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Abstract
Conventionally, voice conversion techniques are based on the
source-filter model, which extracts acoustic features and trans-
forms the spectrum distribution from the source speaker to the
target. Parallel corpora are usually required to learn the trans-
formation and the alignment of phone units has to be done man-
ually to obtain the optimal conversion. These requirements are
hard to achieve in daily use. Therefore, we proposed an end-to-
end method for personalized speech synthesis system by com-
bining the ideas to tackle these problems and try to make the
data collection task attainable.

We integrated the linguistic/acoustic feature extraction of
the speech corpus by adopting suitable neural networks. In this
way, the traditional linguistic feature extraction module which
relies on the expert knowledge to build could be substituted.
Then, for the personalized acoustic model, we adopted the vari-
ational auto-encoder, which focused on separating the speaker-
related properties, such as timbre and speaker identity, from the
underlying latent code, which assumed to be related to phoneme
identity. Therefore, the requirement of manual alignment and
parallel corpus could be overcome.

Finally, experimental results showed that the proposed sys-
tem indeed useful for personalized speech synthesis and pro-
vides comparable performance with the conventional system
while easier to build.
Index Terms: end-to-end speech synthesis, voice conversion,
variational auto-encoder, word embedding

1. Introduction
The speech synthesis system consists of two main modules con-
ventionally. One is the front-end text analysis module [1] and
the other is the back-end vocoding module [2]. The front-end
module usually is constructed by several sub-modules, such as
text normalization, word segmentation, grapheme to phoneme,
and part-of-speech tagging. After the text analysis, the linguis-
tic representation of the input word sequence could be obtained
and served as the model definition for the back-end vocod-
ing module. The back-end vocoding module then extracts the
acoustic features of the input speech and train the acoustic mod-
els based on the linguistic/acoustic features. Then, a speech
synthesis system is constructed.

However, the problem of the front-end module is that there
are several sub-modules and each of them could be not always
perfect to predict the linguistic features. Therefore, there is in-
consistent between training models and testing (e.g., synthesize
speech). Besides, each of the sub-modules is not easily to build,
which requires expert knowledge and quite patchy to construct.

Therefore, we attempt to integrate the front-end and back-
end together as an unifying framework. In order to achieve this

goal, we substituted the sub-modules of the front-end with sev-
eral neural networks, such as a Seq2Seq model [3] for grapheme
to phoneme mapping, a word2vec model [4] to capture the
word-level class and attributes, and a RNN as the character-
level language model [5]. The output vectors of these models
will then be constructed as the character embeddings for the
back-end acoustic model training. For the back-end vocoder,
we adopt the wavenet vocoder [6, 7], which is also a neural
network-based vocoder. By integrating the generated charac-
ter embeddings for acoustic model training, the whole system
should be capable to generate speech without a large amount
of manually labeled corpus since the front-end modules such as
Word2Vec and RNN-based language model are trained unsu-
pervisedly.

For the personalized speech training, to alleviate the par-
allel corpora and phonemic alignment problem that usually re-
quired in the voice conversion training, the speaker-specific in-
formation and the underlying phone unit should be separated.
This idea could be implemented by using the variational auto-
encoder (VAE) [8, 9], which firstly encodes the phonemic rep-
resentations which is speaker-independent. By combining the
speaker-specific information and the underlying phonemic unit
representation into the decoder process, the resultant speech
should be able to perceived as uttered by the target speaker.

The organization of the paper is as follows. First, we de-
scribe the proposed method and related works in Sec. 2. Then,
the performance of the proposed personalized speech synthesis
system is evaluated via objective and subjective experiments,
and the results are showed in Sec. 3. The concluding remarks
are discussed in Sec. 4.

2. The Proposed End-to-End Personalized
Synthesis System

The proposed method is focused on constructing a personalized
speech synthesis system with a unified framework for Mandarin
language. Fig. 1 shows the system framework for synthesizing
the target speech with several sub-modules, which will be in-
troduced in the section. The front-end block indicates the text
analysis module and the back-end shows the vocoding process
with the trained acoustic model and then the VAE decoding for
transforming the spectrum features of the original acoustic fea-
ture to that of the target speaker using the codebook learnt from
VAE training.

The text analysis of Mandarin is quite complicated since
Mandarin sentences consist of sequences of characters and the
grapheme-to-phoneme (G2P) process requires word segmenta-
tion done in advance in order to obtain correct G2P conversion.
Therefore, we adopted several DNN frameworks that is suit-
able for different tasks and integrated them together for a unified
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character embedding vector to cope with the linguistic analysis
task. The details are depicted as below.

2.1. End-to-End Speech Synthesis System

The proposed Mandarin speech synthesis system, which tried
to substitute the conventional front-end text-to-label module
and back-end label-to-feature module, is designed for Mandarin
tonal language. The front-end module is constructed by com-
bining three sub-modules, which are listed as follows:

• character-to-phoneme module CP

• word-class and attribute module Clab, and

• character-level sequence module Ctxt.

The first character-to-phoneme module is used to predict the
phonemic unit for each character, which consists of its unit iden-
tity and tone information based on the corresponding lexical
word, in the input sentence. Here, we adopted the Seq2Seq
model, which is useful for processing sequential data, such
as machine translation [10], voice conversion [11] and speech
recognition [12]. Here, to cope with homophone problem in
Mandarin, the nearby characters (3 preceding/succeeding char-
acters) of the current character are combined as the input se-
quence for the model training, and the output is the phonemic
unit with tone information for the current character.

The second module, which deals with the word-class and
attribute, is aimed to substitute the conventional POS tag-
ging [13]. Here, the Word2Vec network is adopted, and is
quite useful for clustering word with similar syntactic structure.
After training with input continuous bag of word (CBOW) of
the nearby words, the word-level embedding for each character
could be obtained.

The third module is the substitute module for the conven-
tional language model [14] that is served as the contextual lin-
guistic information for the input sentence. Here, we adopted
the RNNLM toolkit [15] in our system. However, the input fea-
tures are the sequences of characters instead of the words. Since
the RNN is capable to memorize the sequential information of
the input features, the contextual linguistic features could be
captured and the values of the hidden neurons are used as the
linguistic information vector of the corresponding character.

The resultant three character-level vectors are then com-
bined together and a vector quantization [16] process is ap-
plied to integrate the information of the three sub-modules and
served as the character embeddings for the corresponding units.
Then, for the back-end acoustic model training, we followed the
wavenet vocoder [6, 7] and trained a source acoustic model with
the character embeddings, and could obtained a speech syn-
thesis system of the source speaker. In order to transform the
acoustic model of the source speaker to the target one, we in-
vestigated the powerful variational auto-encoder (VAE), which
has been adopted in several research domains, such as speech
recognition [17], emotional speech generation [18], and voice
conversion [9] and so on. Therefore, we tried to incorporate
the VAE for its capability for training voice conversion model
without the requirement of manually phonemic unit alignment.

2.2. Variational Auto-Encoder

The idea of the auto-encoder is to encode the input features to
a sequence of the latent codes, and then decodes them for re-
generating the original input features. For the VAE training,
it hypothesizes that the encoder only make the input acoustic
features into code sequence that is speaker-independent, with

an additional speaker-specific information is added to the AE
model. When decoding the code sequence to its original acous-
tic features, the additional speaker-specific information is con-
catenated and decoded as eq. 1:

x̂n = f̂ (xn, yn) = fd (zn, yn) = f̂ (fe (xn) , yn) (1)

where x̂n is the transformed acoustic features xn of the source
speaker with length of n, f̂ represents the entire VAE process,
yn is the target speaker information, zn is the latent code, and
fe, fe are the encoding and decoding process, respectively.
Note that zn only carries the phonemic information while the
yn is aligned to the length of xn frames.

During model training, the VAE firstly decodes the input
speech features and then restore to the original features, while
optimizing the speaker-specific information based on the user
defined code. Therefore, when applying this process to the
corpora of multi-speakers, we could obtain a set of speaker-
independent encoder, decoder and the speaker representation of
each speaker. During the conversion step, the encoder encodes
the input speech sequence to the latent code zn, and we could
substitute the speaker representation to the one that we desire to
generate, which is denoted as yn and combine with zn to get the
decoded results. In this way, the VAE process do not require the
parallel data of each speaker and since it learns the distributions
of speaker and phonemic unit separately, the manual alignment
is also not necessary. The effectiveness of the VAE process is
investigated in the experiment section.

3. Experiments
For evaluating the performance of the proposed system, we
firstly evaluate the effectiveness of substituting the front-end
text analysis modules. Here, we adopted the Mel-Cepstrum Dis-
tance (MCD) as the objective metric to confirm whether the pro-
posed method could reproduce the characteristics of the origi-
nal speech. Then, for the subjective evaluation, we held listen-
ing tests to evaluate the speech quality and speaker similarity
of the generated speech by the proposed system with different
settings.

3.1. Experimental settings

For training the front-end sub modules, we adopted several
public text corpora. For the training of Cp, the TCC300 cor-
pusc̃itechiang2012study is adopted, which consists of around
286k words. For Clab and Ctxt, the open-source corpus of the
Wikipedia [19] is used here, which consist of around 2, 800k
text files. We used open-sourced CKIP toolkit [20] to obtained
the Mandarin word segmentation. For the model training, we
adopted the Seq2Seq tool [21] for training Cp, word2Vec for
Clab, and RNNLM toolkit [15] for Ctxt. By applying VQ, the
resultant character embedding size is set to 256.

For training the acoustic model, we used the speech corpus
collected from our lab, which consists of a 1, 927 utterances by
a professional female speaker, is recorded in recording studio,
the audio format is 48kHz and 16bits. The content of the ut-
terances includes news transcripts and child stories. In order to
evaluate the effectiveness of the VAE, we also collected a small-
sized parallel corpora, which consists of 72 utterance pairs and
4 speakers, to compare the training results.

For feature extraction, we used open-sourced Wavenet
vocoder [6] to extract Mel-Cepstral feature, aperiod feature,
fundamental frequency f0, and voiced/unvoiced features. The
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Figure 1: The proposed system framework for synthesizing personalized speech.

hyper parameter settings are based on the suggested settings in
the tool.

3.2. Objective Evaluation

To evaluate the distortion between the generated speech and the
synthesized speech, we compared the Mel-Cepstrum Distance
(MCD) as follows:

MCD =
10

log10

√√√√2
M∑

m=1

(co (m)− cs (m))2 (2)

where co and cs is the cepstral feature of the original speech and
the synthesized one, respectively. M is the number of dimen-
sion of the Mel-Cepstrum. Here, the baseline system is the con-
ventional text analysis module that our lab constructed for Man-
darin [22], which is also trained using the same set of corpus as
the proposed neural network-based module. The back-end are
the same for both system. The MCD of both systems compared
to the original speech utterances and the results are shown in ta-
ble. 1. Note that the inside test is held by using the same set of
utterances for acoustic model training, while the outside test is
by using a set of 72 utterances not included for training. The re-
sults showed that by unsupervised learning using NNs, the pro-
posed method is capable to generated speech with similar dis-
tribution of distortion (no significant differences for both inside
and outside tests). Therefore, the proposed unified framework
is effective for substituting the conventional front-end modules.

Data baseline proposed
inside 4.7± 0.056 4.3± 0.053

outside 5.5± 0.047 5.6± 0.049

Table 1: The averaged MCD between original speech and syn-
thesized speech (in dB)

After applying the VAE module for generating the speech
utterances of the target speaker, it is interesting to evaluate
whether the spectrum transformation could result in decreas-
ing the cepstral features. Here, the VAE is trained between
cepstral features extracted from the synthesized speech of the
source speaker and the natural speech of the target speaker. We
adopted the speech data of a male speaker as the target speaker,

and compare the MCD between synthesized speech and origi-
nal speech of the target speaker. Note that we only collected
72 utterances of the target speaker for VAE training, therefore
only inside test is reported, which is 8.3 ± 0.072 before spec-
tral transformation and 6.2 ± 0.65 after transformation. The
results suggests that the VAE is indeed helpful for transforming
the cepstrum features from source to target. However, MCD
is not a perception metric for speech, therefore, we conducted
subjective evaluations for further performance investigation.

3.3. Subjective Evaluation

For subjective subjective evaluation, we conducted two experi-
ments to validate whether VAE training could be done without
parallel corpora. First, we synthesized the same set of speech
utterances as collected from target speaker to simulate the par-
allel data (denoted as V AEpseu). The second set is randomly
generated speech utterances that are different from the target
speaker (denoted as V AEnon). We also have the third set of
speech utterances that are the natural speech utterances of the
source speaker and is parallel to that of the target speaker, which
serves as the golden standard (denoted as V AEpar). We asked
10 native Mandarin speaker to evaluate the speech quality and
speaker similarity. For the speech quality test, 5-point Mean
Opinion Score (MOS) test is held, while the ABX preference
test is conducted for evaluating the speaker similarity. The 20
testing utterances are all outside sentences, which are not in the
training set nor parallel set.

The speech quality results are shown in Fig. 2. Note that
“Source” and “Natural” indicates the synthesized and natural
speech of the source speaker, respectively. The speech quality
of the synthesized utterances is slightly inferior than the nat-
ural speech. However, the VAE module integration does not
decrease speech quality significantly, since the speech quality is
similar to the one that does not perform the VAE conversion.

The results of the speaker similarity is shown in Fig. 3. The
gray bar indicates the no-preference between two comparative
systems. The VAE-based methods all generated speech utter-
ances perceived much similar to the target speaker compared
to the source utterances. However, by investigating the results
of the three VAE-based systems, there is no preference shown
even though V AEpar achieved slightly better preferences. This
result shows that the parallel corpora is not required for train-
ing the VAE model for significantly better voice conversion re-
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sults. However, there is still some buzz sounds in the generated
speech utterances, which could be caused by the vocoder set-
tings. We could further conducts different experiments using
other vocoders [2, 23].

Figure 2: The MOS test results of speech quality.

Figure 3: The ABX test results of speaker similarity.

4. Conclusions
In this paper, we have introduced a unified end-to-end person-
alized speech synthesis system for Mandarin language. By in-
tegrating several unsupervised neural networks to the front-end
text analysis module, it showed the similar performance com-
paring with the conventional text analysis modules. By adding
the VAE module, the parallel corpora is not required to generate
the speech utterance of an arbitrary speaker. Future work will
focus on improving the speech quality and also incorporate the
linguistic information for VAE training to enhance the transfor-
mation results.
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