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Abstract—In this paper, we propose using complex generalized
Gaussian mixture distribution with weighted variance for speech
modelling and devise an improved independent vector analysis
(IVA) algorithm for blind speech separation (BSS). Capable of
capturing both non-Gaussianity and non-stationarity, the pro-
posed complex generalized Gaussian mixture model (CGGMM)
allows for a much flexible characterization of practical speech
signals. The majorization minimization (MM) framework is
adopted for the IVA algorithm design. Each iteration of the
algorithm is comprised of the updates of demixing matrices and
mixture model parameters. For demixing matrices, the update
operates in a manner similar to that of the auxiliary function
based IVA (AuxIVA) method, and for mixture parameters, the
expectation maximization (EM) update is performed. As both
updates are in closed form and pre-whitening is not a prerequi-
site, the IVA algorithm under CGGMM is of low complexity and
can be carried out efficiently. Experimental results show that
the proposed algorithm outperforms existing ones in terms of
separation accuracy and also enjoys a fast convergence rate in
both simulated and real environments.

I. INTRODUCTION

Maximizing the independence of the outputs of linear

demixing systems, independent vector analysis (IVA) is an

efficient blind source separation (BSS) technique for extracting

acoustic sources from mixtures [1]. As the IVA algorithms

do not require precise knowledge of the mixing system, their

performance relies heavily on the proper modelling of acoustic

sources. In order to achieve an interference-free separation,

the distribution adopted in IVA should match the exact source

distribution as closely as possible.

In conventional IVA methods [2–6], the spherical distri-

bution is used as the joint distribution of source spectral

coefficients. Simple as it is, the spherical distribution could

be far from sufficient in modelling the variations in complex

speech signals. To remedy the shortcomings of spherical

distribution, various mixture models for IVA have been pro-

posed, which include Gaussian mixture model (GMM) [7] and

Student’s t mixture model (SMM) [8]. With multiple density

components, IVA methods based on mixture models can cater

for multimodal distributions, which are common for the non-

stationary speech signals. Both mixture model parameters and

demixing matrices can be updated iteratively using the ex-

pectation maximization (EM) algorithm [7]. Nevertheless, for

IVA algorithms based on GMM and SMM, pre-whitening is

needed to stabilize the IVA iterations, and careful initialization

of the EM algorithm for mixture model parameter estimation

is also essential to guarantee the separation performance.

Recently, Gu et al. [9] incorporated an amplitude adjusting

factor into GMM to obtain an amplitude-variable GMM-based

IVA algorithm (AV-GMM-IVA) whose performance is less

affected by the EM initialization. In the AV-GMM-IVA, the

amplitude adjusting factor is used to adapt to the temporal

power fluctuation inherent to the non-stationary speech signals

and then the speech source could be separated efficiently

under the random initialization. Still, AV-GMM-IVA runs on

signals after pre-whitening, whose error due to limited sample

size could cause performance degradation. Besides, there is

a disparity between the Gaussian distribution adopted by AV-

GMM-IVA and the actual distribution of speech, which is in

general non-Gaussian.

Inspired by AV-GMM-IVA, we propose using mixture

model with variable variance in IVA algorithms. But rather

than Gaussian distribution, the complex generalized Gaussian

distribution (CGGD) is employed as mixture component.

As a large family of bivariate symmetric distributions from

super-Gaussian to sub-Gaussian distributions, the CGGD is

mathematically flexible in capturing the statistical behavior

of speech signals [10–12]. Therefore, the proposed speech

model could capture both non-stationarity and non-Gaussianity

of speech signals. Based on the majorization minimization

(MM) framework, the EM algorithm is used to estimate

the mixture parameters and a new cost function using the

inequality from the auxiliary function based IVA (AuxIVA)

[3, 13] is derived to update the demixing matrix. In this way,
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the proposed algorithm does not require the pre-whitening

process of observations, which reduces the computation and

could be implemented online conveniently. The separation

performance of the proposed algorithm is investigated and

compared with the other four well-known IVA methods in the

following experiments.

Notations: Vectors and matrices are boldface italic. [·]T and

[·]H denotes non-conjugate transpose and conjugate transpose,

respectively. E[·] is the expectation operator and det is matrix

determinant.

II. PROBABILISTIC MODEL FOR IVA

A. BSS in Frequency Domain

Consider an acoustic scenario where K sources in an

enclosure are captured by K microphones. The short-time

Fourier transform (STFT) representations of multiple source

signals and multichannel microphone observations are de-

noted as sft = [s1ft, . . . , s
k
ft, . . . , s

K
ft]

T ∈ C
K×1 and xft =

[x1
ft, . . . , x

k
ft, . . . , x

K
ft]

T ∈ C
K×1 respectively where f ∈F =

{1, . . . , F} is the frequency bin index and t∈T ={1, . . . , T}
is the frame index. The superscript k ∈ K = {1, . . . ,K}
denotes the source or channel index. In a noise-free system,

the instantaneous mixing in the frequency domain can be

expressed as [14]:

xft = Afsft (1)

where Af ∈C
K×K is the linear mixing matrix. The original

sources can be estimated by a matrix multiplication between

the demixing matrix and observed mixtures. Let yft =
[y1ft, . . . , y

k
ft, . . . , y

K
ft]

T∈C
K×1 be the vector of the estimated

source signals and Wf =[w1
f , . . . ,w

k
f , . . . ,w

K
f ]H∈C

K×K be

the demixing matrix where wk
f is the separation filter for the

kth source. The demixing process can be written as:

yft=Wfxft. (2)

B. The Statistical Model for Source Priors

The statistical model for source priors is proposed in

this section and the index k is omitted for simplicity. The

CGGD is adopted as a source prior at each frequency bin.

Given the shape parameter γ, the variance vector Λ =
[λ1, . . . , λf , . . . , λF ]∈R

F and the frame-wise weight ρt, the

joint PDF of st=[s1t, . . . , sft, . . . , sFt] ∈ C
F is given by:

p(st |ρtΛ,γ)=
∏
f

1

πΓ
(
2
γ+1

)
ρtλf

exp

(
−
∣∣∣∣∣ sft√

ρtλf

∣∣∣∣∣
γ)

(3)

where Γ (·) is the Gamma function. ρt is the time-varying

weight factor of variances over all frequency bins, which par-

tially preserves the dependencies over frequency components

and allows each frame to be treated differently. It acts as the

temporal power compensation between the estimated λf and

the output signal yft and was first proposed in [9]. So the non-

stationarity of speech signals caused by the temporal power

fluctuation can be captured. For another, the non-Gaussian

statistical properties of speech signals are also considered.

The variable shape parameter γ determines the decay rate

of the density function, whose smaller value corresponds

to heavier-tailed distribution and vice versa. The CGGD is

mathematically flexible in capturing the statistical behavior

of speech signals [10], from super-Gaussian (γ < 2) to sub-

Gaussian (γ>2) including specific densities such as Gaussian

(γ=2) and Laplacian (γ=1) distributions [12].

However, using a single PDF in (3) as source priors can

not adapt to the statistical properties of different sources.

Therefore, as the IVA methods using mixture models [7–9],

we further derive the complex generalized Gaussian mixture

model (CGGMM) with I components as follows:

p(st |Ω) =
∑
i

πip (st |ρt,iΛi,γi) (4)

where Ω = {π1, . . . , πI , ρt,1Λ1, . . . , ρt,IΛI , γ1, . . . , γI} and

the subscript i ∈ I = {1, . . . , I} indicates the ith mixture

component. π1, . . . , πI are the mixture coefficients satisfying

πi ≥ 0 and
∑

iπi = 1. The proposed statistical model in (4)

generalizes the GMM in the IVA method and is able to capture

both non-Gaussianity and non-stationarity of speech signals.

C. Objective Function of IVA

For the purpose of maximizing the statistical indepen-

dence of sources and avoiding the permutation problem, IVA

measures the independence from the entire spectrogram of

each source signal. Let Y k = {yk
1 , . . . ,y

k
t , . . . ,y

k
T } be the

estimated kth source data where yk
t =[yk1t, . . . , y

k
ft, . . . , y

k
Ft].

P k
i ={ρk1,i, . . . , ρkt,i, . . . , ρkT,i} are the weights associated with

the ith mixture component of Y k. Using the Kullback-Leibler

(KL) divergence between p
(
Y 1, . . . ,Y K

)
and

∏
kp
(
Y k

)
, the

separated process can be realized by minimizing the objective

function [15]:

J (W ,Θ) =
∑
k

E
[
G
(
Y k

)]−∑
f

log |detWf | (5)

where W and Θ represent the sets of demixing

matrices and mixture model parameters respectively,

i.e. W = {Wf}Ff=1, Θ = {Θk}Kk=1 where

Θk = {πk
1 , . . . , π

k
I ,P

k
1 , . . . ,P

k
I ,Λ

k
1 , . . . ,Λ

k
I}. Note that

shape parameters {γk
1 , . . . , γ

k
I }Kk=1 would be set as priors.

G
(
Y k

)
is the contrast function with a relationship of

G
(
Y k

)
= − log p

(
Y k

)
. In this research, we consider the

statistical model in (4) for the contrast function and (5) can

then be written as:

J (W ,Θ) =− 1

T

∑
k,t

log

(∑
i

πk
i p(y

k
t |ρkt,iΛk

i ,γ
k
i )

)

−
∑
f

log |detWf |.
(6)
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III. OPTIMIZATION BASED ON AUXILIARY FUNCTION

As minimizing (6) is a nonlinear optimization problem,

the majorization minimization (MM) framework is adopted

to find the closed form solutions of mixture model parameters

Θ and demixing matrices W . The MM algorithm is to find

an auxiliary function Q, which satisfies Q
(
θ, θ̂

)
≥ J (θ)

where the equality sign is satisfied if and only if θ = θ̂.

The alternative updates in terms of θ and θ̂ guarantee J (θ)
monotonically decreases to a stationary value [16].

The mixture parameters are estimated via the EM algorithm

and the upper bound of J (W ,Θ) can first be obtained by

Jensen’s inequality [17]:

Q(W ,Θ,q)=− 1

T

∑
k,t

(∑
i

qkt,ilog
(
πk
i p

(
yk
t |ρkt,iΛk

i ,γ
k
i

))

−
∑
i

qkt,i log q
k
t,i

)
−

∑
f

log |detWf |. (7)

qkt,i is the posterior probability of the ith mixture component

at the tth frame for the kth source, given observations and the

estimated parameters from the last iteration. The calculation

of qki is the expectation-step (E-step) and can be derived as:

qkt,i =
πk
i p

(
yk
t | ρkt,iΛk

i , γ
k
i

)
∑
j∈I

πk
j p

(
yk
t | ρkt,jΛk

j , γ
k
j

) . (8)

The expansion of (7) is

Q(W ,Θ,q)=
1

T

∑
k,t

(
−
∑
i

qkt,i logπ
k
i+
∑
i

qkt,i

(
F logΓ

(
2

γk
i

+1

)

+F log ρkt,i +
∑
f

logλk
f,i+

∑
f

∣∣∣∣∣∣
ykft√
ρkt,iλ

k
f,i

∣∣∣∣∣∣
γi
⎞
⎠

+
∑
i

qkt,i log q
k
t,i

)
+KF logπ−

∑
f

log|detWf |.

(9)

Then, in the maximization step (M-step), Θ is updated by

setting the derivatives of Q(W ,Θ, q) to zero. With some

straightforward mathematical manipulations, the following for-

mulas are obtained for the mixture coefficient, the variance and

the weight, respectively.

πk
i =

1

T

∑
t

qkt,i, (10)

λk
f,i =

⎛
⎜⎜⎜⎝
γk
i

∑
t
qkt,i

∣∣∣∣ yk
ft√
ρk
t,i

∣∣∣∣
γk
i

2
∑
t
qkt,i

⎞
⎟⎟⎟⎠

2/γk
i

, (11)

and

ρkt,i =

⎛
⎜⎜⎜⎜⎜⎝
γk
i

∑
f

∣∣∣∣∣ yk
ft√
λk
f,i

∣∣∣∣∣
γk
i

2F

⎞
⎟⎟⎟⎟⎟⎠

2/γk
i

. (12)

To further find the closed form solution of Wf , an inequality

is derived from the theorem proven in original AuxIVA [3, 13]

and can be stated as:

|y|γ ≤ |ŷ|γ +
γ

2
|ŷ|γ−2

(
|y|2 − |ŷ|2

)
(13)

where the equality sign is satisfied if and only if |y| = |ŷ|.
Thus, (9) can be modified to a new upper bound in terms of

W and V by applying (13):

QW(W ,V )=
∑
f

(
1

2

∑
k

wk
f

H
V k
f wk

f−log|detWf |
)
+RΘ, (14)

V k
f =

1

T

∑
t,i

qkt,iγ
k
i

(
ρkt,iλ

k
f,i

)−γk
i/2

∣∣ŷkft∣∣γk
i−2xftx

H
ft, (15)

where ŷkft is the estimated source signal in the last iteration.

RΘ contains the constant and the terms with parameters of the

mixture model but independent of W . The auxiliary variable

V represents a series of Vf for any f where Vf={V k
f }Kk=1.

Resemblance to the original AuxIVA, the demixing matrix

updates for any f and k can then be expressed as:

wk
f =

(
WfV

k
f

)−1
ek, (16)

wk
f = wk

f

/√
wk

f

H
V k
f wk

f , (17)

where ek is the unit vector which has a single non-zero

element 1 in the kth position.

Based on the above auxiliary function approach, Q is

iteratively minimized over q,Θ and W and still obtains a

monotonic decrease until the convergence. In each iteration,

the mixture parameters are updated based on (8) and (10)∼(12)

with a complexity of O(KIFT ), while the demixing matrices

are estimated via (15)∼(17) with a complexity of O(
K4F

)
.

IV. EXPERIMENTS

In this section, the performance of the proposed algorithm

(CGGMM-IVA) is evaluated and compared with the following

four well-known IVA algorithms: (1) CL-AuxIVA, original

AuxIVA with a time-invariant circular Laplace distribution [3];

(2) SCGG-AuxIVA, AuxIVA with a spherical complex-valued

generalized Gaussian distribution [18]; (3) Independent low-

rank matrix analysis (ILRMA), estimating a spatial model

using IVA and a source model by low-rank decomposition

using the nonnegative matrix factorization (NMF) [19]; (4)
AV-GMM-IVA, a recently proposed algorithm with an ampli-

tude variable Gaussian mixture model using IVA [9].
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Fig. 1. The layout of simulated experimental setup.
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Fig. 2. Box-plots of SIR (left) and SDR (right) improvements for different
shape parameters over 50 mixtures in Exp. 1. The dot shows the mean.

The number of mixture states for both CGGMM-IVA and

AV-GMM-IVA is set to 2, while the number of bases for

ILRMA is set to 10. The shape parameter in SCGG-AuxIVA is

set to 0.4 for each source . For CGGMM-IVA, λk
f,i is initialized

to 1 and {γk
i }Ii=1 is the same for any k but may set to the

different value for different state i. All the algorithms run until

the decrement of the cost function between adjacent iterations

is less than or equal to 10−6. Moreover, the data pre-whitening

is implemented merely in ILRMA and AV-GMM-IVA. The

minimal distortion principle [20] is utilized in the post-

processing for all the algorithms. A 4096-point FFT, 4096-tab

Hanning window with half-overlap are used in STFT domain.

The results are evaluated by the signal-to-interference ratio

(SIR) and signal-to-distortion ratio (SDR) in decibels using

the BSS EVAL toolbox [21]. Some audio samples are available

online at https://github.com/shelly-tang/CGGMM-IVA.

A. Separation Results in the Simulated Environment

Live-recorded speech segments from SiSEC2018 database

[22] have been used as sources, which are ten-second-long

and sampled at 16 kHz. All source signals are convoluted with

room impulse responses (RIRs) obtained by the image method

[23] and totally 100 mixed speech signals are simulated where

CL-AuxIVA AV-GMM-IVA SCGG-AuxIVA ILRMA

Speaker A Speaker B
-20

-10

0

10

20

30

40

SI
R

(d
B)

Speaker A Speaker C
-20

-10

0

10

20
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(d
B)

Speaker A Speaker B
-20

-10

0

10

20

30

40

SD
R

(d
B)

Speaker A Speaker C
-20

-10

0

10

20

30

40

SD
R

(d
B)

CGGMM-IVA

Fig. 3. Box-plots of SIR (top) and SDR (bottom) improvements for five IVA
models, with 100 sample data for each algorithm. The left column is for Exp.
1 while the right is for Exp. 2. The dot shows the mean.

the target sources have similar energy levels. Fig. 1 depicts the

experimental environment. Reverberation time is set to 130 ms

in a room of size 4.45×3.55×2.5 m. Two omnidirectional

microphones are configured with 10 cm spacing while the

distance between sources and microphones is 1 m. For the 2×2
case, the experiments are conducted using two different source

location settings. Exp. 1: The first simulation mixes speaker

A (from location ‘A’, 45◦) and speaker B (from location ‘B’,

135◦). Exp. 2: The second simulation mixes speaker A and

speaker C (from location ‘C’, 60◦).

As the shape parameter could affect the performance of

the proposed algorithm, we first test algorithm under various

values of γ. Fig. 2 shows the box-plots of SIR and SDR

improvements for different shape parameters in Exp. 1. γ1
and γ2 are the shape parameters of two mixture components

for each source, i.e. γ1
1 =γ2

1 =γ1, γ1
2 =γ2

2 =γ2. In the case of

γ1=γ2, the best separation performance is generally achieved

when γ1 = γ2 =2. It also can be observed that γ1 = γ2 =1.8
or 1.6 performs better than 2 in some trials. Additionally, we

evaluate the improvements when using different γ1 and γ2,

i.e., γ1 = 1.8 and γ2 = 2. It shows significant superiority

compared with the cases of γ1=γ2. These results reveal that

the PDF using different shape parameters for different mixture

components matches better with speech signals and γ=1.6∼2
would be a good choice.

Fig. 3 shows the comparison of separation performance

between the proposed algorithm (γ1=1.8,γ2=2) and the

other four algorithms. The improvements in Exp. 1 and Exp. 2

are presented in the left and right columns, respectively. It can

be found that CGGMM-IVA performs the best of all the men-

tioned algorithms. The performance of the AV-GMM-IVA and
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Fig. 4. Average SIR convergence over 30 trials in Exp. 1.

SCGG-AuxIVA is slightly inferior to that of CGGMM-IVA.

ILRMA shows the excellent performance in music signals

separation [19] but is relatively ineffective in separating some

speech mixtures in this research. As sources get closer, both

SIR and SDR metrics decrease for all algorithms mentioned,

but the proposed CGGMM-IVA still retain the competitive

speech separation performance.

Fig. 4 demonstrates the average SIR convergence over 30

trials mixing speaker A and speaker B. The proposed algorithm

requires approximately 50 iterations to convergence, more

than AV-GMM-IVA but distinctly fewer than CL-AuxIVA and

SCGG-AuxIVA whose iteration numbers are about 115 and

153 respectively. ILRMA has achieved convergence after 56

iterations but the SIR improvement exhibits fluctuations when

the algorithm iterates more than 100 times. Both CGGMM-

IVA and AV-GMM-IVA are more stable than other three

algorithms.

B. Separation Results in the Real Environment

The proposed CGGMM-IVA algorithm has shown com-

petitive speech separation performance in the simulated en-

vironments. In this section, we record speech utterances of

speakers in different directions separately by dual microphones

in a meeting room and then obtain the mixtures of 2 sources

by summing the recorded source signals. The experimental

conditions in the real environment are summarized in Table I.

The real recording of source is used as ground-truth signal.

Table II shows separation performances in averaged SIR

and SDR values over 24 trials (6 trials for each combination

of source direction). The proposed CGGMM-IVA algorithm

is first evaluated under different values of shape parameters

ranging from 1.6 to 2 and the best improvement for each

combination of source directions has been listed. Different

from the experiments in simulated environment where the

setting of γ1 = 1.8 and γ2 = 2 always attains the best

separation performance, it achieves better improvements to set

γ1=γ2=1.6 for the case of (45◦, 60◦) and γ1=γ2=2 for the

case of (45◦, 90◦) in this experiment. Overall, though similar

TABLE I
EXPERIMENTAL CONDITIONS IN THE REAL

ENVIRONMENT

Room size 10.78× 7.58× 3 m
Reverberation time 300 ms

Microphone spacing 10 cm
Source-microphone distance 1m

Direction of source 1 45◦
Direction of source 2 60◦, 90◦, 135◦

Signal length 65 s
Sampling frequency 16 kHz

Frame length 4096
Frame shift 2048

Window function Hanning
Iteration number 100 times

to AV-GMM-IVA, the proposed CGGMM-IVA shows the

superior separation performance compared with CL-AuxIVA,

SCGG-AuxIVA and ILRMA. Moreover, the SIR values of all

algorithms are relatively low in the case of (45◦, 60◦), and

even negative SDR values are observed. It is consistent with

the conclusion from simulated results in Fig. 3 that separation

performance could deteriorate when the positions of sources

are close.

Besides, the permutation problem common to IVA algo-

rithms has been observed in this experiment. Fig. 5 shows

the spectrograms of source signals and processed signals

of five IVA algorithms in one trial under the combination

of (45◦, 135◦). In this case, although frequency components

under around 2 kHz can be well separated by all IVA methods,

the obvious permutation problem in high frequency domain

still exists for CL-AuxIVA, AV-GMM-IVA, SCGG-AuxIVA

and ILRMA. In contrast, the permutation problem for the pro-

posed CGGMM-IVA is much alleviated when setting suitable

shape parameter (γ1 = 1.8 and γ2 = 2 in this case) to match

the source model.

V. CONCLUSIONS

This paper introduced a complex generalized Gaussian mix-

ture model with weighted variance as source priors for the IVA

method to increase flexibility in modelling various statistical

properties of non-stationary speech signals. The auxiliary

function approach based on the MM framework was effective

to realize optimization and did not require the data pre-

whitening. The experimental results in both simulated and real

environments revealed that the proposed algorithm attained

best performance when the shape parameter was within the

range of 1.6 and 2 and the flexibility in modelling various

statistical properties made the proposed algorithm outperform

conventional IVA ones by setting the suitable shape parameters

to match the source model.
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TABLE II
SEPARATION PERFORMANCES IN AVERAGED SIR AND SDR (DB)
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SCGG-AuxIVA 2.3769 12.5489 11.0812 -0.8535 6.2756 5.1401

ILRMA 1.8758 9.5692 11.4433 -2.9594 5.0017 5.7498

(x◦, y◦) The combination of source directions. Directions of source 1 and source 2 are x◦ and y◦, respectively.
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Fig. 5. Observed spectrograms of source signal and processed signals of five IVA algorithm in one trial mixing sources from 45◦ and 135◦. They are the
separated results for target source 2. Since both ‘target’ and ‘interference’ are real recordings of sources, the background noise caused by interior circuit is
unavoidable, which slightly pollutes spectrograms.

[3] N. Ono, “Stable and fast update rules for independent

vector analysis based on auxiliary function technique,”

in 2011 IEEE Workshop on Applications of Signal Pro-
cessing to Audio and Acoustics (WASPAA). IEEE, 2011,

pp. 189–192.

[4] Y. Liang, J. Harris, G. Chen, S. M. Naqvi, C. Jutten,

and J. Chambers, “Auxiliary function based iva using

a source prior exploiting fourth order relationships,” in

21st European Signal Processing Conference (EUSIPCO
2013). IEEE, 2013, pp. 1–5.

[5] T. Taniguchi, N. Ono, A. Kawamura, and S. Sagayama,

“An auxiliary-function approach to online independent

vector analysis for real-time blind source separation,” in

2014 4th Joint Workshop on Hands-free Speech Com-
munication and Microphone Arrays (HSCMA). IEEE,

2014, pp. 107–111.

[6] I. Lee, T. Kim, and T.-W. Lee, “Fast fixed-point inde-

pendent vector analysis algorithms for convolutive blind

source separation,” Signal Processing, vol. 87, no. 8, pp.

1859–1871, 2007.

[7] J. Hao, I. Lee, T.-W. Lee, and T. J. Sejnowski, “Indepen-

dent vector analysis for source separation using a mixture

of gaussians prior,” Neural computation, vol. 22, no. 6,

pp. 1646–1673, 2010.

[8] W. Rafique, J. Chambers, and A. I. Sunny, “An

expectation–maximization-based iva algorithm for

speech source separation using student’s t mixture

model based source priors,” in Acoustics, vol. 1, no. 1.

Multidisciplinary Digital Publishing Institute, 2019, pp.

117–136.

[9] Z. Gu, J. Lu, and K. Chen, “Speech separation using

independent vector analysis with an amplitude variable

gaussian mixture model,” Proc. Interspeech 2019, pp.

1358–1362, 2019.

[10] S. Gazor and W. Zhang, “Speech probability distribu-

tion,” IEEE Signal Processing Letters, vol. 10, no. 7, pp.

204–207, 2003.

[11] K. Sharifi and A. Leon-Garcia, “Estimation of shape pa-

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

725



rameter for generalized gaussian distributions in subband

decompositions of video,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 5, no. 1, pp. 52–

56, 1995.

[12] M. Novey, T. Adali, and A. Roy, “A complex generalized

gaussian distribution—characterization, generation, and

estimation,” IEEE Transactions on Signal Processing,

vol. 58, no. 3, pp. 1427–1433, 2009.

[13] N. Ono and S. Miyabe, “Auxiliary-function-based inde-

pendent component analysis for super-gaussian sources,”

in International Conference on Latent Variable Analysis
and Signal Separation. Springer, 2010, pp. 165–172.

[14] P. Smaragdis, “Blind separation of convolved mixtures

in the frequency domain,” Neurocomputing, vol. 22, no.

1-3, pp. 21–34, 1998.

[15] T. Kim, T. Eltoft, and T.-W. Lee, “Independent vector

analysis: An extension of ica to multivariate compo-

nents,” in International conference on independent com-
ponent analysis and signal separation. Springer, 2006,

pp. 165–172.

[16] D. R. Hunter and K. Lange, “A tutorial on mm algo-

rithms,” The American Statistician, vol. 58, no. 1, pp.

30–37, 2004.

[17] F. Dellaert, “The expectation maximization algorithm,”

Georgia Institute of Technology, Tech. Rep., 2002.

[18] N. Ono, “Auxiliary-function-based independent vector

analysis with power of vector-norm type weighting func-

tions,” in Proceedings of The 2012 Asia Pacific Signal
and Information Processing Association Annual Summit
and Conference. IEEE, 2012, pp. 1–4.

[19] D. Kitamura, N. Ono, H. Sawada, H. Kameoka, and

H. Saruwatari, “Determined blind source separation uni-

fying independent vector analysis and nonnegative ma-

trix factorization,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 24, no. 9, pp.

1626–1641, 2016.

[20] K. Matsuoka, “Minimal distortion principle for blind

source separation,” in Proceedings of the 41st SICE
Annual Conference. SICE 2002., vol. 4. IEEE, 2002,

pp. 2138–2143.

[21] E. Vincent, R. Gribonval, and C. Févotte, “Performance

measurement in blind audio source separation,” IEEE
transactions on audio, speech, and language processing,

vol. 14, no. 4, pp. 1462–1469, 2006.
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