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Abstract—We propose a linear prediction (LP)-based wave-
form generation method via WaveNet vocoding framework. A
WaveNet-based neural vocoder has significantly improved the
quality of parametric text-to-speech (TTS) systems. However, it is
challenging to effectively train the neural vocoder when the target
database contains massive amount of acoustical information
such as prosody, style or expressiveness. As a solution, the
approaches that only generate the vocal source component by
a neural vocoder have been proposed. However, they tend to
generate synthetic noise because the vocal source component
is independently handled without considering the entire speech
production process; where it is inevitable to come up with a
mismatch between vocal source and vocal tract filter. To address
this problem, we propose an LP-WaveNet vocoder, where the
complicated interactions between vocal source and vocal tract
components are jointly trained within a mixture density network-
based WaveNet model. The experimental results verify that the
proposed system outperforms the conventional WaveNet vocoders
both objectively and subjectively. In particular, the proposed
method achieves 4.47 MOS within the TTS framework.

I. INTRODUCTION

Waveform generation systems using WaveNet have signifi-
cantly improved the synthesis quality of deep learning-based
text-to-speech (TTS) systems [1]–[5]. Because the WaveNet
vocoder can generate speech samples in a single unified
neural network, it does not require any hand-engineered signal
processing pipeline. Thus, it presents much higher synthetic
quality than the traditional parametric vocoders [2].

To further improve the perceptual quality of the synthesized
speech, more recent neural excitation vocoders take advantages
of the merits from both the linear prediction (LP) vocoder
and the WaveNet structure [6]–[10]. In this framework, the
formant-related spectral structure of the speech signal is
decoupled by an LP analysis filter, and the WaveNet only
estimates the distribution of its residual signal (i.e., excitation).
Because the physical behavior of excitation signal is simpler
than the speech signal, the training and generation processes
become more efficient.

However, the synthesized speech is likely to be unnatural
when the prediction errors in estimating the excitation are
propagated through the LP synthesis process. As the effect

of LP synthesis is not considered in the training process, the
synthesis output is vulnerable to the variation of LP synthesis
filter.

To alleviate this problem, we propose an LP-WaveNet,
which enables to jointly train the complicated interactions
between the excitation and LP synthesis filter. Based on the
basic assumption that the past speech samples and the LP
coefficients are given as conditional information, we figure
out that the distributions of speech and excitation only lies on
a constant difference. Furthermore, if we model the speech
distribution by using a mixture density network (MDN) [11],
then the target speech distribution can be estimated by sum-
ming the mean parameters of predicted mixture and an LP
approximation, which is defined as the linear combination of
past speech samples weighted by LP coefficients. Note that the
LP-WaveNet is easy to train because the WaveNet only needs
to model the excitation component, and the complicated spec-
trum modeling part is embedded into the LP approximation.

In the objective and subjective evaluations, we verified
the outperforming performance of the proposed LP-WaveNet
in comparison to the conventional WaveNet-based neural
vocoders. Especially, the LP-WaveNet provided 4.47 mean
opinion score result in the TTS framework.

II. WAVENET-BASED SPEECH SYNTHESIS SYSTEMS

A. µ-law quantization-based WaveNet
WaveNet is a convolutional neural network (CNN)-based

auto-regressive generative model that predicts the joint prob-
ability distribution of speech samples x = {x1, x2, ..., xN} as
follows:

p(x|h) =
∏
n

p(xn|x<n,h), (1)

where xn, x<n, and h denote the nth speech sample, its
past speech samples, and the acoustic features, respectively.
By stacking the dilated causal convolution layers multiply, the
WaveNet effectively extends its receptive field to the thousand
of samples.

The firstly proposed WaveNet, a.k.a., µ-law WaveNet [1],
defines the distribution of speech sample as a 256 categorical
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class of symbols obtained by an 8-bit µ-law quantized speech
samples. To model the distribution of speech sample, the cate-
gorical distribution is computed by applying softmax operation
to the output of WaveNet. In the training phase, the weights
of WaveNet is updated to minimize the cross-entropy loss. In
the generation phase, the speech sample is auto-regressively
generated in sample-by-sample.

Since the µ-law WaveNet can generate the speech signal in
a single unified model, it provides significantly better synthetic
sound than the conventional parametric vocoders. However, it
is not easy to train the network when the amount of database is
larger and its acoustical informations such as prosody, style, or
expressiveness are wider. Moreover, the synthesized sound of
WaveNet is often suffered from the background noise artifact
as the target speech signal is too coarsely quantized.

B. WaveNet-based excitation modeling

One effective solution is to model the excitation signal
instead of the speech signal. For instance, in the ExcitNet
approach [8], an excitation signal is first obtained by an LP
analysis filter, then its probabilistic behavior is trained by the
WaveNet framework.

During the synthesis, the excitation signal is generated by
the trained WaveNet, then it is passed through an LP synthesis
filter to synthesize the speech signal as follows:

xn = en + x̂n,

x̂n =

p∑
i=1

αixn−i,
(2)

where en, x̂n, p, and αi denote the nth sample of excitation
signal, the intermediate LP approximation term, the order of
LP analysis, and the ith LP coefficient, respectively. Note that
the LP coefficients are periodically updated to match with the
extraction period of acoustic features. For instance, if acoustic
features are extracted at every 5-ms, then the LP coefficients
are updated at every 5-ms to synchronize the feature update
interval.

Because the variation in the excitation signal is only con-
strained by vocal cord movement, its training is much easier
and the quality of finally synthesized speech is much higher,
too. However, the synthesized speech often contains unnatural
artifacts because the excitation model is trained independently
without considering the effect of LP synthesis filter; where
it happens mismatch between the excitation signal and LP
synthesis filter. To address this limitation, we propose an LP-
WaveNet, where both excitation signal and LP synthesis filter
are jointly considered for training and synthesis.

III. LINEAR PREDICTION WAVENET VOCODER

A. Fundamental mathematics

Before introducing the proposed LP-WaveNet, a probabilis-
tic relationship between speech and excitation signals have to
be clarified. Note that at the moment of nth sample generation
process in the WaveNet’s synthesis stage, x̂n shown in (2)
can be treated as a given factor since both LP coefficients,

ai, and previously reconstructed samples, {xn−i} are already
estimated. Hence, we conclude that the difference between two
random variables, xn and en, is only a known constant value
term of x̂n.

Considering the shift property of second-order random
variable, if we define the speech’s distribution as a mixture of
Gaussian (MoG), the relationship between mixture parameters
of speech and excitation distributions can be lie on the only
constant difference of mean parameters as follows:

p(xn|x<n,h) =
M∑
i=1

wn,i√
2πsn,i

exp

[
− (xn − µn,i)2

2s2n,i

]
, (3)

wxn,i =w
e
n,i,

µxn,i =µ
e
n,i + pn,

sxn,i =s
e
n,i,

(4)

where M and i denote the number and index of mixture,
respectively; w denotes the weights of mixture component;
N (µ, s) imply the Gaussian distribution having mean of µ
and standard deviation of s; the superscripts e and x denote
the excitation and the speech, respectively. Based on this
observation, we propose an LP-WaveNet vocoder, where the
LP synthesis process is structurally reflected to the WaveNet’s
training and inference processes.

B. Network architecture

The detailed architecture of LP-WaveNet is illustrated in
Fig. 1. In the proposed system, the distribution of speech
sample is defined as a MoG distribution by following (3), and
the LP-WaveNet is trained to generate the MoG parameters,
[wn,µn, sn] conditioned by the input acoustic features.

In detail, the acoustic features pass through two 1-
dimensional convolution layers having kernel size of 3 for
explicitly imposing the contextual information of feature tra-
jectory. Then, the residual connection with respect to the
input acoustic feature is applied to make the network more
focus on the current frame information. Finally, the transposed
convolution is applied to upsample the temporal resolution of
this features into that of speech signal.

To generate the speech samples, the mixture parameters, i.e.,
mixture gain, mean and log-standard deviation, of excitation
signal are first predicted by WaveNet as follows:

[zwn , z
µ
n, z

s
n] =WaveNet(x<n,hn) (5)

Then, the LP approximation term, x̂n, is computed by follow-
ing (2) to generate the MoG parameters of speech sample as
follows:

wn = softmax(zwn )
µn = zµn + x̂n, (6)
sn = exp(zsn).

Finally, the likelihood of speech sample p(xn|x<n) is com-
puted by following (3).
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Fig. 1. Block diagram of the LP-WaveNet vocoder.

To train the network, the negative log-likelihood (NLL)
of speech signal, L, is computed from the MoG distribution
defined at (3) as follows:

L = −
∑
n

logp(xn|x<n). (7)

Then, the weights are optimized to minimize NLL loss.
Because the complicated spectral modeling is now em-

bedded in the mean parameters as depicted in (6), the LP-
WaveNet only needs to train an information of excitation
signal, which is relatively easy to train. Moreover, because
the ultimate training target of LP-WaveNet is speech signal,
it is also free from the mismatch problem mentioned in
Section II-B As a result, the LP-WaveNet is able to model the
both excitation generation and LP synthesis filter processes
jointly in a WaveNet structure.

IV. EFFECTIVE TRAINING AND GENERATION METHODS

A. Waveform generation via conditional distribution sharpen-
ing

During waveform generation, a random sampling that fol-
lows the probability distribution of waveform is commonly
used. However, its synthetic sound is noisy due to the stochas-
tic sampling process. In this study, we control the noisiness by
adjusting the sharpness of waveform distribution by reducing
the scale parameters generated by the WaveNet. Because the
buzziness and the hiss of synthetic speech are sensitive to
the sharpness of distribution, the scale parameters have to
be carefully adjusted. After several trials, we concluded that

reducing the scale by factor of 0.85 at only voiced region
presents the best performance.

B. Upper bound limitation on the generated log-scale param-
eters

During the waveform generation process, we figured out
that the generated waveform can be often unstable when the
generated log-scale parameters are too high. This problem
could be prevented by clipping the upper bound of scale
parameter value. If the clipping was set too low, then the
unvoiced region was not sufficiently modeled, resulting in
a dry synthetic sound though the waveform could be stably
generated. If the clipping was set too high, then the possibility
of waveform explosion became higher, but the synthetic sound
became more lively than the lower clipping value case. Based
on experiments, we limited the scale parameter to −4.0 natural
logarithm.

V. EXPERIMENTS

A. Speech database and features

In the experiments, phonetically and prosodically riching
speech corpus recorded by a professional Korean female
speaker was used for the experiments. The speech signals were
sampled at 24-kHz with 16-bits quantization. The randomly se-
lected 4,976 utterances (9.9 hours) were used for training, 280
utterances were used for validation, and another 140 utterances
were used for test, respectively. The acoustic features were
obtained by the ITFTE vocoder [12] at every 5-ms interval;
40-dimensional line spectral frequencies (LSFs), logarithmic
fundamental frequency (F0), logarithmic energy, voicing flag,
32-dimensional slowly evolving waveform, and 4-dimensional
rapidly evolving waveform, all of which composed a total 79-
dimensional feature vector.

B. WaveNet vocoders

Total three WaveNet vocoding systems were tested.
• WNS : µ-law WaveNet vocoder that directly models the

speech signal [2].
• WNE : ExcitNet vocoder that models the excitation signal

with explicit LP synthesis filter [8].
• WNLP : Proposed LP-WaveNet vocoder.
For a fair comparison with similar computing resource, the

same WaveNet architecture was used to all systems. Firstly, the
dilations were set to [20, 21, ..., 29] and repeated three times,
resulting in 30 layers of residual blocks and 3,071 samples
of the receptive field. In the residual blocks and the post-
processing module, the 128 channels of convolution layers
were used. The number of mixture was set to 10, resulting in
30 channels of output layer. For the LP-WaveNet, the single
Gaussian distribution was assumed, and the weight normaliza-
tion technique, which normalizes the weight vectors to have
unit-length, is applied to stabilize a training process of LP-
WaveNet [13]. Moreover, the scale parameter was clipped by
the lower bound of −10.0 natural logarithm when calculating
a negative log-likelihood (NLL) loss to stabilize the training of
mixture density network (MDN) [14]. The weights were firstly
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TABLE I
OBJECTIVE EVALUATION RESULTS OF THE VARIOUS WAVENET VOCODERS
WITH ANALYSIS AND SYNTHESIS (A/S) AND PARAMETRIC TTS SYSTEMS.

THE SYSTEM WITH HIGHEST PERFORMANCE IS REPRESENTED IN BOLD
TYPEFACE.

System VUV F0 RMSE LSD F-LSD
(%) (Hz) (dB) (dB)

A/S
WNS 4.09 3.76 2.01 9.90
WNE 3.77 3.17 2.32 8.80

WNLP 2.28 2.70 1.67 8.47

TTS
WNS 5.06 13.67 4.45 12.81
WNE 4.84 13.61 4.43 12.30

WNLP 4.12 13.54 4.41 12.37

initialized by the Xavier initializer [15], and then trained using
an Adam optimizer [16]. The learning rate was set to 10−4. The
mini-batch size was 20,000 samples with 8GPUs, resulting in
160,000 samples per mini-batch. The networks were trained
in 600,000 iterations.

C. TTS acoustic model

To evaluate the performance of WaveNet vocoders in the
TTS system, we implemented a simple acoustic model by
using multiple feed-forward (FF) and long-short term memory
(LSTM) layers. In detail, the network consisted of three FF
layers with 1,024 units and one LSTM layer with 512 memory
cells. The ReLu activation and linear functions were used at
the hidden and output layers, respectively.

The input vector was composed of 356-dimensional lin-
guistic features including 330 binary features of categorical
linguistic contexts and 26 numerical features of numerical
linguistic contexts. The corresponding output vector consisted
of all the acoustic parameters together with their time dynam-
ics [17]. Before training, both input and output features were
normalized to have zero mean and unit variance. The weights
were trained using a backpropagation through time algorithm
with Adam optimization [18].

In the synthesis step, the means of all acoustic features
were predicted by the acoustic model first, then a speech
parameter generation algorithm was applied with the pre-
computed global variances [19]. To enhance spectral clarity,
an LSF-sharpening filter was also applied to the spectral
parameters [12]. Finally, the generated acoustic features were
used to compose the input features of the WaveNet vocoders.

D. Objective and subjective evaluation results

In the objective test, distortions in acoustic features ex-
tracted by the original speech and synthesized speech were
evaluated. Firstly, the analysis and synthesis (A/S) system,
which synthesizes the speech with the ground truth acoustic
features was tested to evaluate the vocoder’s performance
itself. Then, the TTS system, which uses the acoustic features
predicted by the LSTM-based acoustic condition model was
tested in a real application scenario.

The metrics for the distortion measuring were the error
rate of voicing flag (VUV) in %, the root mean square error
(RMSE) for F0 in Hz, the log-spectral distance (LSD) for

TABLE II
SUBJECTIVE MEAN OPINION SCORE (MOS) TEST RESULT WITH A 95%

CONFIDENCE INTERVAL FOR VARIOUS SPEECH SYNTHESIS SYSTEMS. THE
SYSTEM WITH HIGHEST SCORE IS REPRESENTED IN BOLD TYPEFACE. THE

MOS RESULT OF RECORDED SPEECH WAS 4.75.

ITFTE WNS WNE WNLP

A/S 2.85±0.20 3.40±0.19 4.11±0.16 4.58±0.12
TTS 2.32±0.06 3.57±0.11 4.04±0.16 4.47±0.09

TABLE III
SUBJECTIVE PREFERENCE TEST RESULTS (%) BETWEEN VARIOUS
WAVENET VOCODING SYSTEMS. THE SYSTEMS THAT ACHIEVED

SIGNIFICANTLY BETTER PREFERENCE AT THE p < 0.01 LEVEL ARE IN
BOLD TYPEFACE.

Index System WNS WNE WNLP Neutral p-value

Test 1
A/S

9.4 71.3 – 19.3 < 10−21

Test 2 2.6 – 82.7 14.7 < 10−45

Test 3 – 12.0 52.0 36.0 < 10−10

Test 4
TTS

8.0 57.3 – 34.7 < 10−16

Test 5 1.4 – 79.3 19.3 < 10−46

Test 6 – 12.0 33.3 54.7 < 10−4

LSFs in dB, and the LSD for speech magnitude response in
frequency domain (F-LSD) in dB. All the features needed for
the metrics were extracted with 35-ms window at every 5-ms
interval, then all the measures were averaged. The F0 RMSE
and F-LSD were measured in only voiced region. To estimate
the F-LSD, by computing phase mismatch, we compensated a
lag to have maximum correlation between two speech frames
within a 5-ms sample shift interval.

The objective evaluation of A/S and TTS results are sum-
marized in Table I. The experimental results verify that (1) In
all matrices, the proposed WNLP showed significantly better
performance than the conventional WNS and WNE when the
acoustic features are ground truth. (2) All the performances
are degraded in the TTS system as the prediction error of
acoustic features. However, the performance of LP-WaveNet
is still signifcantly better than the other systems.

To evaluate the perceptual quality of the proposed system,
the mean opinion score (MOS) listening test A-B preference
test were performed1. Total 11 native Korean listeners were
asked to score the randomly selected 15 synthesized utterances
from the test set using a following possible 5-point MOS
responses: 1 = Bad, 2 = Poor, 3 = Fair, 4 = Good, 5 =
Excellent. In addition to the WaveNet vocoding systems, the
ITFTE-based vocoding system [12], i.e., ITFTE, having the
same acoustic model with the WaveNet vocoding system was
also included as a reference system.

The MOS test results are summarized in Table II. In the
A/S system, all of WaveNet vocoders showed better quality
than the parametric ITFTE vocoder. Specifically, the proposed
WNLP showed the best quality among the WaveNet vocoders
with the only 0.17 lower MOS score than the recorded speech.
Even though the MOS result of WNE was higher than 4.0,
its quality was significantly worse that the proposed WNLP .

1Generated audio samples are available at the following URL:
https://min-jae.github.io/apsipa2020/
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In the TTS system, all systems presented worse synthetic
quality than the A/S system due to the prediction error of
acoustic features. However, their relative tendency was same
with the results of A/S system. Even though the prediction
error of acoustic features, the proposed WNLP showed very
high quality of synthesized speech with 4.47 MOS.

The setup for the A-B preference test was the same as that
for the preference test, except the listeners were asked to rate
the randomly selected 15 synthesized utterances from the test
set by a quality preference. The preference results shown in
Table III verified that the perceptual quality of the proposed
WNLP was significantly better than the conventional WNE
and WNS in both of A/S and TTS systems (Test 2, 3, 5, and
6). Also, the WNE verified that its performance was better
than the plain WNS (Test 1 and 4).

VI. CONCLUSION

In this paper, we proposed an LP-WaveNet vocoder. By
utilizing the causality of WaveNet and the linearity of LP
synthesis filtering process, we structurally merged the LP
synthesis filter into the WaveNet framework. The experimental
results verified that the proposed system outperformed the con-
ventional WaveNet systems both objectively and subjectively.
Future works include to extend the idea of LP-WaveNet to the
non-autoregressive waveform models for achieving real-time
waveform generation.
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