of the m-th microphone’s input signal. θ0, θu and θn in-
dicate the angles to the target, the u-th rotor, and the n-
th spatially coherent interfering noise source, respectively. ω
and t denote the angular frequency (of F frequency bins)
and frame index. aθ(ω) = [A1,θ(ω), · · · , AM,θ(ω)]

T and
v(ω, t) = [V1(ω, t), · · · , VM (ω, t)]

T are the steering vectors
between the source located at angle θ and each microphone m,
and the incoherent noise vector observed by the microphone
array, respectively.

Given each of the target source and all noise sources
are essentially unique, the problem setup assumes the sound
sources to be mutually uncorrelated. Since the most common
flight scenarios for a UAV are outdoor environments, sound
propagation is assumed to be a free field. Regardless, Am,θ(ω)
is modelled as the transfer function between each sound source
and microphone. Furthermore, it is assumed that the problem
is limited to overdetermined cases, where M ≥ K+1. Finally,
the problem assumes that the sound arrival angles of the target
source and all noise sources are given a priori.

B. Source enhancement using beamforming with postfiltering

This section briefly explains the beamforming with postfil-
tering framework from [15] that is adapted in this study. First,
the input signals are filtered via fixed beamformers, with the
mainlobe of each directed towards the angle of a particular
sound source θ (i.e. θ0, θu and θn). The beamformer outputs
Yθ(ω, t) are then calculated as

Yθ(ω, t) = wH
θ (ω)x(ω, t), (2)

where wθ(ω) denotes the vector of the beamformer’s filter
weights and H denotes the Hermitian conjugate.

Following the beamformer, the noise source’s signals are
further reduced via a Wiener postfilter by using the PSD
estimates of the target source and the other noise sources.
From (1) and (2), the PSD of the beamformer outputs can be
approximated as

φYθ (ω, t)
∼= φYθ,S(ω, t) +

U∑
u=1

φYθ,Nθu (ω, t)

+

K∑
n=U+1

φYθ,Nθn (ω, t) + φYθ,V̄ (ω, t), (3)

where φYθ,S(ω, t), φYθ,Nθu (ω, t), φYθ,Nθn (ω, t) and
φYθ,V̄ (ω, t) are the PSDs of the target source, the u-th
UAV rotor noise, the n-th spatially coherent interfering
noise and the incoherent noise, respectively. These PSDs
are calculated by using the Welch method [31] given by
φX (ω, t) = λφX (ω, t − 1) + (1 − λ)|X (ω, t)|2, where λ
is the forgetting factor, and X (ω, t) denotes the STFT of
an arbitrary signal. As this study focuses on reducing UAV
rotor noise in recordings which can be modelled as spatially
coherent sources, φYθ,V̄ (ω, t) is considered negligible for
simplicity. The Wiener filter coefficients are then estimated as

H(ω, t) =
φ̂Yθ,S

φ̂Yθ,S +
∑

U
u=1φ̂Yθ,Nθu +

∑
K
n=U+1φ̂Yθ,Nθn

.

(4)

Note that ω and t are omitted for brevity in (4) and also for the
rest of this paper unless otherwise specified. The operator ·̂,
in this case, denotes an estimate. Finally, the postfilter output
signal Z(ω, t) is obtained as

Z(ω, t) = H(ω, t)Yθ0(ω, t). (5)

III. PROPOSED METHOD

As mentioned in Section I, this study seeks a source en-
hancement algorithm using the rotor noise PSD φYθ,Nθu (ω, t)
predicted from non-acoustical information (i.e. UAV rotor’s
state) for target signal extraction. To model the non-trivial
relationship between the UAV rotor’s state to the rotor noise
PSD, a machine learning-based approach is proposed.

This section introduces a source enhancement framework
that incorporates the non-acoustically estimated PSDs, fol-
lowed by the mapping function used to estimate the rotor noise
PSDs and its input feature preparation.

A. General framework

Fig. 2 shows a block diagram of the proposed framework.
The framework is an extension to that of the study from [15],
using the beamforming with postfiltering framework. In this
study, the minimum variance distortionless response (MVDR)
beamformer technique [32] was used, with wθ(ω) given by

wθ(ω) =
R−1(ω)aθ(ω)

aθH(ω)R−1(ω)aθ(ω)
, (6)
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Fig. 2: Overall framework of the proposed method. Rotor
noise removal follows (9) to (12), and the final output signal
extraction follows (13) to (16).
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Fig. 3: Input/output mapping of the proposed method, taking
rotor speed, acceleration, and beamformer output PSDs as
input information. The rotor noise removed PSD outputs are
obtained using (7) and (8).

assuming the free field assumption holds and R is the nor-
malised noise covariance matrix modelled using Am,θ(ω)
mentioned in Section II-A. However, different to that from
[15], a two-stage postfiltering system is used, with rotor noise
and interfering noise source suppression carried out separately.
The method incorporates a rotor noise PSD estimation module,
highlighted by the red dashed box in Fig. 2, with details given
in Fig. 3 and Section III-C. The module estimates the rotor
noise PSDs in the output of the beamformer pointing towards
the target source

∑U
u=1 φ̂Yθ0 ,Nθu (ω, t) and interfering noise

source
∑U
u=1 φ̂Yθn ,Nθu (ω, t) via a mapping function with the

UAV’s non-acoustical parameters (see Section III-C). Using
these estimates, the beamformer output PSDs after removing
rotor noise φ̂Yθ0 ,S+

∑
nNθn

(ω, t) and φ̂Yθn ,S+
∑
nNθn

(ω, t) are
then obtained as

φ̂Yθ0 ,S+
∑

K
n=U+1Nθn

(ω, t) = φYθ0 −
U∑
u=1

φ̂Yθ0 ,Nθu , (7)

φ̂Yθn ,S+
∑

K
n=U+1Nθn

(ω, t) = φYθn −
U∑
u=1

φ̂Yθn ,Nθu , (8)

respectively. These PSDs are used to design the Wiener filter
for reducing rotor noise in φYθ0 (ω, t) and φYθn (ω, t), which

are given by

H ′θ0(ω, t) =
φ̂Yθ0 ,S+

∑
K
n=U+1Nθn

φYθ0
, (9)

H ′θn(ω, t) =
φ̂Yθn ,S+

∑
K
n=U+1Nθn

φYθn
, (10)

respectively. The postfilter output signals after rotor noise
reduction Z ′θ0(ω, t) and Z ′θn(ω, t) are then obtained as

Z ′θ0(ω, t) = H ′θ0(ω, t)Yθ0(ω, t), (11)

Z ′θn(ω, t) = H ′θn(ω, t)Yθn(ω, t). (12)

The PSDs of Z ′θ0(ω, t) and Z ′θn(ω, t) are then utilised to per-
form a second stage postfiltering process. The PSD estimation
in this stage makes use of the PSD estimation in beamspace,
identical to that used in [15], to obtain ΦS+N (ω, t) =
[φS , φNθU+1

, . . . , φNθK ]T , where φS and φNθn represents the
estimated target source and interfering noise source PSD,
respectively. Given the rotor noise is removed beforehand, the
method assumes that the instantaneous PSD of the beamformer
outputs can be approximated as

φZ′
θ
(ω, t) ∼= G0,θ0(ω)φS(ω, t)

+

K∑
n=U+1

Gn,θn(ω)φNθn (ω, t), (13)

where φZ′
θ
(ω, t) are the PSDs from Zθ(ω, t). G0,θ0(ω) and

Gn,θn(ω) correspond to |D0,θ0(ω)|2 and |D0,θ0(ω)|2, where
D0,θ0(ω) and Dn,θn(ω) are the directivity of the beamformer
to the angle of the target θ0 and interfering noise sources θn,
defined as

D0,θ0(ω) = wH
0,θ0(ω)a0,θ0(ω), (14)

Dn,θn(ω) = wH
n,θn(ω)an,θn(ω), (15)

respectively. These estimated PSDs are then used to design
another Wiener filter for separating the target and coherent
interfering noise sources that extracts the final output signal
Z(ω, t), with the weights given as

H(ω, t) =
φ̂S(ω, t)

φ̂S(ω, t) +
∑

K
n=U+1φ̂Nθn (ω, t)

. (16)

Overall, the source enhancement framework is multi-sensory,
utilising non-acoustical information during rotor noise reduc-
tion, to combat source leakage and allow increased effective-
ness in reducing the remaining interfering noise sources.
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B. Input/output mapping

The study in [29] showed that RT and DNN were both
equally effective techniques for mapping input features to
the rotor noise PSD

∑U
u=1 φYθ,Nθu (ω, t). However, given

the less computationally intensive nature of RTs and the
shorter training time, it is the only mapping function used
in this study. RT is a non-parametric regression technique
where, given a set of observations, splits the input space
into an expanding sequence of partitions via recursive binary
subdivision. By optimising against a given objective function,
an optimal sequence of partitioning is found [30], resembling
a tree-like structure. In this study, the RTs are optimised
with respect to the mean square error (MSE) between the
true and estimated rotor noise PSD. The RTs are first grown,
followed by pruning via a separate validation dataset to avoid
overfitting. The validation dataset contains PSD similar in
specifications to the training data. However, they are recorded
separately with non-overlapping signals. The RTs are prepared
for each independent frequency bin and beamformer output,
giving a total of (1 +K − U)×F RT models. Note that since
the primary objective of this study is to extract clear target
signals from the noisy recordings, rotor noise PSDs are only
estimated for the output PSDs of the beamformer that points its
mainlobe towards the target (φYθ0 (ω, t)) and interfering noise
(φYθn (ω, t)) sources.

C. Input feature configurations

The two mapping configurations (m1 and m2, see Fig. 3)
follow that from the study in [28] with minor simplifications
made. The following describes the motivation behind each
configuration and their input features.
Configuration m1: m1 utilises rotor speed and acceleration
(Ωu(t), αu(t)), that are captured via speed sensors, as input
features.
Configuration m2: in addition to using Ωu(t) and αu(t),
m2 also utilises acoustic information. Namely, the output
PSD of the beamformer that points its mainlobe towards the
UAV rotors φYθu (ω, t) is used, as well its rate of change
∆φYθu (ω, t), which was shown to be useful input features in
simulations from [28] and [29]. Previous frames of φYθu (ω, t)
and ∆φYθu (ω, t) are also used in hoping to capture temporal
changes of the PSD spectra. However, as φYθu (ω, t) is derived
from microphone recordings (i.e. acoustical signals), it would
also contain target and interfering noise. To remedy this, the
output of m1 (

∑U
u=1 φ̂m1,Yθ,Nθu

(ω, t)) serves as a supplemen-
tary feature for φYθu (ω, t).

IV. EXPERIMENTS

A. Experiment setup

The performance of the proposed method was evaluated via
experiments based on the UAV used in the previous study
[15], with the setup shown in Fig. 4. The UAV system utilised
an array of six unidirectional microphones mounted in the
plane of the UAV rotors. It is divided into two sub-arrays.
The front sub-array is a circular array of three unidirectional
microphones with a centre shotgun microphone, and the back

Operating rotor Back array
Mic 5-6

Front array
Mic 1-4

Fig. 4: UAV system and microphone array setup for experi-
mental measurements.
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Fig. 5: Impulse response measurement positions and sound
source locations.

sub-array consists of two unidirectional microphones. As op-
posed to the front-array, where all microphones point to the
front of the UAV, the microphones in the back sub-array are
oriented to point towards the UAV rotors.

In order to establish a controlled environment for audio
data measurements that mimic the free field assumption as
close as possible, all recordings were made in an anechoic
chamber. However, due to the size of the UAV relative to
the anechoic chamber, the UAV was mounted in a fixed
position roughly at the centre of the anechoic chamber, as
shown in Fig. 4. The measured noise was then mixed with
a corpus of target source and interfering noise patterns that
were produced by convolution of the sources with the impulse
response (IR) measurements in the configuration shown in
Fig. 5, except with rotor noise which was directly recorded
in the chamber separately. The beamformers were configured
by the specifications shown in Table I.

To capture the speed data, a custom built speed sensing
module was developed to achieve the required sampling rate
and resolution (see Fig. 6).

B. Experiment parameters

In this study, we focus on enhancing the target source signal
while removing an interfering noise source. As a result, rotor
noise PSD estimation is carried out for beamformer outputs
Yθ0(ω, t) and Yθn(ω, t), with microphone usage specification

TABLE I: Beamformer specifications used in experiments.

Beamformer Microphone Pole Nulls
0 1, 2, 3, 4 P0 Pu,L, Pθ1
1 1, 5, 6 Pu,L P0, Pθ1
2 1, 2, 3, 4 Pθ1 Pu,L, P0
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Fig. 6: Speed sensing module.

TABLE II: Experiment parameter specifications.

Sampling rate 48 kHz
STFT length (overlap shift) 2048 (1024)

Forgetting factor λ for φYθ , φZ′
θ

calc. [31] 0.3
# of beamformers 3

for each beamformer outlined in Fig. 4. As this paper presents
a conceptual study, some assumptions are made to simplify
the experiment setup. First, the target source is limited to
speech, and secondly, all sound sources are assumed to exist
in an environment with near free-field conditions. Lastly, as
an initial proof of concept investigation, only one rotor (rotor
1, see Fig. 4) is used.

Table II summarises the audio processing parameters used.
For observed microphone array signals, the target and noise
sources are mixed and prepared under two metrics: i) signal-
to-rotor-noise-ratio (SRNR) and ii) signal-to-interfering-noise-
ratio (SINR) [15], which quantifies the power ratio of the
target source to the rotor noise, and the coherent interfering
noise sources, respectively. These are measured based on
microphone 1 from the front sub-array (see Fig. 4). Tests are
also conducted for different interfering noise source angles θn
(see Fig. 5). Table III summarises the training and testing data
preparation for the RTs of the proposed method.

The performance of the proposed method was evaluated
under several measures. Firstly, the accuracy of the rotor
noise PSD produced by the proposed method was evaluated
against the previous study [15]. To achieve this, the log
spectral distortion (LSD) [33] between the estimated rotor
noise PSD and the relative true rotor noise PSD (i.e. without
target or interfering noise) is measured and compared. To

TABLE III: Experiment data specifications (* denotes m2
only, ** denotes for PSD accuracy evaluation only, *** i.e.
rotor noise only).

Training Testing
UAV speed range (rpm) 3000-4000 3000-3300

# of target source patterns 12 (6 male,
6 female)*

4 (2 male,
2 female)

# of interfering noise
patterns

8 (4 traffic,
4 music)*

4 (2 traffic,
2 music)

# of interfering noise angles 12 12
Input SRNR (dB) -∞*,***, -10*,

0*, 10*
-30, -20, -10, 0,

10**
Input SINR (dB) -∞*,***,-10*,

5*, 20*
-10, 0, 10, 20

# of datasets 130 672 + 128**
Total # of observations (per

beamformer)
1271013 185472 +

35328**
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Fig. 7: Rotor noise PSD estimation accuracy: LSD for different
input SRNR (each row of the graphs) and SINR (horizontal
axis of each graph). See Table I for details of the specified
beamformers.

evaluate source enhancement improvement, similar to the input
noise conditions prepared for testing i) SRNR and ii) SINR
improvement [15], were measured and compared.

V. RESULTS AND DISCUSSION

A. Evaluation of PSD estimation accuracy

Fig. 7 summarises the results for different input SRNRs.
Note that different from the studies [28] and [29], results
were evaluated against real-world measurements as opposed
to numerical simulations. In the following discussion, m1 and
m2 will be referred to the two proposed input configurations
as described in Section III-C unless otherwise specified.

For results shown in Fig. 7, different to that seen from
numerical simulations under ideal condition presented in [28]
and [29], the previous study [15] gave a much higher LSD,
indicating larger PSD estimation error than that from the
proposed method. This is perhaps due to the deviations of the
practical environment from an ideal free-field. Fig. 7 shows
that higher LSD figures are seen as the SRNR increases
or the SINR decreases. This is expected as the interfering
noise becomes more dominant in comparison to the rotor
noise, causing estimation of rotor noise PSD via acoustical
signals much more challenging with the increase in interfering
noise levels relative the rotor noise in the microphone record-
ings. In contrast, the proposed method delivered a consistent
performance regardless of the input noise level because the
method takes non-acoustical information as its input, making
the algorithm immune to interference noise.
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Fig. 8: SRNR improvement for different input SRNR (each
subplot) and SINR (horizontal axis of each subplot).
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Fig. 9: SRNR improvement with different interfering noise
source angles (at input SRNR/SINR of 0 dB).

Comparing m1 and m2 shows very similar performance. In
most cases, m1 delivers LSDs of on average 0.5 dB lower.
This is significantly different to that seen from [28] and [29],
where a mixed performance was seen. This is potentially
driven by the acoustical input feature φYθu (ω, t), which could
have brought forward influences of cross-leakage and other
practical IR effects due to deviations from an ideal free-field,
as experienced similarly by the precious study [15]. However,
utilising the input feature φYθu (ω, t) still brings performance
advantages which will later be evident in Section V-B.

B. Evaluation of source enhancement performance

This section compares the performances of the previous
study and the proposed method for source enhancement. How-
ever, as conventional source enhancement techniques, results
from MVDR and the linearly constrained minimum variance
(LCMV) [34] beamformers are also compared.

Fig. 8 summarises the SRNR improvement with respect
to the microphone inputs for different input SRNRs and
SINRs. Here, the proposed method shows significant SRNR
improvement over the previous study and those from MVDR
and LCMV beamformers, where the lower the input SRNR,
the higher the SRNR improvement the proposed method
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Fig. 10: SINR improvement for different input SRNR (each
subplot) and SINR (horizontal axis of each subplot).

-150 -120 -90 -60 -30 0 30 60 90 120 150 180

Interfering noise source angle (deg)

0

2

4

6

8

10

S
IN

R
 im

pr
ov

em
en

t (
dB

)

MVDR LCMV Previous study [15] m1 m2

Fig. 11: SINR improvement with different interfering noise
source angles (at input SRNR/SINR of 0 dB).

was able to deliver. The proposed method is also able to
present a relatively consistent performance for different input
SINRs, indicating increased robustness under harsher input
rotor noise conditions (i.e. lower SRNR). Performance against
the variation of the angle of the interfering noise source (as
outlined in Fig. 5) is presented in Fig. 9. Here, there are
variations in SRNR improvements depending on the inter-
fering noise source placement, which vary similarly to that
from the previous study [15]. This is expected as the source
enhancement process from (13) to (16) follows that from [15],
which makes use of the directivity matrices G0,θ0(ω) and
Gn,θn(ω) to reduce the remaining interfering noise sources.
Thus some of the inherent spatial aliasing effects would also
be carried over.

The proposed method outperformed MVDR and LCMV
while delivering comparable performance compared to the
previous study in SINR improvement performance over dif-
ferent input noise conditions, as shown in Fig. 10. While the
overall reduction in performance of the proposed method is not
significant, it indicates that some loss in SINR performance
is introduced from the rotor noise reduction filter. This is
further highlighted in Fig. 11, which summarises the SINR
performance over different placement angle of the interfering
noise source (as outlined in Fig. 5). Here, the proposed method
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and the previous study have similar performance for angles
between 0 deg to ±90 deg, after which the previous study
[15] performs somewhat better. As mentioned previously, since
the input signal would require both the rotor noise reduction
process ((7) to (12)), as well as the interfering noise reduction
postfiltering process ((13) to (16)), potential distortion and
spatial separation effects between the target and interfering
noise sources would have reflected in the SINR performance.
However, this could potentially be overcome by modifying
the general framework to minimise the impact on the spatial
properties coming from the rotor noise reduction process.
However, this remains part of future investigation.

Like the rotor noise PSD estimation performance seen in
Fig. 7, m1 and m2 show very similar source enhancement
performance in both SRNR and SINR improvement. Contrary
to the rotor noise PSD estimation accuracy performance,
overall m2 delivers slightly higher SRNR improvement over
m1, as shown in Fig. 8 and Fig. 9. This indicates that the input
feature φYθu (ω, t) gives m2 the benefit to track minute details
(such as broadband spectra) in the rotor noise PSD due to it
having an acoustic reference. This achieves the objective of the
utilisation of multi-sensory information, where the hybrid input
information complements another to refine the algorithm’s
source enhancement performance.

It should be noted that while the proposed method yields
significant improvement in the overall source enhancement
performance over the previous study [15], the experiment setup
is simplified (i.e. one rotor). With a full UAV setup of multiple
rotors, it is expected that variations in the combinations of
speeds would increase the overall complexity of the rotor noise
PSD spectrum. In addition, a four-rotor setup would require
an extra beamformer pointing towards Pu,R, while the other
existing beamformers (i.e. beamformer 0-2) require an extra
null placed at Pu,R (see Table I). This results in changes in
the beamformer properties, and as a result affecting the PSDs
spectral characteristics. However, given the capabilities of
machine learning techniques, it is expected that the proposed
method would adapt without much difficulty.

Overall, the results show that appropriate utilisation of rotor
motion characteristics was able to consistently deliver signif-
icantly improved source enhancement performance compared
to [15] in reducing rotor noise despite the existence of other
coherent interfering noise sources.

VI. CONCLUSION

We proposed a source enhancement method for a UAV-
mounted audio recording system, using multi-sensory infor-
mation which includes characteristics of the UAV rotor’s
state, to accurately estimate rotor noise PSD. The mapping
between the multi-sensory information and the rotor noise
PSDs are carried out using RTs. The rotor noise PSDs were
then subsequently utilised in a source enhancement algorithm
for rotor noise reduction and interfering noise removal using
Wiener postfilters.

This study evaluated the algorithm by a practical system
compared to simulation in previous studies, with results show-

ing consistent PSD estimation accuracy improvements with
robustness against interferences from non-rotor noise-related
sources such as target source and coherent interfering noise.
Source enhancement results showed the method’s ability to
perform well under most input noise conditions. However, as
an initial conceptual study of the method, only a one-rotor
problem setup was considered. Future work sees the need to
expand the experimental evaluation to a full, four-rotor UAV
setup, as well as developing the general framework further to
account for the drop in SINR improvement compared to the
previous study.
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