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Abstract—End-to-end text-to-speech (TTS) models have
achieved remarkable results in recent times. However, the model
requires a large amount of text and audio data for training.
A speaker adaptation method based on fine-tuning has been
proposed for constructing a TTS model using small scale data.
Although these methods can replicate the target speaker’s voice
quality, synthesized speech includes the deletion and/or repetition
of speech. The goal of speaker adaptation is to change the
voice quality to match the target speaker’s on the premise that
adjusting the necessary modules will reduce the amount of data
to be fine-tuned. In this paper, we clarify the role of each module
in the Transformer-TTS process by not updating it. Specifically,
we froze character embedding, encoder, layer predicting stop
token, and loss function for estimating sentence ending. The
experimental results showed the following: (1) fine-tuning the
character embedding did not result in an improvement in the
deletion and/or repetition of speech, (2) speech deletion increases
if the encoder is not fine-tuned, (3) speech deletion was suppressed
when the layer predicting stop token is not fine-tuned, and (4)
there are frequent speech repetitions at sentence end when the
loss function estimating sentence ending is omitted.
Index Terms: end-to-end speech synthesis, speaker adapta-
tion, fine-tuning, transformer, module analysis

I. INTRODUCTION

Text-to-speech (TTS) is a technology that generates human-
like speech from inputted texts. End-to-end TTS [1], [2], [3],
[4], [5] is now being investigated actively. It is made up
of the encoder-decoder architecture with an attention mech-
anism that generates an acoustic feature sequence from a
character/phoneme sequence. Unlike conventional statistical
parametric speech synthesis (SPSS) systems based on hid-
den Markov models (HMMs) [6] and deep neural networks
(DNNs) [7], end-to-end TTS systems can be trained with
raw text data directly without requiring linguistic features
like phonemes, syllables, accents, intonation, and mora. As
an end-to-end TTS, Tacotron [1] that addresses the mapping
between character and Mel-spectrogram was proposed. Many
types of end-to-end neural architectures have been proposed,
e.g., Tacotron 2 [2], Deep voice 3 [3], Transformer-TTS [4],
[8], and FastSpeech [5].

To build an end-to-end TTS system, a large amount of
paired speech and texts is needed for training, e.g., a few hours
to 20 hours of recordings for a single speaker [9]. This makes
constructing end-to-end TTS systems with various speaker’s
voice quality expensive. Knowledge transfer approaches such
as transfer learning [10], fine-tuning [11] and multi-task learn-

ing [12] are promising options for solving the problem of data
quantity. Fine-tuning, which needs only a dozen minutes of
single-speaker recordings, has been extensively studied as a
basis for adaptation techniques. Arik et al. proposed a speaker
adaptation that is based on fine-tuning a pretrained multi-
speaker model using a few audio-text pairs of an unseen
speaker [13]. Chen et al. proposed cross-lingual transfer learn-
ing in end-to-end TTS for low-resource languages [14]. Tits et
al. proposed an adaptation method that is based on fine-tuning
target neutral speech and emotional speech sequentially [15].
In these methods, the entire model is updated.

However, if the model is sufficiently trained, it should be
sufficient to update only those parts of the model that are
relevant to the change in the task. For example, if the task that
needs to be fine-tuned is developed using the same language,
say English, then the character/word embedding does not
need to be updated. Like the analysis of neurons [16] or the
analysis of attention [17], knowing what the modules of a
neural network represent allows us to know the appropriate
modules to be updated. We have previously investigated semi-
supervised speaker adaptation using unpaired speech data [18].
The results show that the fine-tuned model tends to relatively
increase speech deletion when compared to the pretrained
model. Similarly, in the study of [15], it can be seen that the
intelligibility of the speech generated by the fine-tuned model
decreases. To solve this problem, we compared the modules to
be updated when fine-tuning and checked their effectiveness.

Our hypotheses are given below:

1) If the fine-tuning task is in the same language, the
character embedding does not need to be updated.

2) If sufficient pretraining has been done, only the decoder,
which maps the acoustic features from the encoded
features, should be updated. This means the encoder
does not need to be updated.

3) Because the loss that estimates the end of a sentence
tends to cause over-training, updating the layer predict-
ing stop token or using the loss is not necessary for
fine-tuning.

We adopted the Transformer architecture [19] for the TTS
because of its high performance and fast training properties
[4], [8]. The results of our experiment showed that (1) if
the task before and after fine-tuning is in English, updating
the character embedding does not contribute to performance
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Fig. 1. The training process for Transformer-TTS. Plain, dotted, and dashed lines indicate forward flow of current step, feedback flow from past step, and
loss calculation, respectively.

improvement; (2) freezing encoders tends to cause speech
deletion; (3) freezing the layer that predicts stop token can
reduce speech deletion; and (4) not including binary cross
entropy (BCE) in the loss function tends to cause speech
repetition.

II. TRANSFORMER-TTS
Figure 1 shows the training process that is common to both

pretraining and fine-tuning.

A. Training process
Transformer-TTS (shown in Figure 1) are directly trained

to map C-length character id sequence X = {xc}Cc=1 to T -
length speech feature sequence Y = {yt}Tt=1. One-hot vectors
are used as the character id. Also, log Mel-filter bank features
are typically used as the speech features. The mapping from
X to Y can be represented in the following manner:

ec = Character-Embedding(xc) (1)
hc = Encoder(ec) (2)

at,c = Attention(hc,qt−1, at−1) (3)

rt =

C∑
c=1

at,chc (4)

vt−1 = Pre-net(yt−1) (5)
qt = Decoder(qt−1, rt, vt−1) (6)
ŝt = Linear(qt) (7)

ŷbt = Linear(qt) (8)

ŷat = ŷb
t + Post-net(ŷbt) (9)

The input X is embedded into a continuous feature sequence
E = {ec}Cc=1. Then, E is encoded into a hidden feature
sequence H = {hc}Cc=1 by the encoder network like a self-
attention mechanism [19]. Next, a hidden feature sequence H
is used as the input in the decoder network with a source-
target attention mechanism [20]. Next, the temporary output
Ŷ

b
= {ŷbt}Tt=1 is generated by using the decoder network’s

output. The end-of-sequence (EOS) probability ŝt at each
frame t is predicted at the same time. Finally, the output
Ŷ

a
= {ŷa

t }Tt=1 is generated from Ŷ
b

and residual factor
through the Post-net.

Given the speech feature sequence Y and the corresponding
character sequence X from pretraining dataset DP , the whole
of the TTS model is optimized by minimizing the following
TTS loss:

L(X,Y) =
1

T

T∑
t=1

L1(yt, ŷb
t) +

1

T

T∑
t=1

L1(yt, ŷat )

+
1

T

T∑
t=1

(st ln ŝt + (1− st) ln(1− ŝt)),

(10)

where L1(·) represents an L1 norm, last term represents a
BCE, and st represents a label that indicates if the input at
time t is the EOS (st = 1) or not (st = 0). Note that the
ŷt is conditioned on the ground-truth of the previous feature
sequence {yt′}t−1

t′=1, i.e., teacher-forcing is used in training.

B. Modules and their contributions
1) Character embedding: The character embedding (shown

in eq. 1) takes on the role of mapping from a one-hot vector
to a D-dimensional continuous value vector [2], [4]. If the
tasks before and after fine-tuning are in the same language,
the occurrence frequency and role of the alphabet are kept.
Therefore, it is assumed that freezing the character embedding
does not affect performance improvement after fine-tuning.

2) Encoder and decoder: The encoder (shown in eq. 2)
takes on the role of a mapping from continuous value vectors
to hidden feature vectors, while the decoder (shown in eq. 6)
takes on the role of a mapping from hidden feature vectors
and outputs of the previous step to outputs of the current step.
Hidden features can be regarded as compressed features that
adequately represent the acoustic features. If the encoder is
sufficiently pretrained and the hidden feature does not depend
on acoustic feature prediction, it might be sufficient that the
decoder is only adapted to the target speaker. In other words,
freezing the encoder allows us to check whether the hidden
features are independent of the target speaker.

3) Output layer and loss function: The acoustic feature
output layer (shown in eq. 8) and the post-net (shown in eq. 9)
take on the role of predicting log Mel-filterbank features. This
prediction error is measured quantitatively using the sum of
L1 loss (shown in the first and second terms of eq. 10). Figure
2 shows the transitions of the sum of L1 loss in the pretraining
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Fig. 3. BCE loss transition on pretraining

described in section III. As the purpose of speaker adaptation
is to synthesize the speech of a new speaker, the acoustic
feature output layer and the post-net need to be updated.

The probability output layer (shown in eq. 7) takes on the
role of predicting the EOS. This prediction error is measured
quantitatively using BCE loss (shown in the last term of
eq. 10). Figure 3 shows the transitions of BCE loss in the
pretraining described in section III. It can be seen that the
BCE loss of the training set steadily decreases, while the BCE
loss of the validation set increases from an early step. Thus,
over-training may negatively affect the training results when
fine-tuning.

III. EXPERIMENTAL SETUP

We froze three modules to check the effect of fine-tuning, on
character embedding (char. embed), encoder, and probability
output layer (prob. output). Also, BCE loss was excluded from
the loss function (shown in eq. 10) to check if the presence
or absence of this loss has an effect on performance.

We used four types of end-to-end TTS models that con-
sist of an all fine-tuned model and fine-tuned models with
frozen modules as shown in Table I. The first model was the
pretrained TTS model, which is used as the baseline of the
speaker adaptation. The second model is a speaker adaptation
model based on fine-tuning [15], [18]. The third model is
a multi-speaker end-to-end TTS model based on zero-shot
feature embedding [21], [22], which is also trained with x-
vector [23]. The feature embedding is another type of speaker
adaptation method. The model controls the speaker’s identities
by using an auxiliary input vector, like x-vector. The zero-shot

means the target speaker is not included in the training set. The
fourth model is a multi-speaker end-to-end TTS model based
on N-shot feature embedding. The N-shot means N utterances
of the target speaker are included in the training set.

A. Dataset

For the pretraining of the TTS model, we used the LJ speech
dataset [9], which consists of an approximately 24-hour speech
of a female English speaker. The speech was sampled at 22.05
kHz and quantized by 16 bits. We used 12, 100 utterances as
a training set, and 500 utterances as a development set.

For the adaptation of the pretrained TTS model based
on fine-tuning, we used the subset of LibriTTS [24], which
consists of female speakers (speaker 237) from “test-clean”.
The original LibriTTS consisted of approximately 585 hours
of speech by 2, 456 English speakers. The speech was sampled
at 24 kHz, quantized by 16 bits, and downsampled to 22.05
kHz. We divided the data into a training set, a development
set and a test set in the ratio 90%, 5% and 5%, respectively.

For the training of the feature embedding-based adapted
model, LibriTTS [24] was used. The training set consisted of
two sets of clean speech data (“train-clean-100” and “train-
clean-360”). The development set consisted of clean speech
data (“dev-clean”). For the zero-shot, the target speakers were
not included in both the training and development sets. For
the N-shot, the target speaker was added to the training set.

B. Feature and text representation

For the single-speaker TTS model (pretraining, fine-tuning),
the waveform that was sampled at more than 22.05 kHz was
downsampled at 22.05 kHz. The 80-dimensional log Mel-filter
bank features were extracted, and the text was tokenized as
characters and mapped into a 76-character set: 52 alphabetic
letters (A-Z, a-z), 5 punctuation marks (’,.!?), 17 special marks
(”()[]{}-/:; æœêé¯–), and 2 special tags ⟨unk⟩, ⟨space⟩ as
unknown, space tokens, respectively.

For the multi-speaker TTS model (feature-embedding),
the waveform was downsampled at 22.05 kHz. The 80-
dimensional log Mel-filter bank features were extracted, and
the text was tokenized as characters and mapped into the
same character set as single-speaker TTS models. To control
the speaker identity, x-vector [23] was extracted as a speaker
embedding feature.

C. Model configuration

For the TTS model, we used the Transformer architec-
ture [19]. The TTS encoder and decoder both had 6 layers with
1536 units. The pretraining model was trained for 1000 epochs
using 2.01× 10−7 as the initial learning rate. The fine-tuning
models were trained for 100 epochs using 2.01× 10−8 as the
initial learning rate. The feature-embedding models were also
trained for 100 epochs using 5.10×10−8 as the initial learning
rate. The characters were embedded into a 384-dimensional
vector.

During the waveform synthesis, ParallelWaveGAN [25]
trained the mapping from 80-band log Mel-filter bank features
to waveform was used as a vocoder. The ParallelWaveGAN
was trained with the LJ speech dataset [9].

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

828



TABLE I
TRAINING CONFIGURATION.

Training method Training data Duration Target speaker
Pretraining the LJ speech dataset 23.0 hours unseen
Fine-tuning Target speaker (“test-clean”) 20.0 minutes seen
Feature-embedding zero-shot LibriTTS (“train-clean-100”, “train-clean-360”) 245.1 hours unseen
Feature-embedding N-shot LibriTTS including target speaker 247.0 hours seen

TABLE II
OBJECTIVE EVALUATION RESULTS OF THE CEPSTRUM RMSE [DB] AND THE CHARACTER ERROR RATE (CER) OF SYNTHESIZED SPEECH [%]. SUB. AND

DEL., INS. INDICATE SUBSTITUTION ERROR [%], DELETION ERROR [%] AND INSERTION ERROR [%], RESPECTIVELY. TAIL INS. INDICATES THE
INSERTION ERROR ON LAST 5 WORDS [%].

ID Training method Update part Loss RMSE Sub. Del. Ins. CER (Tail Ins.)
1 Ground-truth — — 0.4 1.0 0.4 1.8 (0.4)
2 Pretraining All L1 + BCE 30.1 2.9 7.4 1.1 11.4 (0.6)
3 Fine-tuning All L1 + BCE 20.4 1.7 13.8 0.6 16.1 (0.4)
4 w/o char. embed L1 + BCE 20.2 2.4 14.6 0.7 17.7 (0.3)
5 w/o char. embed, encoder L1 + BCE 21.3 3.4 23.8 2.5 29.7 (0.4)
6 w/o prob. output L1 + BCE 19.4 2.1 8.8 2.2 13.1 (1.9)
7 All L1 20.5 2.2 4.5 23.8 30.5 (23.5)
8 w/o char. embed L1 20.5 3.1 4.6 20.0 27.7 (19.4)
9 w/o char. embed, encoder L1 21.2 4.9 12.8 8.9 26.6 (8.1)

10 w/o prob. output L1 20.4 3.5 6.1 31.7 41.3 (31.0)
11 Feature-embedding zero-shot All L1 + BCE 19.5 2.4 5.6 0.6 8.6 (0.5)
12 Feature-embedding N-shot All L1 + BCE 19.1 3.0 14.1 2.0 19.0 (1.9)

IV. EXPERIMENTS

A. Objective evaluation

Unseen speech data for training was used as a test set, which
included 26 sentences. All the TTS models generated speech
by using the ground-truth text. The x-vector was extracted
from target utterance to indicate the upper bound of feature-
embedded models.

To evaluate the proposed method, we compared the perfor-
mance of the acoustic feature prediction with two objective
measures, namely, root mean squared error (RMSE) of the
cepstrum and character error rate (CER) of the synthesized
speech. The generated acoustic features were warped to fit the
time of the ground-truth acoustic feature. Therefore, speeches
repeated at the end of sentences were removed from the RMSE
calculation. The cepstrum error is the average of all frames of
cepstral distortion (CD) [18], where the cepstral coefficients
are 79 dimensions. The CER was computed based on the
edit distance between the ground-truth text and text recog-
nized from a generated speech using end-to-end automatic
speech recognition (ASR). It was evaluated using an ASR
model [18] trained with Librispeech [26]. The ASR model is
the Transformer architecture [19] and provided at ESPnet [27].
In end-to-end TTS, the generated speech sometimes includes
the deletion and/or repetition of words in the input text due
to alignment errors [28]. We used the CER to find and
classify deleted speech and repeated speech as deletion error
and insertion error, respectively [15], [29]. Comparing with
word error rate, CER is suitable to evaluate the correctness
of phoneme by ignoring a homonym, for example, “ad” and
“add”, “brothers” and “brother’s”. The evaluation by the ASR
model has an advantage in reproduction and consistency than
human assessment. The insertion error on the last five words
was computed after observing the repetition of speech at the
tail of the utterance.

B. Evaluation results
Table II shows the cepstrum RMSE and the CER of synthe-

sized speech. In terms of the CER, by observing the results,
we found out that the TTS model missed generating speech,
which results in the deletion error in most cases. Also, we
found that the TTS model repeatedly generated speech, which
results in insertion error in most cases.

A comparison of the update of character embedding (Mod-
els 3 and 4 in Table II) shows that all updated model have
similar RMSE to the model with frozen character embedding.
It seems that the deletion of speech is more frequent than in the
pretrained model, regardless of updating character embedding.
Thus, the character embedding does not need to be updated
during fine-tuning.

A comparison of the updated encoder (Models 3 and 5
in Table II) with the model with frozen encoders shows an
increase in RMSE in the former. It can also be seen that
this model has a significant increase in deletion errors when
compared to the pretrained model. We found that the encoder
output is not referenced in the deleted part of the speech after
checking the source-target attention in generating the acoustic
features. This shows that the hidden features are dependent on
the generation of acoustic features, and the encoder needs to
be updated during fine-tuning.

A comparison of the updated probability output layer (Mod-
els 3 and 6 in Table II) with the frozen probability output
layer shows the latter has a lower RMSE and a lower deletion
error than the model with all updates. It can be seen that
updating the probability output layer has a negative effect
on the generation of acoustic features. In addition to this,
there was a slight increase in insertion errors at the end of
the utterance. This indicates that the prediction accuracy was
reduced due to the freezing of the probability output layer.
As a result, repetition of the utterance occurred. Although
contrary to the End-to-End philosophy, speech repetition can
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be handled by simple post-processing such as trimming. In
contrast, speech deletion is a serious and primary problem
because it cannot be handled by post-processing. It can be
concluded that the probability output layer does not need to
be updated during fine-tuning.

A comparison of the use of BCE (Models 3-6 and 7-10 in
table II) to the model with BCE loss shows that the former
recorded a significant increase in insertion errors, especially at
the end of the utterance. This indicates that a reduced accuracy
in estimating the end of the utterance. Although BCE loss
is prone to over-training, it is useful in suppressing speech
repetition. The BCE needs to used during fine-tuning.

Comparing the different speaker adaptation methods (Mod-
els 11 and 12 in Table II), the N-shot model shows a higher
increase in CER than the zero-shot model. It can be seen that
the target speaker’s training data are conducive to the deletion
of utterances. However, the best-performing fine-tuned model
(Model 6 in Table II) suppressed the deletion of utterances
while keeping the RMSE at the same level.

V. CONCLUSION

In this paper, we investigated the effects of modules of
Transformer-TTS for fine-tuning. We compared all updated
model with models that freeze character embedding, encoder,
a probability output layer, and binary cross entropy. Objective
evaluation results showed that (1) if the task before and after
fine-tuning is in English, updating the character embedding
does not contribute to performance improvement; (2) freezing
of encoders tends to cause speech deletion; (3) freezing
the layer that predicts the utterance end can reduce speech
deletion; and (4) not including BCE in the loss function tends
to cause speech repetition. In conclusion, to realize the TTS
model that generates speech of the target speaker with low
deletion and repetition, we need to fine-tune the model with
freezing character embedding and the layer predicting stop
token.

We also found that deletion error after adaptation increased
because the encoder output was not referenced by the de-
coder. In subsequent works, we will investigate the attention
mechanism required to avoid increasing speech deletion. We
evaluated the fine-tuned models with limited test sentences.
As future work, we would like to clarify more the tendency
of results and causes by increasing the test sentences.
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