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Abstract—The task of singing voice separation requires the
model to maintain a trade-off between signal quality, interference
introduced by music accompaniment and algorithmic artifacts.
A time domain-based singing voice separation system offers
a challenge in designing for low latency and in minimizing
computational cost. To overcome this problem, we propose to
use Gammatone auditory features for the Time-Frequency (T-F)
mask-based singing voice separation task. Minimum Hyperspher-
ical Energy (MHE) regularization in the time-domain network
has recently produced the state-of-the-art result in singing voice
separation (our baseline). In this work, we apply MHE to the T-
F domain networks. The MHE regularized T-F domain network
significantly improves the separation performance over the base-
line. The MHE regularized Wasserstein Generative Adversarial
Network (GAN) achieves 0.21 dB improvement in mean Signal-
to-Distortion Ratio (SDR) over the baseline. Our best performing
T-F domain un-regularized GAN provides an improvement of
0.75 dB and 0.63 dB in SDR over the baseline and the GAN-
MHE, respectively. We experimentally show the failure of MHE
regularized T-F domain networks with respect to their un-
regularized versions and have shown the need of designing a
suitable adversarial objective function. We report that modifying
the GAN-MHE’s objective function with reconstruction loss and
adapting Wasserstein GAN, results in a 0.45 dB improvement in
mean SDR over its un-regularized version.

Index Terms—Singing voice separation, Minimum Hyper-
spherical Energy (MHE), Generative Adversarial Networks
(GAN).

I. INTRODUCTION

The ability of human listeners in identifying perceptual
differences between musical sources has inspired the recent
research in the area of automatic music source separation.
Music source separation finds its application in automatic
lyrics transcription, artist identification, karaoke generation,
editing music, and also enhances pitch estimation and chord
recognition results [1], [2]. The separation of singing voice
involves the extraction of the main melody from the musical
accompaniment [1].

Several studies have been proposed in monaural music
separation [1], [3]–[6]. The availability of a single channel
in monaural music makes the problem ill-posed in nature,
since for an estimated source, there could be multiple pos-
sible solutions for other sources [7]. The traditional approach
imposes a strong assumption on the data to be low-rank
and extracted from a sparse subspace [8]–[10]. However, the

samples drawn from a sparse subspace might not always
satisfy the low-rank condition. This approximation may not
lead to the exact recovery of data and also lacks generalization
[11]. The Bayesian method requires the source model to
possess statistical signal properties, and therefore the model
adaptation of maximum a posteriori criterion becomes a ne-
cessity [7]. Non-negative matrix factorization, though effective
in extracting a perceptually meaningful source, requires an
additive transformation for the negative data [5], [12].

Recently, deep learning techniques have surpassed the tra-
ditional methods in achieving a state-of-the-art performance in
audio source separation tasks [13]–[18]. Huang et al. jointly
optimized a soft mask function with the network’s objective,
for singing voice separation in monaural recordings [2]. The
convolutional neural network proposed by Simpson et al.
estimates an ideal binary mask (IBM) for automatic removal
of vocal from musical mixture for karaoke applications [6].
Nugraha et al. experimentally demonstrated that source spec-
tra estimated by a single DNN can outperform the spectra
estimated by other traditional approaches [19]. The U-Net
architecture adapted by Jansson et al. claims to reconstruct
voice typically found in the commercial pop music [20]. The
Wave-U-Net architecture investigated by Stoller et al. separates
sources in the time-domain [3]. A recent work using dense
neural network explores long-term dependencies in the audio
spectrogram [13]. However, the use of higher-dimensional
spectrogram features and fine-tuning makes the real-time
deployment non-viable and also increases the computational
complexity [3], [13], [20].

Most of the studies mentioned above use a mask-based esti-
mation technique since it offers direct access to components in
both time and frequency. Moreover, in the Time-Frequency (T-
F) domain, the audio sources are weakly overlapping, which
yields an optimal solution in the weighted least square sense
[21]. Supervised music source separation aims at estimating a
T-F mask from the music mixture [20], [22], [23]. Currently,
such an approach aims at optimizing the Maximum Likelihood
(ML)-based algorithm to estimate the source while inherently
predicting a mask. However, the ML-based criterion puts a
prior assumption on the data distribution, which may not be
globally valid for all the data samples and may force the
model to learn non-optimal network parameters [24]. However,
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the adversarial optimization proposed in [16], [17], interprets
the source separation as an inference problem by finding the
source estimates from the prior generative model. Moreover,
adversarial optimization does not put any parametric assump-
tion on the output data distribution. The study by Sisman et al.
has reported a state-of-the-art result obtained using adversarial
optimization techniques in the singing voice conversion task
[25].

The regularization technique is known to improve the rep-
resentational power of a network. Improving the effective-
ness and generalizability of a model without reducing the
network parameters has proven to minimize the redundancy
among the neurons. The inability of softmax loss in producing
more diverse intra-class samples generates a large number of
correlated and redundant neurons, which lead to over-fitting
and reduce the network’s generalizability. The large-margin
softmax loss introduced by Liu et al., preserves the most
abundant and discriminating information by making differ-
ent classification boundary for each class [26]. The recently
proposed Minimum Hyperspherical Energy (MHE) regularizer
reduces the redundancy by minimizing the hyperspherical
energy between the neurons in each layer [27]. The study
by Perez-Lapillo et al. explored the use of MHE for the
singing voice separation in a Wave-U-Net architecture [1]. The
inclusion of MHE in the loss function has provided a state-
of-the-art system for the time-domain singing voice separation
task.

Inspired by this work, we study the impact of MHE along
with the auditory features for the T-F domain-based signing
voice separation task. In this study, we have used Generative
Adversarial Network (GAN)-based models instead of Wave-U-
Net architecture to perform singing voice separation by implic-
itly learning the T-F mask. Using the above, we outperformed
the state-of-the-art results established by the time-domain
MHE regularized system (our baseline) on the MUSDB18
dataset [1]. With MHE regularization, the Wasserstein GAN
obtains an improvement of 0.21 dB over the baseline. We
also provide a comparison between the MHE regularized T-
F domain networks and their un-regularized versions. We
show how the separation quality can be improved by using
a reconstruction loss and the Wasserstein architecture to the
MHE regularized adversarial network. We also present the
analysis of our best performing un-regularized GAN over the
baseline and its MHE regularized version. The paper is orga-
nized as follow: section 2 describes Gammatone features and
optimizing GAN and their variants with MHE for T-F based
singing voice separation, section 3 describes the dataset and
network architecture, section 4 discusses evaluation results,
followed by section 5 discussing conclusions and future work.

II. RESEARCH METHODOLOGY

A. Gammatone auditory feature representation

The Gammatone filter is inspired from biologically moti-
vated studies [28] and is used for modeling the human auditory
filter response [29]. The bandwidth of a Gammatone filter
corresponds to the placement of filters in the basilar membrane

of the human auditory system. The impulse response of a
Gammatone filter is a multiplication of gamma distribution
and a sinusoidal tone centered at a particular frequency [30].
It is mathematically formulated as:

g(f, t) = ta−1e−2πbtcos(2πft), t > 0, (1)

where a is the filter order, b is the rectangular bandwidth, and
f is the center frequency.

B. GAN For T-F based Singing Voice Separation

The GAN learns a mapping between the mixture samples y
following a prior distribution Y and vocal samples x belonging
to data distribution X . The Generator (G) aims to learn the data
distribution in an adversarial framework. The Discriminator
(D) being a binary classifier maximizes the likelihood of vocal
samples drawn from X as real and minimizes the likelihood of
the predicted vocal samples drawn from the model distribution
X̂ (output of G) as fake. As training optimality X̂ → X is
achieved, the G network is supposed to generate realistic vocal
samples and the D network is left confused between X and
X̂ . This objective function can be defined as [31]:

min
G

max
D

V (D,G) = Ex∼X [logD(x)]+

Ey∼Y [log(1−D(G(y))],
(2)

where Ex∼X is the expectation taken over the samples x drawn
from the data distribution X .

The GAN can be employed for the T-F mask prediction,
where the G network is trained to predict vocal T-F rep-
resentation while learning the mask implicitly (the method
is commonly known as task-dependent masking [32]). Also,
many recent studies have proven the ability of discriminators
in classifying the real from the generated samples [16], [17].
Motivated from [24], [32], [33], we propose to optimize
Minimum Mean Square Error (MMSE) between the log T-F
representation of vocals and the predicted ones. If the output
of the G network is m, input music mixture T-F representation
is t, and vocal T-F representation is v, then the optimization
function can be written as:

MMSE =
1

2
|| log(t�m)− log(v)||2, (3)

where ’�’ represents element-wise multiplication and
MMSE is the objective function to be optimized. Thus, the
vocal representation can be estimated when the music mixture
representation is element-wise multiplied with the T-F mask
estimated by the G network. If the sources do not overlap at
all, then ∏

i

Si(t, f) = 0,∀t, f,

Ŝj(t, f) = tj(t, f) ·mj(t, f),∀t, f,
(4)

where i is the number of sources present in the music mixture,
Sj(t, f) denotes a particular T-F unit of a jth source, and
Ŝj(t, f) denotes a T-F unit of an estimated jth source. If
Sj(t, f) 6= 0, then making mj(t, f) = 1 would yield an
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Fig. 1. Block diagram for the prediction of T-F mask-based network. During training the GANs are trained with the extracted Gammatone music signal
features as an input and ground-truth vocal features as the target output. During testing the model estimates the T-F mask, generates the Gammatone spectrum
and reconstructs the estimated vocal signal.

ideal solution for the jth source. However, some presence
of overlapping is always observed in the real-time music
mixture. Therefore, restricting the mask to take continuous
values between [0, 1] approximates it to the Ideal Ratio Mask
(IRM) and may yield an optimal solution in a weighted square
sense.

Regularizing the G network with MMSE loss prevents
the generator from learning representation which may not
correspond to the given music mixture at the input, but may
belong to the distribution of vocal T-F data representation
(X ) [24], [33]. The G network in the original GAN objective
function (eq: 2) can be MMSE regularized as [24]:

Ṽ (D,G) = min
G

max
D

V (D,G)+

1

2
min
G

Ex∼X ,y∼Y [log(x)− log(G(y)].
(5)

C. Optimizing GANs with MHE

There are two alternative configurations of MHE, full-space
MHE and half-space MHE. The half-space MHE encourages
the neurons in the hidden layer to be less correlated and less
redundant [27] than the full-space MHE. However, we prefer
to use full-space MHE for our evaluation, as it has shown
to obtain better results for singing voice separation [1]. The
MHE regularized GANs objective function can be formulated
as [27], [31]:

J = Ṽ (D,G) + λh ·
L−1∑
j=1

1

Nj(Nj − 1)
Esj , (6)

where λh is the weighting parameter, L is the number of
hidden layers, Nj is the number of neurons in the jth layer,
and Esj is the hyperspherical energy of the neurons in the jth

layer and is defined as:

Esj =

N∑
i=1

N∑
j=1,j 6=i

fs(||ŵi − ŵj ||), (7)

where ||.|| is an Euclidean distance, ŵi is the weight of an
ith neuron projected on the unit hypersphere. The weighting
constant of the MHE should be a constant depending on the
number of hidden layers [1], [27]. As suggested in [27], we use
fs = z−s, a decreasing real-valued Rises s-kernel function,
λh = 1

L , and s = 0.

D. Variants to the GAN’s adversarial loss

The vanilla GAN architecture proposed by Goodfellow et
al. [31] often suffers from stability issues during training [34],
[35]. The discriminator loss quickly converges to zero, and
thereby quickly differentiates between the generated and the
clean audio samples at its input. Thus, the G network will
not be able to generate a perceptually audible clean singing
voice. The Wasserstein GAN (WGAN) proposed in [34], uses
a continuous distance measure between the distributions and
is differentiable almost everywhere. The WGAN updates its G
network once, for a certain number of its D network updates.
This allows the D network to optimally update its parameters
and also provides a good correlation between the G network
loss and its generated sample quality.

Adding a reconstruction loss to the Generator’s objective
function, allows the network to learn a relevant mapping
between the generated output and its input. The reconstruction
loss compares the generated output with its input mixture
and in this process may rectify the mode collapse problem
as observed in vanilla GANs [36]. Here we analyze GAN,
WGAN, GAN with reconstruction loss (RECON-GAN) and
RECON-WGAN for the singing voice separation task as the
variants to GAN.

III. EXPERIMENTAL SETUP

A. Database

We used the MUSDB18 dataset for model training and
evaluation [37]1. The data consists of 100 song clips for
training and 50 for testing, with duration of 6.5 and 3.5 hours,

1https://sigsep.github.io/datasets/musdb.html
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respectively. The training set is further divided by randomly
selecting 20 tracks for validation purpose. The bass, drums,
and other sources are mixed to constitute as an accompani-
ment. We also use CCMixter dataset [38] comprising of 50
more clips for training, as in [1].

B. Network Architecture

The networks are trained in two different configurations.
The first configuration consists of an unregularized DNN,
GAN, WGAN, RECON-GAN, and RECON-WGAN architec-
tures. The DNN is optimized using MMSE criteria between
the estimated vocal and the extracted vocal from the musical
mixture. The GAN, WGAN, RECON-GAN, and RECON-
WGAN have their G network identical to DNN, each with
3 hidden layers and 1000 neurons with Rectified Linear Unit
(ReLU) activation. 60 neurons in the output layer predict the T-
F mask implicitly with sigmoid activation. The D network also
consists of 3 hidden layers with 512 neurons each, along with
a tanh activation and a single unit output layer with sigmoid
activation.

In the second configuration, all the five networks are regu-
larized with MHE loss function, namely, DNN-MHE, GAN-
MHE, WGAN-MHE, RECON-GAN-MHE, and RECON-
WGAN-MHE. All the networks are trained for 150 epochs,
with a learning rate of 0.0001, using the Adam optimizer [39]
with decay rates of β1 = 0.9 and β2 = 0.999 and batch size
of 1000.

Fig. 1 shows the block diagram of the proposed system. Dur-
ing training, the Gammatone features extracted from the music
mixture and vocal are used to learn the network weights for
the T-F mask prediction in the testing phase. The 60-channel
Gammatone features are computed with 25 ms Hamming
window length and overlap of 10 ms between the consecutive
frames. A context length of 4 frames (2 left and 2 right) is
used for the training purpose. The networks are optimized to
predict the log-Gammatone spectral T-F representation, while
implicitly learning the T-F mask at the network’s output layer.

IV. EVALUATION

The statistical and perceptual analysis of the estimated
vocal is performed using Source-to-Distortion Ratio (SDR),
Source-to-Interference Ratio (SIR), and Source-to-Artifacts
Ratio (SAR), through a BSS-EVAL evaluation toolbox [40].
To maintain similarity in the evaluation as done in [1], we
also partitioned the audio tracks into many non-overlapping
segments of one-second length and calculate the metrics for
each segment. The resulting metric values are then averaged
over the songs and the entire test dataset.

Since the evaluation framework evaluates two estimated
sources at-a-time, the music accompaniment is estimated by
deducting the estimated vocal from the original music mixture,
and is used as a second source. The higher values of the
metric suggests better separation quality. The SDR reflects the
overall separation improvement, SIR represents the amount
of suppression of the interfering sources and SAR signifies
the number of artifacts introduced due to the suppression

Fig. 2. Impact of MHE on time and T-F domain networks: 1. with baseline
time domain MHE system, 2. with MHE regularized T-F domain DNN, 3.
with MHE regularized T-F domain WGAN.

Fig. 3. RECON-WGAN-MHE improves signal quality, reduces interference
and removes algorithm artifacts. Gammatone spectrum of: a. true vocals, b:
mixture, c: RECON-GAN-MHE, d: WGAN-MHE, e: RECON-WGAN-MHE,
and f: RECON-WGAN.

algorithm. The evaluation result weighted over the length of
the entire test database is reported in terms of Global SDR
(GSDR), and Global SIR (GSIR), Global SAR (GSAR). Since
the SDR values are not normally distributed over the entire
test database, we also evaluate the Median Absolute Deviation
(MAD) of the estimated SDR. The MAD can be calculated
by taking the median of absolute deviation from the overall
median calculated on the estimated SDR values. We also
report the Global Normalized SDR (NSDR) values, to find
the improvement of the estimated singing voice over the music
mixture. The NSDR is defined as [2]:

NSDR(x̂, x, y) = SDR(x̂, x)− SDR(y, x), (8)

where x̂ is the estimated singing voice, x is the clean singing
voice, and y is the music mixture. The Gammatone spectrum
evaluation in Fig. 3, 5, is performed on Bobby Nobody - Stitch

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

730



(d)
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Fig. 4. Impact of MHE on various T-F domain networks: a. DNN and DNN-MHE, b. GAN and GAN-MHE, c. WGAN and WGAN-MHE, d. RECON-GAN
and RECON-GAN-MHE, e. RECON-WGAN and RECON-WGAN-MHE. For mean SDR, median SDR, GSIR, GSAR, GSDR, and GNSDR higher is better.
For MAD SDR and SD SDR, lower is better.

TABLE I
PERFORMANCE COMPARISONS BETWEEN THE BASELINE, DNN, GAN, WGAN, RECON-GAN, RECON-WGAN, DNN-MHE, GAN-MHE,

WGAN-MHE, RECON-GAN-MHE, RECON-WGAN-MHE.

Metrics (in dB) baseline DNN GAN WGAN RECON-GAN RECON-WGAN DNN-MHE GAN-MHE WGAN-MHE RECON-GAN-MHE RECON-WGAN-MHE
Mean SDR -0.42 -0.44 0.33 -0.09 -0.21 -0.89 -0.29 -0.30 -0.21 -0.34 -0.44

Median SDR 3.58 -0.36 0.66 0.04 -0.04 -0.72 -0.05 -0.04 -0.04 -0.26 -0.36
MAD SDR 2.89 1.05 1.23 1.06 1.26 1.31 1.20 1.52 1.23 1.42 1.33

SD SDR 13.78 1.58 1.56 1.65 1.62 1.69 1.77 1.87 1.64 1.96 1.65
GSDR - -0.50 0.24 -0.18 -0.27 -0.97 -0.31 -0.39 -0.29 -0.43 -0.50

GNSDR - -0.28 0.46 0.03 -0.04 -0.73 -0.10 -0.14 -0.06 -0.18 -0.27
GSIR - 4.70 6.29 4.21 5.29 2.05 4.10 4.56 4.51 4.29 3.62
GSAR - 0.24 0.46 0.37 0.31 0.12 0.26 0.31 0.32 0.36 0.32

Up wave file from the test dataset [37].

A. Impact of MHE on time and T-F domain networks

To evaluate the performance of MHE regularization on T-F
domain networks, we consider the objective scores of MHE
regularized time-domain Wave-U-Net architecture [1] as our
baseline. Fig. 2 shows a comparison of the MHE regularized T-
F models that achieved maximum improvement in mean SDR
w.r.t. the baseline. Table I shows the estimated scores for the
baseline and the T-F domain networks. The baseline model
obtained the highest median SDR of 3.58 dB. However, the
MAD of 2.89 dB and SD of 13.78 dB for the baseline indicates
more variability in the estimated vocal data space. The MAD
and SD for the MHE regularized T-F domain networks ranged
from 1.52 dB to 1.05 dB and 1.96 dB to 1.56 dB, respectively.
Also, the MHE regularized T-F domain network (WGAN-
MHE) achieved a maximum improvement of 0.21 dB in mean
SDR over the baseline. This shows that regularizing the T-
F domain network with MHE is currently the best possible
alternative to the MHE regularized time-domain networks.

B. Identifying a suitable objective function for MHE regular-
ized T-F domain networks

Fig. 4 shows the impact of MHE on T-F domain networks
against their un-regularized T-F models. Adding MHE regu-
larization to the DNN model improves the overall GSDR and
GSAR, but fails to remove the interference. The MHE turns
out to be ineffective when used in the adversarial framework
such as GANs (Fig. 4 (b)). However, when the MHE is used
in advanced adversarial networks such as WGAN (Fig. 4 (c))
and RECON-GAN (Fig. 4 (d)), can reduce the interference and
artifacts, respectively. The dotted circle in Fig 3 (d) shows
the ability of WGAN-MHE in preserving vocal information
by reducing interference. The dotted rectangle in Fig. 3 (c)
shows that the RECON-GAN-MHE is able to remove the
algorithm artifacts. Based on the above inference, we intro-
duce MHE to the RECON-WGAN, a network combination
of reconstruction loss and the Wasserstein architecture. As
can be seen in Fig. 4 (e) and Fig. 3 (e), (f), of all the
adversarial networks, regularizing the RECON-WGAN with
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MHE achieved a maximum performance improvement against
its un-regularized version. Table II shows the improvement in
the MHE regularized T-F domain adversarial networks to their
un-regularized version. The RECON-WGAN-MHE achieved
the maximum improvement of 0.45 dB, 1.57 dB, 0.20 dB, and
0.47 dB in terms of mean SDR, GSIR, GSAR, and GSDR over
its un-regularized version, respectively. The results confirm the
need of designing a suitable adversarial objective function (in
our case, reconstruction loss with Wasserstein architecture) for
using MHE regularization in singing voice separation.

TABLE II
IMPROVEMENT IN THE MHE REGULARIZED T-F DOMAIN ADVERSARIAL

NETWORKS WITH RESPECT TO THEIR UN-REGULARIZED VERSIONS.

MHE-Model mean SDR(dB) GSIR(dB) GSAR(dB) GSDR(dB)
RECON-WGAN-MHE 0.45 1.57 0.20 0.47
RECON-GAN-MHE -0.13 -1.00 0.05 -0.16

WGAN-MHE -0.12 0.30 -0.05 -0.11
GAN-MHE -0.63 -1.73 0.15 -0.63

Fig. 5. GAN-MHE fails to properly predict the spectrum: a. true vocals,
b. mixture, c. GAN estimated vocals, and d. GAN-MHE estimated vocals:
dotted portion shows the area where it fails to reduce artifacts from the music
accompaniment.

C. Un-regularized GAN outperforms its MHE regularized
version and the baseline

As seen in section IV-B and Table II, only for the RECON-
WGAN-MHE configuration, the MHE yields the best result
w.r.t. its un-regularized version. However, it can be seen in
Table I that the best performing un-regularized GAN achieves
the maximum improvement of 0.63 dB in mean SDR over
its MHE regularized version. The GAN achieves the highest
median SDR of 0.66 dB w.r.t. all other T-F networks. The
GSDR, GSIR, and GSAR also suggest that the estimated
singing voice using GAN outperforms its MHE version. Fig.
5 shows the spectrum learned by GAN and GAN-MHE T-F
domain networks. The dotted portion in Fig. 5 (c) shows the
area where GAN is able to reduce the artifacts and interference
introduced from the music accompaniment (shown as red

coloured vertical patch at 400th frame and 10th filter, in Fig.
5 (b)) as against its MHE version (Fig. 5 (d)). In each of the
estimated Gammatone spectrum, the lower frequency region is
able to significantly reduce the interference. This observation
shows the effectiveness of using Gammatone-based auditory
features in generating statistically relevant features, as also
observed in [41].

V. CONCLUSIONS AND FUTURE WORK

In the context of singing voice separation from a musical
mixture, we have presented a general method of using Mini-
mum Hyperspherical Energy (MHE) regularizer for the Time-
Frequency (T-F) domain networks. We have demonstrated that
the Gammatone-based auditory features are effective in reduc-
ing the interference introduced by the music accompaniment.
We have presented a detailed analysis of applying MHE to the
time and T-F domain networks. The T-F domain Generative
Adversarial Network (GAN) outperforms the time-domain
baseline with an improvement of 0.75 dB in mean Signal-to-
Distortion Ratio (SDR). We have reported the failure of MHE
regularized T-F domain networks over their un-regularized
models. To solve this problem, we have shown a need to
identify a suitable adversarial objective function for the MHE
regularized T-F domain networks. Adding a reconstruction
loss to the Wasserstein GAN-MHE (RECON-WGAN-MHE)
achieved a 0.45 dB improvement in mean SDR over its un-
regularized version. For future work, we plan to use MHE
regularization to the other advanced adversarial networks such
as cycle-GAN, to evaluate the effect of cycle loss on the
singing voice separation task. We also plan to extend this work
to speech separation and enhancement.
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[37] Z. Rafii, A. Liutkus, F.-R. Stöter, S. I. Mimilakis, and R. Bittner,
“Musdb18-a corpus for music separation,” 2017.

[38] A. Liutkus, D. Fitzgerald, and Z. Rafii, “Scalable audio separation with
light kernel additive modelling,” in 2015 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015,
pp. 76–80.

[39] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[40] E. Vincent, R. Gribonval, and C. Févotte, “Performance measurement
in blind audio source separation,” IEEE transactions on audio, speech,
and language processing, vol. 14, no. 4, pp. 1462–1469, 2006.

[41] D. M. Agrawal, H. B. Sailor, M. H. Soni, and H. A. Patil, “Novel teo-
based gammatone features for environmental sound classification,” in
2017 25th European Signal Processing Conference (EUSIPCO), 2017,
pp. 1809–1813.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

733


