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Abstract—We describe an implementation of real-time wave-
form generation from vocoded speech parameters. High-quality
vocoders such as STRAIGHT and WORLD have been used
for voice conversion and statistical parametric speech synthesis.
The current implementation of such vocoders has a function
for generating the whole waveform from the speech parameters
in all frames at one time. To sequentially generate a short-
period waveform, implementations such as realtime STRAIGHT
have been proposed. However, the generated speech waveform
is inferior in sound quality to that of the original vocoder. To
achieve sequential real-time waveform generation, a struct named
WorldSynthesizer (WS struct) and six functions were implemented.
The implementation is based on the WORLD vocoder, and it can
generate the completely same waveform as the original except
for the several points such as random seed used for generating
the white noise. We therefore evaluated its processing speed by
using the real time factor (RTF). The results showed that the
processing speed of the proposed implementation decreased by
14.5% compared with the original WORLD. On the other hand,
the RTF of the proposed implementation calculated from female
speech was below 0.1, which suggests that the implementation is
able to carry out real-time synthesis.

I. INTRODUCTION

Vocoder-based high-quality speech analysis/synthesis sys-
tems have been used for various purposes, such as statistical
parametric speech synthesis (SPSS) [1], [2], singing synthesis
[3], and voice conversion [4]. In SPSS, although WaveNet [5]
has been used for high-quality speech synthesis, the vocoder-
based approach is still used for its flexibility. The high-quality
vocoder on the basis of the channel vocoder [6] decomposes a
speech waveform into the fundamental frequency (F0), spectral
envelope, and aperiodicity. Although other speech parameters
[7], [8], [9] have been proposed for similar purposes, the
vocoder-based approach using three speech parameters is still
popular.

Several high-quality vocoders, such as STRAIGHT [10],
[11] and WORLD [12] (D4C edition [13]), have been used
for SPSS. High-quality vocoders also have an algorithm for
generating waveforms from the speech parameters. Their im-
plementations require a complete set of speech parameters and
generate the whole waveform from them at one time. When
the speech parameters are sequentially generated by another
system, the current waveform generator must wait for the end
of the generation process. A real-time melody design interface
such as v.morish [14] requires such a waveform generator.
Sequential real-time waveform generation from sequential
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speech parameters would thus be useful.

Realtime STRAIGHT [15] is a means of real-time wave-
form generation. Although this system performs speech analy-
sis/synthesis in real-time, its sound quality is inferior to that of
the original STRAIGHT. For example, high-performance FO
estimators [16], [17] are used in high-quality vocoders, and
their performance is superior to other traditional estimators
such as Cepstrum [18], [19], YIN [20], and SWIPE [21].
However, since algorithms employed in the STRAIGHT and
WORLD use both past and future information of the wave-
form, it is impossible for it to work in real time where there
is no access to future information.

SPSS and real-time melody design interfaces use other
frameworks to generate speech parameters. Since they don’t
require real-time speech analysis, only real-time synthesis is
useful for them. Here, we attempted to implement a real-time
waveform generator having compatibility with the original
vocoder. We focused on the WORLD vocoder, a high-quality
vocoder used all over the world. The purpose of this study was
to develop a real-time waveform generator that would produce
the same waveform as the original.

In Section 2 of this paper, we discuss related work on the
waveform generation and describe the concept of the proposed
implementation. In Section 3, we explain the details of the
implementation. In Section 4, we evaluated the processing
speed of the implementation in terms of the real time factor
(RTF) and discuss the results. We conclude in Section 5 with
a summary and a mention of future work.

II. RELATED WORK AND CONCEPT OF THE PROPOSED
IMPLEMENTATION

Several waveform generators that use vocoder-based speech
parameters have been proposed. In this section, we review
them and explain the baseline of the proposed implementation.
We first explain them as related works and then explain the
baseline for the proposed implementation. The requirements
of the proposed implementation are also discussed.

A. Related work on waveform generation

STRAIGHT and WORLD use the same algorithm for
generating waveforms. Other waveform generators, such as
the log domain pulse model [22] and Vocaine [23], use
different speech parameters from those of STRAIGHT and
WORLD. In particular, the log domain pulse model uses the
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phase distortion deviation (PDD) [24] and noise mask as its
speech parameters. The Vocaine is similar to the sinusoidal
representation [9]. In this research, we focus on high-quality
vocoder based on channel vocoder because it has been used
for various kinds of purposes.

Neural vocoders such as the WaveNet vocoder [25] have
achieved high-quality speech synthesis. Their sound quality is
better than that of conventional vocoders that don’t use neural
networks. However, since they require a high-performance
graphics processing unit (GPU), they can’t be used for real-
time processing on a typical laptop PC. For this reason, we
focused on an algorithm that does not require a GPU and

devised an implementation that can achieve real-time synthesis ~ Fig. 1. Ring buffer in WS struct. The user can obtain the waveform from
: the current position (CP) to CP + N — 1th sample by using the Synthesis2
on a laptop PC without a GPU. function.

B. WORLD: Baseline system

We used the WORLD vocoder as the baseline system. A Specifications of WS Struct
WORLD has several implementations in speech analysis; we First, we explain real-time waveform generation using WS
employed the latest version consisting of Harvest [17], Cheap- ~ struct. WS struct has a ring buffer as shown in Fig. 1, and
Trick [26], [27], and D4C [13] as the FO, spectral envelope, each buffer has a pointer to the speech parameters. The user
and aperiodicity estimators, respectively. We expanded the can add several frames at one time. The current position (CP)
waveform generation algorithm while ensuring that it would 1in the figure is a member variable in WS struct, and the user
output the same waveform. can generate the waveform of N samples from this position.

The original algorithm first calculates a parameter 6(¢) from ~After that, the CP is automatically incremented by NV samples.
the FO contour Fy(t) to determine the temporal positions of ~When the CP shifts to a temporal position in the next frame,

the vocal cord vibrations. the link in the current buffer is automatically removed from
. the ring buffer.
0(t) = 2r / Fo(r)dr, (1) Sequential real-time waveform generation is performed as
0 follows.

1) Initialization of WS struct by using the InitializeSynthe-
sizer function.

2) Addition of speech parameters to WS struct by using
the AddParameters function.

3) Generation of waveform (/N sample) by using the Syn-
thesize2 function.

4) Release of the memory by using the DestroySynthesizer
function.

Since the unvoiced frame has no FO information, 500 Hz is
set for all unvoiced frames as the default value in WORLD.
The temporal position of the first vocal cord vibration is 0
s (origin), and the next position 7y is determined from 6(t).
71 is a value that satisfies the equation 6(r) — 6(0) = 2.
The n-th position 6(7,,) is recursively determined to satisfy
the equation 6(7,) — 6(7,—1) = 27.

The impulse response of a vocal cord vibration is calculated
as the minimum phase response obtained from the spectral If the user adds all frames at one time, he/she can call the
envelope. Pitch synchronous overlap and add (PSOLA) [28] Synthesis2 function until the current position reaches the end
is then carried out by using the impulse response. Since the ~Of the frame. The user can also add a speech parameter and
speech waveform consists of not only the vocal cord vibration ~ call the Synthesis2 function alternately.
but also an aperiodic component, white noise is used as
the excitation signal. In WORLD, the periodic and aperiodic
components are independently calculated and then summed.

B. InitializeSynthesizer(): Initialization of WS struct
This function is called to set the following parameters of

WS struct.
I11. IMPLEMENTATION OF REAL-TIME WAVEFORM + Sampling frequency
GENERATOR o Number of samples N of the waveform generated by the
Synthesis2 function
Here, we explain our implementation of real-time waveform o Number of buffers in the ring buffer
generation from speech parameters. The source code is in « Frameshift length
C++ and has been released!. The implementation uses a « FFT length
struct called WorldSynthesizer (WS struct) and consists of SiX e WS struct is initialized, these parameters are fixed; the
functions. user cannot change them after they have been initialized. If
a different condition is required, the user must build another
Thttps://github.com/mmorise/World WS struct with different parameters.
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Fig. 2. The number of frames in speech parameters is different from the fixed

- . Fig. 3. WS struct is locked when the ring buffer is full, and the Synthesis2
area in which the user can generate the waveform.

function can output no waveform.

C. AddParameter(): Addition of speech parameters to WS F. DestorySynthesizer(): Release of WS struct

struct Since we used the C++ language to have compatibility

After initialization, the user can add speech parameters to ~With C, we must release the memory in WS struct after the
the ring buffer. The unique aspect of this implementation is ~Processing. This function releases all memories used in WS
that the user can add an arbitrary number of frames at one time. ~ struct. When the user has to reset WS struct to escape from
Fig. 1 shows cases in which speech parameters with 60, 60, @ locked status, the RefreshSynthesizer function can be used
and 39 frames are added. If the ring buffer is full, the function ~instead of the DestorySynthesizer function.
will return an error message, and no speech parameter will be
added. After calling this function, the number of times that the
user can call Synthesis2 function is automatically updated. The proposed implementation can generate the completely
same waveform as the original except for the several points
such as random seed used for generating the white noise).
Since the sound quality of the synthesized speech is the

This function first judges whether the waveform of N same, we did not evaluate it. Only the processing speed of
samples can be generated from the CP and the linked speech the proposed implementation was compared with that of the
parameters. As shown in Fig. 2, the waveform that can be original WORLD vocoder.
generated is determined based on the added speech parameters. In the waveform generation, the number of FFTs is the most
When the last vocal cord vibration is obtained at sample n, dominant parameter affecting the processing speed. It depends
Synthesis2 function can output the waveform until sample on the number of vocal cord vibrations, which means that
n — 1. When temporal positions of the vocal cord vibrations the processing speed is proportional to F0O. In cases where
are included from the CP to CP+ N, the function automatically the same speech parameters are used for the comparison, the
calculates the vocal cord vibrations. Therefore, the processing processing speed would be the same. The purpose of this
speed of the Synthesis2 function depends on the number of evaluation was to verify the overhead of using WS struct in
vocal cord vibrations in the period. the proposed implementation.

IV. EVALUATION

D. Synthesis2(): Waveform generation for N samples

A. Evaluation conditions
E. IsLock(): Check of the status of WS struct . .
The processing speed evaluation used female speech and

In the proposed implementation, the user sets the number of  FO-modified speech. The sampling frequency was 48 kHz.
pointers in the ring buffer during the initialization. As shown Fig. 4 illustrates an example of an FO contour estimated using
in Fig. 3, no waveform can be generated even if the ring buffer Harvest [17]. The minimum and maximum values were 204
is full. We call this status locked. Once WS struct is locked, the  and 346 Hz, respectively. The evaluation used a laptop PC
user must refresh it by using the RefreshSynthesizer function or  (i7-7500U 2.7 GHz, 16 GB memory).

clear the memory by using the DestorySynthesizer function. In the initialization of WS struct, the number of samples in
The IsLock function can be used to determine whether WS one processing was set to 256 (around 5.33 ms). The number
struct is locked. of buffers in the ring buffer was 10, and the frameshift was

This problem can be avoided by appropriately determining 5 ms. The FFT length for calculating the spectral envelope
the number of pointers in the ring buffer and the number and the aperiodicity was set to 2,048 samples. The RTF
of frames in the AddParameter function. The user should (real time factor) was used as the evaluation index, and the
guarantee that the product of the frameshift and the number proposed implementation was compared with the WORLD
of frames in the ring buffer always exceeds the longest vocoder implemented in C++. The histogram of the processing
fundamental period 7j. speed per processing was also calculated.
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Fig. 4. Example of the FO contour used in the evaluation.
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Fig. 5. Results of the evaluation.

B. Processing speed of generation of the whole waveform

First, we examine the time required to generate the wave-
form. The RTF was calculated 1,000 times, and the median
value was used in the evaluation. Fig. 5 shows the results.
The horizontal axis represents the RTE. The top represents
the result of using the FO contour of Fig. 4, and the bottom
represents the result of using half of this FO contour. Since
the FO value in the unvoiced frames is fixed to 500 Hz, the
average of the bottom does not equal half the average of the
top.

The proposed implementation was slower than the conven-
tional algorithm by 14.5% on the top result. At the bottom,
the difference was 9.7%. Because the RTF was below 0.1, we
concluded that the overhead of the proposed implementation
is small enough for it to generate waveforms in real time.

C. Processing speed of one processing of the Synthesis2
function

Next, we examine the processing speed per processing. Fig.
6 illustrates the histogram of the RTF. In this case, the RTF
is calculated as the ratio between the processing speed in one
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Fig. 6. Histogram of RTF in single processing of the Synthesis2 function.

processing and the 5.33 ms set as the parameter in WS struct.
There are two peaks, and they are approximately related to
the number of FFTs. The relationship between the number of
FFTs and the RTF is discussed in the next section.

The Synthesis2 function generates a waveform with a length
of 5.33 ms. Since the lowest FO is 204 Hz from Fig. 4, at
least one vocal cord vibration is included in one processing. In
WORLD and the proposed implementation, 500 Hz (2 ms) is
set for the unvoiced frames. Up to three vocal cord vibrations
are therefore included in one processing.

D. Discussion

The number of FFTs in one processing is calculated from
the FO information. We count the FFT and the inverse FFT
as the same processing because their computational costs are
almost the same. In cases where the frame has an FO value,
both voiced and unvoiced responses are calculated. Only the
unvoiced response is calculated in the unvoiced frame.

Three (four) FFTs are required to generate the voiced (un-
voiced) responses. To generate the voiced response, two FFTs
are required to calculate the minimum phase spectrum from
the spectral envelope. After that, the minimum phase response
is calculated as the voiced response by using one FFT. Two
FFTs are required to generate the unvoiced response, the same
number as used to generate the voiced response. Finally, since
the noise is used as the excitation signal, another FFT is
required to calculate the spectrum of the noise. Therefore, a
total of seven FFTs are required for the voiced section, while
four FFTs in total are required for the unvoiced section.

We analyzed the relationship between the number of FFTs
and the RTF by using the scatter plot shown in Fig. 7. The
horizontal and vertical axes represent the number of FFTs and
the RTF, respectively. The correlation coefficient between them
was 0.998, which suggests that the RTF can be estimated using
the number of FFTs. When the sample N was short, a high
RTF was often observed. A long N is required to flatten the
number of times of FFT. Since a large value of IV causes a
long latency, the user should take care of the balance between
the RTF and N.

V. CONCLUSION

This paper described an implementation of a real-time
waveform generator from vocoded speech parameters. The
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Fig. 7. Scatter plot of relationship between the number of FFTs and the RTF.
The correlation coefficient was 0.998.

implementation is based on the WORLD vocoder, and it can
generate almost the same waveform. The source code has
been released via GitHub under a modified-BSD license. An
evaluation showed that the implementation decreased the RTF
by 14.5% compared with the original WORLD. However, the
RTF remained under 0.1 in the synthesis of female speech.
Since the processing speed is approximately proportional to
FO, this result indicates the implementation is capable of
carrying out sequential real-time synthesis.

The next step is to implement a real-time analysis system.

Given such a system, users will be able to develop real-
time voice conversion systems. It could be used for recording
speech in a typical room. The development of a speech anal-
ysis algorithm robust against noise will also be an important
work.
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