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Abstract—This paper investigates the use of the relative trans-
fer function (ReTF) for source separation. ReTFs have been
used to localize sound sources but have not been thoroughly
investigated for the application of source separation especially
when one of the sources is not speech. We propose two source
separation algorithms using ReTFs. One of them is deterministic
and enables the separation of two sources when one or both of
their ReTFs are known. The other algorithm uses masking in the
time-frequency domain and can be used for separating two or
more sources. We also explore the limitations and assumptions
of the ReTF and the proposed source separation algorithms.

Index Terms—Source separation, relative transfer function,
time-frequency masking

I. INTRODUCTION

The relative transfer function (ReTF) between microphones
represents the coupling between these microphones in re-
sponse to a source. The ReTF gives a unique signature of the
source position, as well as the position of the microphones and
the environmental characteristics, such as, room dimensions
and reverberation time [1]–[4]. Hence the ReTF contains very
useful information and is commonly used for determining
source location [5]–[7]. These source localization methods
often require many microphones, however in practice, most
devices are equipped only with a small number of microphones
to save hardware cost and computational complexity.

We investigate the ReTF for the application of source
separation on two-channel recordings. An example of a prac-
tical application of this is in teleconferencing where we are
interested in extracting speech from background noise such as
the air-conditioning in the office or the traffic going by outside
the window. Little has been done in this area; a few methods
exist [8]–[10] which use features of two-channel recordings
in the short-time Fourier transform (STFT) domain which are
related to the ReTF. These methods separate a mixture of
speech signals using the Watson mixture model for clustering
across frequency bins and an additional step for assigning
clusters to the different sources present in the recording. These
algorithms only work on separating mixtures of speech signals.

The vast majority of source separation algorithms [4], [11]–
[13], [13] use supervised machine learning techniques [14]–
[17]. These methods require large amounts of labeled data
which is not practical in many source separation problems.
We consider the case where there is only a small amount
of data available and little information known about the
recordings; we do not know environment characteristics, such

as, dimensions, reverberation time and location of sources or
microphones.

II. RELATIVE TRANSFER FUNCTION FEATURES

A. Problem Fomulation

Consider recorded signals from two microphones, yA(t) and
yB(t) placed in a room with N sound sources. Let signals
emitted by sound sources be si(t), i = . . . , N and hiA and
hiB be the room impulse response (RIR) from the ith source
to the two microphones. We can write the received signal at
the microphone A or B as [3], [17]

yi{A,B}(t) =

N∑
i=1

h{A,B}(t) ∗ si(t). (1)

where {·} denotes the microphone of interest, A or B. We take
STFT of (1), provided the time-window length used in STFT
is long relative to the length of the RIR, the multiplicative
transfer function model (MTF) [18] applies with the ReTF
only being a function of frequency, not time. Thus,

Y{A,B}(p, k) =

N∑
i=1

Hi{A,B}(k)Si(p, k), (2)

where HiA and HiB are the acoustic (room) transfer function
(RTF) from the ith source to the two microphones, and p and
k denote the time and frequency indexes, respectively. Source
separation is the process of taking a recording with a mixture
of sources (1) or (2) and recovering a single source hiA(t) ∗
si(t) or HiA(k)Si(p, k). We do not consider dereverberation
in this work.

B. Single source relative transfer function

For a single source, the ReTF R(k) is defined as the
ratio between the RTF of microphone A, and the RTF of
microphone B, R1(k) , H1B(k)/H1A(k) with respect to a
source. When there is only one source is present

Ri(k) =
YB(p, k)

YA(p, k)
=
HiB(k)Si(p, k)

HiA(k)Si(p, k)
(3)

There are a plethora of algorithms to estimate R(k) with
microphone noise [7]. We use R(k) ≈ ΦyAyB (k)/ΦyAyA(k),
where ΦyAyB (k) and ΦyAyA(k) are the cross-power and auto-
power spectral density of the audio recordings respectively.

Note that the ReTF is independent of the source signal
but provides a uniques signature of the source spatial
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characteristics for a given room and microphone locations.

C. Multi-source relative transfer function

We extend the ReTF definition in (3) to multiple sources.
Using the MTF model, the ReTF for N sources is given by

R(p, k) =
YB(p, k)

YA(p, k)
=

∑N
i=1HiB(k)Si(p, k)∑N
i=1HiA(k)Si(p, k)

. (4)

If the time-window of the STFT is chosen small enough,
then the W-disjoint [19] assumption holds. The W-disjoint
assumption states that only one source signal is present in
each time-frequency bin of the STFT. This means that the
ReTF for a time bin α and a frequency bin β equals

R(pα, kβ) =
HiB(kβ)Si(pα, kβ)

HiA(kβ)Si(pα, kβ)
=
HiB(kβ)

HiA(kβ)
= Ri(kβ).

(5)
That is, each time-frequency bin of an ReTF calculated for
multiple sources in the time-frequency domain, is equal to a
frequency bin of the ReTF of a single source.

If the time-window length of the STFT is small compared
with the length of the RIR, the convolutive transfer model
(CTF) [2], [4], rather than the MTF, is valid and the ReTF is
a function of both frequency and time with

R(p, k) =
YB(p, k)

YA(p, k)
=

∑Q
p′=0

∑N
i=1HiB(p′, k)Si(p− p′, k)∑Q

p′=0

∑N
i=1HiA(p′, k)Si(p− p′, k)

,

(6)
where Q is the length of the RIR divided by the length of
the time-frame used in the STFT. Using the CTF and the W-
disjoint assumption, the ReTF for a time bin α and a frequency
bin β equals

R(pα, kβ) =

∑Q
p′=0HiB(p′, kβ)Si(pα − p′, kβ)∑Q
p′=0HiA(p′, kβ)Si(pα − p′, kβ)

= Ri(pα, kβ). (7)

That is, each time-frequency bin of an ReTF calculated for
multiple sources in the time-frequency domain, is equal to a
time-frequency bin of the ReTF of a single source in the time-
frequency domain.

III. SOURCE SEPARATION ALGORITHMS

In this section, we present two source separation algorithms
we have developed, both of which use the ReTF. The first uses
the single source ReTF (II-B) and is a deterministic algorithm
for separating two sources. The second uses the ReTFs for
single (II-B) and multiple (II-C) sources to estimate binary
masks for separating two or more source signals. The single
source ReTFs have to be precomputed from measurements
done when only one source is active. For example, in a
conference room, recordings of the air-conditioner can be
made when the room is idle.

A. Deterministic two source separation

For N = 2 sources, the audio signal received at micro-
phones A and B can be written as (2)

YA(p, k) = H1A(k)S1(p, k) +H2A(k)S2(p, k) (8)
YB(p, k) = H1B(k)S1(p, k) +H2B(k)S2(p, k). (9)

Using (3), (9) can also be written as

YB(p, k) = H1A(k)R1(k)S1(p, k) +H2A(k)R2(k)S2(p, k).
(10)

If R2(k) is known, using (10) and (8) we can compute

YB(p, k)−R2(k)YA(p, k) =
(
R1(k)−R2(k)

)
H1A(k)S1(p, k)

(11)
In the right hand side of (11), source 2, S2(p, k), is removed
and what remains is a filtered version of source 1. If both
ReTFs are known, this filtering can be removed to recover
the audio signal received at microphone A if only source
1 is present, YA(p, k) = H1A(k)S1(p, k). ReTFs of one or
both sources are estimated using (3) during periods of the
recordings when only one source is active.

B. Time-frequency masking multi-source separation

We wish to form binary masks Mi(p, k) in the time-
frequency domain to recover an estimate of each source
Ŝi(p, k) with,

Ŝi(p, k) ,Mi(p, k)YA(p, k), ∀i = 1, ..., N. (12)

The masks can be recovered by working out which source at
each time-frequency bin (pα, kβ) of the multi-source ReTF
comes from which individual source’s ReTF. However, our
efforts of clustering each frequency bin for all time-frames
is not successful and we find that the multi-source ReTF
values for a frequency bin does not form separable clusters
in practice. Thus, we conclude that the MTF model (5) does
not hold perfectly in practice.

The CTF model (7) is source and time dependent. If we
have the single source ReTF in the time-frequency for each
source, then we can separate sources by working out for each
time-frequency bin of the multi-source ReTF which of the
time-frequency bins of the individual sources it is closest
too. Unfortunately, for real recordings we cannot compute
the individual sources’ ReTFs in the time-frequency domain.
Thus, he CTF model (7) is not practical as each source has to
be the same on its own as in the mixture.

1) Bin-wise method: It is possible to find the ReTF of each
individual source in the frequency domain Ri(k), provided
there are periods in the recording where each source is present
on its own. We can then compare each time-frequency bin of
the multi-source ReTF to the same frequency bin of the single
source ReTFs and assign the time-frequency bins to whichever
source had the closer ReTF value for that frequency. That is,
for each time bin α and frequency bin β the source I which
will have the bin assigned to its mask MI(p, k) is

I = arg min
i

{
||R(pα, kβ)−Ri(kβ)||

}
, (13)
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where ||.|| denotes the Euclidean norm.

2) Multi-bin method: A limitation with th above bin-wise
assignment is that the ReTF is a unique function of frequency
but not necessarily unique for a single frequency bin. It is
therefore difficult to compare ReTFs in a bin-wise fashion.
Since multiple frequency bins in the time-frequency domain
tend to be active synchronously [10], (known as the common
amplitude modulation property), we can look at multiple
neighbouring frequency bins together. The number of bins
within a bin radius R that are closer to source I is given
by

C =

β+R∑
b=β−R

||R(pα, kβ)−RX(kβ)|| < (14)

min
i
||R(pα, kβ)−Ri 6=X(kβ)||.

The time-frequency bin is assigned to the mask for source I if
the ratio C/(2R+ 1), is greater than the specified dominance
ratio D with,

MI(pα, kβ) =

{
1 if C/(2R+ 1) ≥ D
0 if C/(2R+ 1) < D.

(15)

IV. PERFORMANCE ANALYSIS

In order to analyze the performance of the source sep-
aration algorithms presented in Section III, we conduct the
following source separation experiments for the measurement
setup shown in Fig. 1 and reverberation times in the range
[100, 450]ms. In Fig. 1 a female news presenter is contam-
inated by a much louder undesired sound source. We use
traffic noise (TN) as an example of a broadband source and
air-conditioning (AC) as an example of a narrow band source.
The undesired sound sources have 160 times the energy of the
desired female news presenter source. The sampling frequency
of all sources and recordings is 16kHz, and 40dB white
Gaussian microphone noise is added to all the recordings.

A common approach to evaluating the quality of an
estimated source signal is to compute the overall perceptual
score (OPS) which is an energy ratio between the reference,
i.e., the clean target signal, and that of the estimation. We
calculate the OPS using the PEASS Toolbox [20].

A. Deterministic two source separation method

Here we evaluate the deterministic two source separation
method described in Section III-A for when just the ReTF of
the undesired source is known and when the ReTF of both
sources are known. The OPS for both of these cases as a
function of reverberation time and for two distances of the
desired source from the microphones is shown in Fig. 2. In
Fig. 2 the OPS is close to 100dB when both ReTFs are known
indicating near perfect reconstruction as expected. The OPS

Fig. 1: Configuration of microphones and sources used for
experimental evaluations.

is much lower when only one ReTF is known due to the dis-
tortion introduced in (11). For the shortest reverberation time
of 100ms, larger microphone separation distances and shorter
distance of the desired source from microphones leads to better
OPS but there is little difference in OPS at longer reverberation
times. For the deterministic two source separation method, the
separated signal, given by (11), is independent of the undesired
source signal, only on the ReTFs of the two sources, hence the
same OPS is achieved for either TN or AC as the undesired
sound source.
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Fig. 2: Overall perceptual score (OPS) for deterministic two
source separation method for female news presenter (FNP)
being recovered from recording with undesired sound source
for FNP distance 0.8m (a) and 1.6m (b) from microphones.
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B. Time-frequency masking multi-source method
Here we include a preliminary evaluation of the multi-

source separation method described in Section III-B. When
evaluating the multi-bin approach in Section III-B2. For the
experimental setup in Fig. 1, a STFT window size of 2048
samples (128ms) and frame shift of 512 (32ms), a bin radius
C = 1 and dominance ratio D = 1 achieved the best results.
The OPS calculated using the bin-wise and the multi-bin
approach (with C = 1 and D = 1) are shown in Fig. 3,
and as a function of reverberation time and for two distances
of the desired source from the microphones. The multi-bin
approach performs better than the bin-wise approach for all
reverberation times and speaker distances expect for a single
reverberation time (170ms). The same OPS was achieved for
either TN or AC as the undesired sound source.
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(b)Fig. 3: Overall perceptual score (OPS) for the time-frequency
masking multi-source separation method for female news pre-
senter (FNP) being recovered from recording with undesired
sound source for FNP distance 0.8m (a) and 1.6m (b) from
microphones.

V. EXISTING CHALLENGES

For both the deterministic two source separation and the
time-frequency masking multi-source separation method, a
limitation is having to compute ReTFs of individual sources. In
order to do this, there needs to be parts of the recording where
each source is present on its own. For the deterministic two
source separation method, although only one source’s ReTF
is required, the method is limited to two sources.

For the multi-source separation method, it is not possible
to get the STFT window length so that both the W-disjoint

assumption and the MTF assumption both hold exactly, so
there is always a trade-off between the two assumptions. If the
recording only contains signals that are sparse in time, such as
speech signals, it is possible to have a longer window and still
maintain the W-disjoint assumption so that both assumptions
approximately hold.

The multi-source separation method can in theory
separate any number of sources provided their ReTFs can
be learned, and the W-disjoint and the MTF assumptions
approximately hold. As the number of sources increases, the
W-disjoint assumption increasingly breaks down [19]. We
are investigating comparing multiple bins in time as well
as frequency to increase the robustness of this method. In
addition, the best bin radius and dominance ratio to use
is unclear and might depend on the individual recording
environment, this needs to be investigated further. We found
that larger bin radii did not work well for source separation
as few time-frequency bins were set to 1 in the binary mask.

VI. CONCLUSION

In this paper we investigated the use of the relative transfer
function (ReTF) for source separation. We proposed two
source separation algorithms: one which is deterministic and
enables the separation of two sources when one or both of
their ReTFs is known and the other algorithm which uses
masking of the ReTF in the time-frequency domain to enable
multi-source separation. We also explored the assumptions
of the ReTF and analyze the performance of the proposed
source separation algorithms. We conclude, though there are
limitations that need to be taken into account, that the ReTF
is a promising feature for source separation.
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