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Abstract—In recent years, devices that can easily record
sounds, such as smartphones and tablets, have become
widespread. Also, speech enhancement and acoustic scene anal-
ysis have been researched using a distributed microphone array
consisting of these devices. The use of the spatial cepstrum has
been proposed as a method for acquiring spatial information
from a distributed microphone array. However, the behavior of
the spatial cepstrum has been shown in the minimal experiment
where the sound source is only white Gaussian noise, the
microphone position is not changed, and the experiment is
conducted under a specific reverberation condition. Therefore, we
experimentally investigate the robustness of the spatial cepstrum
under conditions closer to the real environment. The experi-
mental results show that changes in the experimental conditions
only affect the high-dimensional spatial cepstrum; thus, the low-
dimensional spatial cepstrum is a robust feature that is not easily
affected by disturbances.

I. INTRODUCTION

In recent years, devices that can easily record sounds, such
as smartphones and tablets, have become widespread. Also,
speech enhancement and acoustic scene analysis have been
researched using a distributed microphone array consisting of
these devices [1], [2], [3]. In distributed microphone arrays,
the microphone position and array geometry are unknown,
and the microphones are asynchronous. Some researchers are
working on solving these problems [4], [5], [6], [7], [8]. Other
researchers have tried to apply spatial information extracted
from the distributed microphone arrays for acoustic scene
analysis [9], [10], [11], [12], [13], [14].

In the research of acoustic scene analysis, the cepstrum
and mel-frequency cepstrum are generally used as features.
However, we cannot utilize the advantage of the microphone
array because these features do not include spatial information.
Moreover, when acquiring spatial information in a distributed
microphone array, there are problems such as mismatching of
sampling frequencies and/or loss of arrival time of the signal
awing to synchronization. It is known that such problems are
difficult to solve.

Imoto and Ono proposed a new feature called the spatial
cepstrum [15]. The spatial cepstrum has been proposed for
extracting spatial information using a distributed microphone
array that does not require the positions of microphones or

a precise time synchronization among microphones. The cep-
strum be obtained by performing the discrete Fourier transform
(DFT) on the spectrum. In contrast, we obtain the spatial
cepstrum by principal component analysis (PCA) instead of
DFT. Imoto and Ono argue that the spatial cepstrum is robust
against changes in recording conditions. However, the behavior
of the spatial cepstrum has been shown in the minimal exper-
iment where the sound source is only white Gaussian noise,
the microphone position is not changed, and the experiment
is conducted under a specific reverberation condition. In this
study, we conduct the following three experiments to confirm
the behavior of the spatial cepsturm in detail: (i) simulation
with sound sources close to real-environment sound sources,
(ii) simulation with the various positions of some microphones
in a distributed microphone array, and (iii) the experiment in a
real environment with various positions of some microphones
in a distributed microphone array experiment. The experimen-
tal results show that changes in the experimental condition
only affect the high-dimensional spatial cepstrum; thus, the
low-dimensional spatial cepstrum is a robust feature that is
not easily affected by disturbances.

II. CEPSTRUM AND SPATIAL CEPSTRUM

A. Cepstrum

We denote N as the number of microphones and sω,τ,n

as the short-time Fourier transform (STFT) representations of
the n-th channel observation with ω, τ , and n representing the
frequency bin, time frame, and channel indices, respectively.
Additionally, we define aω,τ,n as the amplitude of sω,τ,n,
indicated by aω,τ,n = |sω,τ,n|. To extract spectral information,
we consider the frequency-based log-amplitude vector

pτ = (p1,τ , p2,τ , · · · , pΩ,τ )
T, (1)

pω,τ = log

√
1

N

∑
n

a2ω,τ,n, (2)

where Ω is the number of frequency bins and T is the transpose
of the vector and matrix. We can obtain a cepstrum as

cτ = ZΩpτ , (3)
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where ZΩ is the Ω×Ω DFT matrix. In the case of a cepstrum,
spatial information is lost because it is the average among
channels in (1).

B. Spatial Cepsrum

In analogy with the definition of the cepstrum, we consider
the channel-based log-amplitude vector

qτ = (qτ,1, qτ,2, · · · , qτ,N )T, (4)

qτ,n = log

√
1

Ω

∑
ω

a2ω,τ,n. (5)

We consider the orthogonal transformation of qτ in the same
way as in the case of the cepstrum. DFT, one of the orthogonal
transforms, requires that the subbands are uniformly spaced
on the linear axis. DFT can be applied as in (3) because
the frequency-based log-amplitude vector pτ is uniformly
spaced on the linear frequency axis. By contrast, we need
to place the microphones uniformly to apply DFT to qτ

because the channel-based log-amplitude vector qτ,n is placed
on the channel axis. However, we cannot apply DFT to qτ

because the microphones in the distributed microphone array
most likely be nonuniformly placed. Therefore, we perform
orthogonal transform by PCA instead of DFT. We consider
the covariance matrix Rq of qτ to perform PCA:

Rq =
1

M

∑
τ

qτq
T
τ , (6)

where M is the number of time frame. We obtain the transfor-
mation matrix by performing the eigendecomposition on the
obtained Rq as follows:

Rq = EDET, (7)

where E is the eigenvector matrix and D is the diagonal
matrix in which the diagonal elements are eigenvalues in
descending order. E becomes the DFT matrix ZΩ when the
covariance matrix Rq is a circular matrix. We can perform
orthogonal transformation on qτ in the same way as in the
case of the cepstrum by using E. The spatial cepstrum is
defined using E as

dτ = ETqτ . (8)

Imoto et al. assert that relative spatial information can be
obtained by using the spatial cepstrum [15].

III. EXPERIMENTS

In previous studies, it was not tested in detail whether the
spatial cepstrum is robust to changing conditions. Therefore,
we perform two simulations with the conventional experimen-
tal conditions changes as shown in Table I and Fig. 1. We
use the audio signal processing software Pyroomacoustics for
the simulation [16]. Additionally, experiment (iii) is similar
to experiment (ii) but the move of microphones in the real
environment. Throughout the three experiments, the window
function is a Hamming window, the window length and frame
length are both 512, the amount of frameshift is 128, and

TABLE I
EXPERIMENTAL CONDITIONS IN CONVENTIONAL STUDY.

Arrangement Fig. 1
Sound source White Gaussian noise

Overlap –
Playback order S1 to S6 in Fig. 1
Reverberation –

M1 M2 M3

M4

M5

M6 M7

M8

S1
S2

S3

S4

S5

S6

Fig. 1. Arrangement of microphones and speakers in simulation experiment.

the sampling frequency is 16000 Hz. In the experiment, to
confirm the behavior of the spatial cepstrum, we compare
the components of the spatial cepstrum for each microphone
and the dimensions of the spatial cepstrum. dτ does not have
the components of the spatial cepstrum for each microphone.
Therefore, we define a vector dk that sums the components
of the spatial cepstrum of each microphone on the k order, as

dk =
1

M

∑
τ

eTk ◦ qτ (9)

where eTk is the k-th row vector of ET and ◦ is the Hadamard
product. Imoto et al. assert that d1 indicates the average sound
level of the whole space [15]. Therefore, d1 is not consider
in this study.

A. Robustness of Spatial Cepstrum against Sound Source
Changes

In experiment (i), we use white noise and other sound
sources. We confirm the robustness of the spatial cepstrum
to changing sound sources on the basis of the correlation
coefficient between dk obtained using white noise and that
obtained using other sound sources.We add two types of
wood hitting sound like impulsive sounds and two types of
human voice like wave-like sounds, which have not been
investigated in [15]. The other experimental conditions are
the same as in Table I. We use wood hitting sounds in the
Real World Computing Partnership (RWCP) [17] and human
voices in the Japanese Newspaper Article Sentences Read
Speech Corpus (JNAS) [18]. Table II shows the absolute
value of the correlation coefficient between dk obtained using
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TABLE II
ABSOLUTE VALUE OF THE CORRELATION COEFFICIENT BETWEEN dk

OBTAINED USING WHITE NOISE AND THAT OBTAINED USING OTHER
SOUND SOURCES.

Dimensions 2 3 4 5 6 7 8
wood hitting1 0.99 0.88 0.86 0.69 0.44 0.20 0.34
wood hitting2 0.99 0.81 0.76 0.36 0.96 0.42 0.32
human voice1 0.98 0.97 0.90 0.05 0.16 0.46 0.18
human voice2 0.99 0.87 0.83 0.83 0.82 0.62 0.63

white noise and that obtained using other sound sources. The
horizontal axis is the number of dimensions used to calculate
the correlation. From Table II, we can see that we have a high
correlation of 0.7 or more in 2 to 4 dimensions. On the other
hand, correlations are lower in 5 to 8 dimensions than in lower
dimensions. Therefore, we find that there is little difference
in the behavior of the low-dimensional dk and that the low-
dimensional spatial cepstrum is robust against sound source
changes. The high-dimensional spatial cepstrum is less robust
against sound source changes.

B. Robustness of Spatial Cepstrum against Movement of Mi-
crophones

In experiment (ii), we move two microphones, the non-
isolated microphone M1 and the isolated microphone M8. The
non-isolated microphone M1 is close to other microphones,
while the isolated microphone M8 is far from other micro-
phones in Fig. 1. We confirm the robustness of the spatial
cepstrum to the movement of a microphone on the basis of
the correlation coefficient between dk before and after moving
the microphones. We move the two microphones as shown
by the arrows in Fig. 1. Other experimental conditions are
the same as those in Table I. First, we move the non-isolated
microphone M1 upwards in increments of 10 mm to a total of
950 mm. Figure 2 shows the absolute value of the correlation
coefficient between dk obtained at the initial position and that
at the moved position of microphone M1. The horizontal axis
is the displacement from the initial position of microphone
M1, and the vertical axis is the absolute value of the correlation
coefficient. From Fig. 2, we can see that the correlation
decreases with increasing displacement of microphone M1
from the initial position. However, the correlation is low when
the distance from the initial position of microphone M1 is
between 20 cm and 50 cm. We speculate that the cause is
microphone M1 being close to sound source S3.

Next, we change the position of isolated microphone M8
downwards in increments of 1 cm to a total of 95 cm. Figure 3
shows the absolute value of the correlation coefficient between
dk obtained at the initial position and at the moved position
of microphone M8. From Fig. 3, we can see that there is
little difference in the spatial cepstrum behavior in lower
dimensions. Also, we can see that the correlation is low at
around the distance of 80 cm where microphone M8 is close
to sound source S1. In both case, if the displacement is about
20 cm or less, there is almost no effect on the low-dimensional
spatial cepstrum. Therefore, do not have to meet the restriction
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Fig. 2. Absolute value of the correlation coefficient between dk obtained at
initial position and that at moved position of microphone M1.
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Fig. 3. Absolute value of the correlation coefficient between dk obtained at
initial position and that at moved position of microphone M8.

of strict placement of the microphone when actually recording.
From these results, we find that the low-dimensional spatial
cepstrum is robust against the movement of a microphone.

C. Evaluation of Robustness of Spatial Cepstrum in Real
Environment

In experiment (iii), we carry out the experiment similarly
to experiment (ii) but the move the of microphones in the
real environment. We use part of the SINS database, which
is a continuous recording of one person living in a vacation
home over a period of one week, as real-environment sound
sources [19]. The layout is shown in Fig. 4. Each node in
Fig. 4 is a four-channel linear microphone array, and the
distance between microphones is 5 cm. We cannot use Node 5
because the node is problematic and has not been published.
We change the microphone positions in only the remaining
nodes. We obtain recordings in one channel of Node 8 (double
circle in Fig. 4) and three channels of each of the other nodes
(black circles in Fig. 4) for a total of nineteen channels. We
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Fig. 4. Arrangement of microphones in real environment.

TABLE III
ABSOLUTE VALUE OF THE CORRELATION COEFFICIENT BETWEEN dk

OBTAINED BY TRUE MICROPHONE AND THAT OBTAINED BY MISTAKEN
MICROPHONES.

Dimensions 2 3 4 5 6 7 8
Node 1 1.00 1.00 1.00 0.99 0.84 0.81 0.22
Node 2 1.00 1.00 1.00 1.00 0.99 0.68 0.65
Node 3 0.90 0.87 0.84 0.97 0.97 0.66 0.64
Node 4 1.00 1.00 0.98 0.99 0.68 0.59 0.67
Node 6 1.00 0.95 0.89 1.00 0.98 0.63 0.69
Node 7 1.00 0.98 0.95 0.89 0.95 0.74 0.70

place the channel of Node 8 incorrectly in the position of
the fourth channel of another node (white circle in Fig. 4)
and check whether the spatial cepstrum is robust against this
misplacement. Similarly to previous experiments, we evaluate
robustness on the basis of the correlation coefficient of dk

obtained for true and mistaken microphones. Table III shows
the experimental results. The horizontal axis is the number of
dimensions used to calculate the correlation and the vertical
axis is the misplaced node. As a result, we found a high
correlation in low dimensions and a low correlation in high
dimensions. These results are similar to those in section III-B,
and we conclude that the low-dimensional spatial cepstrum is
robust even in a real environment.

IV. CONCLUSION

In this study, we confirmed the robustness of the spatial
cepstrum. We predicted that the spatial cepstrum is robust
against changes in sound sources and the movement of a mi-
crophone because it is a feature of amplitude. We changed the
sound source and moved the microphone by simulation. From
these simulations, we confirmed that spatial information can
be robustly acquired using only low dimensions of the spatial
cepstrum because elements related to changes in conditions,
such as changes in sound source and microphone positions,
are concentrated in high dimensions. We found that even for
real-environment sound sources, spatial information could be
robustly acquired. In the conventional method, the placement
of microphones was strict, but this is not the case when using
spatial cepstrum, which is a great practical advantage.

V. ACKNOWLEDGMENT

This work was supported by a Grant-in-Aid for Scientific
Research (A) (Japan Society for the Promotion of Science
(JSPS) KAKENHI Grant Number 20H00613).

REFERENCES

[1] A. Bertrand, “Applications and Trends in Wireless Acoustic Sensor
Networks: A Signal Processing Perspective,” Proc. IEEE Symposium
on Communications and Vehicular Technology in the Benelux, pp. 1–6,
2011.

[2] S. Araki et al., “Meeting Recognition with Asynchronous Distributed
Microphone Array,” Proc. Automatic Speech Recognition and Under-
standing Workshop, pp. 32–39, 2017.

[3] M. Souden et al., “An Integration of Source Location Cues for Speech
Clustering in Distributed Microphone Arrays,” Proc. IEEE International
Conference on Acoustics, Speech and Signal Processing, pp. 111–115,
2013.

[4] N.Ono et al., “Blind Alignment of Asynchronously Recorded Signals for
Distributed Microphone Array,” Proc. IEEE Workshop on Applications
of Signal Processing to Audio and Acoustics, pp. 161–164, 2009.

[5] E. R. Arnuncio et al., “On Dealing with Aampling Rate Mismatches in
Blind Source Separation and Acoustic Echo Cancellation,” Proc. IEEE
Workshop on Applications of Signal Processing to Audio and Acoustics,
pp. 34–37, 2007.

[6] Z. Liu, “Sound Source Separation with Distributed Microphone Arrays
in the Presence of Clock Synchronization Errors,” Proc. International
Workshop for Acoustic Echo and Noise Control, 2008.

[7] R.Sakanashi et al., “Speech Enhancement with Ad-hoc Microphone
Array Using Single Source Activity,” Proc. Asia-Pacific Signal and
Information Processing Association Annual Summit and Conference, pp.
1–6, 2013.

[8] S. Markovich-Golan et al., “Blind Sampling Rate Offset Estimation and
Compensation in Wireless Acoustic Sensor Networks with Application
to Beamforming,” Proc. International Workshop for Acoustic Echo and
Noise Control, pp. 1–4, 2012.

[9] J. P. Bello et al., “Sound Analysis in Smart Cities,” Computational
Analysis of Sound Scenes and Events, pp. 373–397, 2018.

[10] R. Radhakrishnan et al., “Audio Analysis for Surveillance Applications,”
Proc. IEEE Workshop on Applications of Signal Processing to Audio and
Acoustics, pp. 158–161, 2005.

[11] E. Wold et al., “Content-based Classification, Search, and Retrieval of
Audio,” IEEE Multimedia, vol. 3, no. 3, pp. 27–36, 1996.

[12] Q. Jin et al., “Event-based Video Retrieval Using Audio,” Proc. Inter-
speech, 2012.

[13] L. Lin et al., “Guided Learning Convolution System for DCASE 2019
TASK 4,” Tech. Rep. DCASE 2019 Challenge Task4, 2019.

[14] L. D. Poulat, and C. Plapous, “Mean Teacher with Data Augmentation
for DCASE 2019 TASK 4,” Tech. Rep. DCASE 2019 Challenge Task4,
2019.

[15] K. Imoto, and N. Ono, “Spatial Cepstrum as a Spatial Feature Using a
Distributed Microphone Array for Acoustic Scene Analysis,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 25, no.
6, pp. 1335–1343, 2017.

[16] R. Scheibler et al., “Pyroomacoustics: A Python Package for Audio
Room Simulations and Array Processing Algorithms,” Proc. IEEE
International Conference on Acoustics, Speech and Signal Processing,
pp. 351–355, 2018.

[17] S. Nakamura et al., “Sound Scene Data Collection in Real Acoustical
Environments,” Journal of the Acoustical Society of Japan, vol. 20, pp.
225–231, 1999.

[18] K. Ito et al., “JNAS: Japanese Speech Corpus for Large Vocabulary
Continuous Speech Recognition Research,” The Journal of Acoustical
Society of Japan, vol. 20, pp. 196–206, 1999.

[19] G. Dekkers et al., “The SINS Database for Detection of Daily Activities
in a Home Environment Using an Acoustic Sensor Network,” Proc.
Detection and Classification of Acoustic Scenes and Events, pp. 32–36,
2017.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

704


