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Abstract—Development of robustness techniques is of 

paramount importance to the success of automatic speech 

recognition (ASR) systems. In this paper, we present a novel use 

of the ideal ratio mask (IRM) method to improve ASR robustness. 

IRM was originally proposed for time-frequency (T-F) masking-

based speech enhancement and has shown considerable promise 

in preserving the intelligibility of a noisy mixture signal. Further, 

IRM is alternatively used to normalize the intermediate 

representations of speech feature vector sequences, in a holistic 

manner, for both training and test utterances. Finally, we instead 

treat IRM as a data augmentation method, conducted on speech 

feature vectors of training utterances or their intermediate 

representations, to generate additional augmented data for 

increasing the diversity of training data. A series of experiments 

carried out on the standard Aurora-4 database and task confirm 

the effectiveness of our methods. 

I. INTRODUCTION 

Robustness techniques are normally adopted to alleviate the 

negative influence caused by environmental distortions so as to 

make ASR systems retain acceptable performance [1]. To date, 

pragmatic robustness methods that have been designed and 

developed can be broadly grouped into three generic families: 

1) speech enhancement; 2) feature normalization; and 3) model 

adaptation. Speech enhancement means to increase 

intelligibility of a noisy speech through suppression of inherent 

noise components [2], [3]. Further, feature normalization is 

dedicated to refining speech features and make them more 

resistant to noise and channel disturbances [4]. Lastly, the 

acoustic model of an ASR system can be transformed from the 

original space (with the clean-condition training setup) to a 

new space (reflecting the noisy test condition) by using an array 

of model-based adaptation techniques [5], [6].  

More recently, an important trend of robustness research 

has is to formulate speech enhancement as a supervised 

learning problem. Notably, this line of research has been shown 

good generalization ability when given sufficient training data. 

Furthermore, methods stemming from it generally seek to 

enhance a speech signal in a frame-by-frame fashion, thereby 

being more amenable to real-time processing [6], [8]. Among 

them, the family of time-frequency (T-F) masking-based 

speech enhancement methods aim to filter noise components 

out from a noisy mixture via its T-F representation. The 

simplest instantiation is ideal binary mask (IBM), which boils 

down the speech enhancement task to a binary classification 

problem, geared towards the reduction of computational 

burden [10]. However, such a binary masking operation 

typically produces musical noise that might hurt the 

performance of downstream applications. Other more elaborate 

methods of this family, including ideal ratio mask (IRM), 

spectral magnitude mask (SMM), complex ideal ratio mask 

(cIRM), and the like, focus exclusively on estimating a 

smoothed ratio mask which can yield better intelligibility for 

an enhanced noisy speech utterance than does IBM [11], [12].  

In view of the above, we apply and extend the IRM method 

to improve ASR robustness, since it has shown superior 

promise in preserving the intelligibility of a noisy mixture 

signal [13]. Moreover, in this paper, IRM is used in an 

alternative manner to normalize the intermediate 

representations of speech feature vector sequences in a holistic 

manner for both the training utterances and the test utterances. 

Such intermediate representations can be embodied in the 

modulation domain by performing discrete Fourier transform 

(DFT) along the time-axis of acoustic feature vector sequences 

[14], [15]. By doing so, the salient linguistic information of 

noisy utterances can be better manifested, consequently 

improving ASR robustness. Finally, we exploring treating IRM 

as a data augmentation method instead, conducted on speech 

feature vectors of training utterances or their intermediate 

representations, to generate additional augmented data for 

increasing the diversity of training data. The remainder of the 

paper is organized as follows: Section II introduces the notion 

and formulation of modulation spectrum. The masking-based 

speech enhancement method leveraged in this paper is briefly 

reviewed in Section III. After that, the corpus and experimental 

setup are described in Section IV, followed by a series of 

experiment and associated discussions in Section V. Finally, 

Section VI concludes this paper and discusses avenues for 

future work. 

II. THE FORMULATION OF MODULATION SPECTRUM 

For a given utterance, we can express each of its speech 

feature dimensions as an ordered feature sequence {𝐲(𝑛), 𝑛 =
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1,2, … , 𝑇}, which contains 𝑇  frames, and each vector has 𝐷 

dimensions. Processed with the discrete Fourier transform 

(DFT) on the time trajectory of each feature component 

sequence 𝑦𝑑(𝑛)  of 𝐲(𝑛) , the temporal sequence 𝑌𝑑(𝑘) 

corresponding to the modulation spectrum of this sequence is 

expressed as follows: 

𝑌𝑑(𝑘) = ∑ 𝑦𝑑(𝑛)𝑒
−j2𝜋𝑛𝑘

𝑁

𝑁−1

n=0

 
(1) 

𝑘 = 0, … , 𝑁 − 1;    𝑑 = 1,2, … , 𝐷 

where k signifies the modulation frequency component 

index and 𝑁 is used to designate the DFT sample point number. 

Put another way, Eq. (1) amounts to treating the acoustic 

feature component sequence as a signal and rendering its 

dynamic patterns along the temporal axis. This way, the 

resulting modulation spectra can be taken as efficient 

intermediate representations for the purpose of analyzing the 

dynamic characteristics of speech feature component 

sequences along the time axis in a holistic manner [14]. 

Previous research has found that the salient linguistic 

information of the modulation spectra mostly resides in the 

range from 2 Hz to 8 Hz, rendering syllabic and phonetic 

temporal structure of speech, where the most prominent 

frequency components center around 4 Hz. These 

characteristics are closely related to human auditory perception. 

Furthermore, it has also been empirically revealed that in the 

modulation spectrum, different frequency components have 

different levels of contributions to the ASR performance [16]. 

III. MASKING-BASED SPEECH ENHANCEMENT 

A standard recipe of masking-based speech enhancement 

aims to separate a target speech signal from its background 

interference. Pioneering efforts in the line of research dates 

back to computational auditory scene analysis (CASA), which 

devises speech separation algorithms based on perceptual 

principles of auditory scene analysis and exploits grouping 

cues such as pitch and onset [17], [18]. T-F masking-based 

speech enhancement has recently emerged as one of the 

popular approaches, treating speech separation as a supervised 

learning problem. To this end, a suitable mask is thus estimated 

for suppressing noise components while retaining speech 

components in the T-F representation of a noisy signal. 

Celebrated instantiations of this approach include, but are not 

limited to, IBM, IRM and cIRM. Unlike most previous work 

on them that was devoted mainly to improving the perceptual 

quality of noisy speech signals, we instead contextualize and 

extend them for building a more robust ASR system. 

Since it has been shown that IRM is considered amenable to 

real-time implementation and generalizes well to different 

kinds of T-F representations [13], we thus use it as the 

cornerstone method. Given a representation of the spectrum of 

frequencies of a noisy speech signal as it evolves over a time 

span, the computational loss of IRM is mathematically defined 

as follows: 

IRM = (
S(𝑡,𝑓)2

S(𝑡,𝑓)2+N(𝑡,𝑓)2)𝛽. (2) 

where S(𝑡, 𝑓)2 and N(𝑡, 𝑓)2 denote the speech energy and the 

noise energy within a time-frequency (T-F) unit, respectively. 

The tunable parameter 𝛽 scales the mask, and is commonly 

chosen to 0.5 in practice. With the square root, IRM preserves 

the speech energy with each T-F unit, under the assumption that 

S(𝑡, 𝑓) and N(𝑡, 𝑓) are uncorrelated. This assumption actually 

holds well in most realistic scenarios. Interestingly, with 𝛽 =
0.5, Eq. (2), turns to closely resemble the square-root Wiener 

filter, which is the optimum estimator of the power spectrum. 

IRM is typically embodied in the form of a deep neural network 

whose parameters are estimated with the mean-square error 

(MSE) criterion. No content with directly applying IRM to 

obtain a separate speech spectrum at each time frame for robust 

ASR, we explore three novel extensions in this paper: 1) 

employing IRM to eliminate the noise effects from the Mel-

frequency filter bank (denoted by FBANK) speech feature 

vector at each time frame; 2) leveraging IRM to normalize the 

intermediate representation (embodied in the modulation 

frequency domain) of the noise effects from the FBANK 

speech feature vector sequence of a noisy utterance in a holistic 

manner; and 3) treating IRM as a data augmentation method, 

conducted on the FBANK speech feature vectors of training 

utterances or their intermediate representations, to generate 

additional augmented data for increasing the diversity of 

training data. To the best of our knowledge, this work 

represents the first exploration of using IRM to normalize the 

intermediate representations of speech features, as well as 

treating IRM as a data augmentation method alternatively to 

expand the training data. 

IV. EXPERIMENTAL SETUP 

A. Corpus and ASR Configuration 

Our empirical experiments are conducted on Aurora-4 corpus, 

which is a subset of Wall Street Journal (WSJ) and designed to 

evaluate the robustness of ASR systems on a medium to large 

vocabulary continuous speech recognition task. Aurora-4 was 

composed of speech utterances recorded in a clean condition, 

which were further corrupted by different types of noise 

sources with varying SNR levels, in a range between 5 dB and 

15 dB. In the clean-condition training setup, the number of 

utterances in the training set is 7,138 utterances from 83 

speakers recorded using the primary microphone. Furthermore, 

the multi-condition training set also consists of 7,138 

utterances and the same speaker information. One half of the 

utterances were recorded by the primary Sennheiser 

microphone and the other half were recorded using one of a 

number of different secondary microphones. Both of them 

include a combination of clean speech and speech corrupted by 

one out of six different noises (street traffic, train station, car, 

babble, restaurant, airport). The test sets are totally composed 

of 14 subsets, each of which contains 330 utterances 

contaminated with various types of environmental noise at 

different SNR levels. Although both 8 kHz and 16 kHz sampled 

speech utterances were provided in the Aurora-4 dataset, we 

only make use of 16-kHz sampled speech utterances for all 

experiments. 
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The acoustic models were configured with a modeling 

framework of cascaded deep neural networks and hidden 

Markov models (denoted by DNN-HMM for short), according 

to the commonly-used setup suggested in literature [19]. The 

DNN-HMM framework inherits advantages from the strong 

representation learning power of DNN and the sequential 

modeling ability of HMM. Furthermore, the speech feature 

vectors for ASR merely consist of only the static part of 80 

Mel-frequency filter bank (denoted by FBANK) coefficients. 

 

B. Mask Prediction Network 

In this paper, IRM employs a mark prediction network to 

estimate a smoothed ratio mask for each noisy speech feature 

vector (e.g., FBANK) or the intermediate representation for a 

sequence of speech feature components for each dimension 

(i.e., the corresponding modulation spectrum).  

In implementation, the network structure is realized with a 

six-layer time delay neural network (TDNN), where each layer 

consists of 512 hidden units with the ReLU activation function 

and the p-norm non-linearity regularization [20], except for 

that the last hidden layer uses a sigmoid activation function 

since the value of each element in IRM ranges from 0 to 1. The 

commonly-used MSE criterion is adopted as the cost function 

for parameter estimation and during the training procedure the 

Backstitch optimization method can be used [21].  

When the input to IRM is the FBANK speech feature 

vectors, we further incorporate temporal context for TDNN 

modeling, rather than splicing together contiguous temporal 

windows of frames at each layer, which allows gaps between 

the frames. The TDNN configuration is illustrated in TABLE I. 

The input (80-dimensional FBANK) features with a frame-

length of 25ms. The Layer-1 splices together frames t-2 

through t+2 at the input layer (which we could write as context 

{−2, −1, 0, 1, 2} , or more compactly as [𝑡 − 2, 𝑡 + 2] ); and 

then the consequently layers have small temporal context 

centered at the current frame t. For example, at the frame t, the 

input to Layer 2 is the spliced output of the Layer 1, at frames 

𝑡 − 1  and 𝑡 + 1 . The notation {𝑡 − 6, 𝑡 − 3}  means that we 

additionally splice together the input at the current frame minus 

3 and the current frame minus 6. 

The training utterances for estimating IRM were selected 

from the clean-condition set of Aurora 4; which were in turn 

used to generate the corresponding noisy-clean training pairs 

through random injection of noise made from the MUSAN 

dataset, which in total consisted of over 900 types of noise and 

42 hours of music from various genres, as well as 60 hours of 

speech from twelve languages [22]. 

C. Experimental Procedure 

A schematic depiction of the IRM enhancement process is 

diagrammed in Figure 1. In the training phase, we estimate the 

parameters of the mask prediction network with clean training 

utterances and their noise-injected counterparts (cf. Section 

4.2). Specifically, the input to the network is a noisy feature 

vector and the desired output is the corresponding ideal ratio 

mask which is expected to faithfully restore it to its clean 

counterpart. In the test phase, we can use the resulting mask 

prediction network to obtain a ratio mask for an unseen noisy, 

or (even clean) speech feature vector, and subsequently apply 

element-wise multiplication operations on the speech feature 

vector components with their corresponding mask values. In a 

similar vein, the above-mentioned procedure can be modified 

to enhance the intermediate representations of speech features 

(in the modulation domain). 

V. EXPERIMENTAL RESULTS 

We report on the empirical results of our proposed IRM-

based enhancement and data augmentation methods for ASR in 

terms of word error rate (WER). In the first set of experiments, 

we evaluate the performance levels of using IRM to enhance 

spectral representations (denoted by Spectrum), FBANK 

feature vectors (denoted FBANK) and intermediate 

representations of FBANK feature vectors (denoted by 

Modulation), respectively. Their corresponding results are 

shown in TABLE II, where the results of a baseline ASR system 

with a multi-condition training setting are listed for reference. 

From this table we can make at least two observations. First, 

IRM-based enhancement conducted on either the spectra or the 

FBANK feature vectors can, on average, lead to roughly 2.0% 

relative improvements over the baseline system. Furthermore, 

IRM-based enhancement conducted on intermediate 

representations of FBANK feature vector sequences seems to 

TABLE I.  
CONTEXT SPECIFICATION OF TDNN EMPLOYED IN THE MASK 

PREDICTION NETWORK OF IRM. 

Layer Layer context Total context 

Layer-1 [t-2, t+2] 5 

Layer-2 {t-1, t, t+1} 7 

Layer-3 {t-1, t, t+1} 9 

Layer-4 {t-3, t, t+3} 15 

Layer-5 {t-3, t, t+3} 21 

Layer-6 {t-6, t-3, t} 24 

 

 

   
Figure 1: A schematic depiction of IRM enhancement process. 
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be obviously superior to the two former methods, especially for 

the test set D which contains both unseen environmental noise 

and channel distortions, and ultimately yield a relative 

improvement of 6.6% over the baseline system. This confirms 

the utility of performing such an enhancement operation in the 

modulation domain of feature vector sequences.  

In the second set of experiments, we treat IRM as a data 

augmentation method, instead of using it to enhance both 

training and test speech utterances. This means that IRM is 

merely used in the training phase to generated enhanced 

representations of training speech utterances from their noisy 

counterparts. The enhanced representations then can be treated 

as augmented training data to be jointly used with the original 

multi-condition training data for training the acoustic model. 

Note also that the corresponding feature vectors of test speech 

utterances are kept unprocessed in the test phase. Again, we 

can conduct IRM on the spectral representations, the FBANK 

feature vectors and the intermediate representation of FBANK 

feature vectors as well. The WER results for these three 

variants of IRM-based data augmentation are depicted in 

TABLE III. Inspection of TABLE III reveals two noteworthy 

points. First, these three IRM-based data augmentation 

methods tend to perform on par with one another, and all of 

them also show superiority over the above IRM-based 

enhancement methods in terms of WER reductions, especially 

for the test sets C and D. Second, the best among them yields a 

relative improvement of 16.5% over the baseline system on 

average. 

Finally, as shown in Figure 2, we conduct visual inspection 

on the adjoined FBANK feature vectors of (a) a randomly 

selected clean test utterance, (b) its noisy counterpart, (c) its 

noisy counterpart enhanced by conducting IRM directly on the 

FBANK feature vectors, and (d) its noisy counterpart enhanced 

by conducting IRM in the modulation domain of the FBANK 

feature vectors. It is observed that the noisy utterance can be 

restored quite faithfully to its clean counterpart when IRM is 

directly conducted on the FBANK feature vectors. It instead 

seems less pronounced for enhancing the noisy utterance by 

conducting IRM in the modulation domain of the FBANK 

feature vectors, though such enhancement delivers slightly 

better ASR performance (cf. TABLE III). 

VI. CONCLUSIONS 

In this paper, we have proposed several novel methods to 

leverage IRM-based enhancement for robust ASR, which fall 

roughly into two categories: enhancement and data 

augmentation. Both these two categories of methods can result 

in considerable performance improvements over the strong 

baseline with a multi-condition training setting. As to future 

work, we plan to explore more sophisticated enhancement 

methods that can be leveraged to normalize speech feature 

vectors, or disparate intermediate representations of them, to 

generate augmented training data for further improving ASR 

robustness. 

VII. EXPERIMENTAL RESULTS 

This research is supported in part by ASUS AICS and the 

Ministry of Science and Technology (MOST), Taiwan, under 

Grant Number MOST 109-2634-F-008-006- through Pervasive 

Artificial Intelligence Research (PAIR) Labs, Taiwan, and 

Grant Numbers MOST 108-2221-E-003-005-MY3 and MOST 

109-2221-E-003-020-MY3. Any findings and implications in 

the paper do not necessarily reflect those of the sponsors. 

 

TABLE II.  

THE WORD ERROR RATE (%) RESULTS OF THE BASELINE SYSTEMS 

AND THE THREE VARIANTS OF THE IRM METHOD. 

Enhancement 

Space 

Test sets 
Avg. 

Set A Set B Set C Set D 

Baseline 

(no enhancement) 
3.28 8.05 10.09 21.74 10.79 

Spectrum 3.25 7.05 8.16 23.71 10.54 

FBANK 3.60 7.24 8.92 22.49 10.56 

Modulation 3.75 7.95 9.00 19.60 10.08 

 

TABLE III. 
 THE WORD ERROR RATE (%) RESULTS OF DIFFERENT IRM-BASED 

DATA AUGMENTATION METHODS. 

Augmentation 
Test sets 

Avg. 
Set A Set B Set C Set D 

Spectrum 3.65 7.33 7.36 17.96 9.08 

FBANK 3.78 6.98 7.94 17.34 9.01 

Modulation 3.54 6.94 8.40 17.49 9.09 

 

 

Figure 2: Visual comparison of the adjoined FBANK feature 

vectors of (a) a randomly selected clean test utterance, (b) its 

noisy counterpart, (c) its noisy counterpart enhanced b 

conducting IRM directly on the FBANK feature vectors, and (d) 

its noisy counterpart enhanced by conducting IRM in the 

modulation domain of the FBANK feature vectors. 
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