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Abstract—In this paper, we propose a novel approach to room
reverberation analysis based on the angular power distribution
model of the reverberant field developed using a von Mises-Fisher
(vMF) mixture function. The statistical features of the complex
reverberant power distribution convey the directional strength of
inhomogeneous room reflections. The model is primarily designed
for directivity study and also helps in encapsulating the extensive
raw data into a convenient set of parameters of the density
function. Initially, we conducted impulse response measurements
of the test room and determined the reverberant field power
values using the spatial correlation model in the spherical
harmonics domain. The proposed technique transforms this data
into directional power vectors to estimate the parameters of a
convex vMF mixture function. A power distribution model is
generated from these parameters to represent the directional
characteristics of room reverberation. The paper evaluates the
performance of the model for a test room, and the results conform
to the real room environment. The directivity model identifies
directions of distinct reflections and exhibits the potential for
further functional enhancements to evolve as a reliable statistical
room acoustic model.

Index Terms—Reverberation directivity, room acoustic mod-
elling, vMF mixture distribution, spatial correlation

I. INTRODUCTION

Room acoustic modelling and reverberation analysis play
significant roles in the development of virtual reality environ-
ments and immersive audio technologies. The classical room
acoustic models consider a reverberant room as a linear time-
invariant (LTI) acoustical transmission system. The collection
of Room Impulse Responses (RIR) or Room Transfer Func-
tions (RTF) measured for different source-receiver positions
across the room represent the dynamic behavior of the rever-
berant field and acts as its acoustic fingerprint [1].

The primitive reverberation analysis methods used the
RIR/RTF directly to compute many objective parameters and
performance measures [2]–[4]. A more intricate examination
of spatial sound field features was enabled by later studies
using methods like sound intensity mapping [5], 3D analysis
using higher-order spherical harmonics [6]–[9], and plane-
wave decomposition [10], [11]. In [12], Hioka et al. proposed
a technique to directly process the microphone measure-
ments using a spatial correlation matrix model. However,
such models required a higher number of microphones and
suffered spatial aliasing errors at higher frequencies. In [13],
Samarasinghe et al. refined the spatial-correlation model and
overcame the above drawbacks by incorporating wave-based

spherical harmonic modelling with higher modal analysis of
Eigenbeams. This model was robust to surrounding noises and
clearly identified the dominant reflections, but it exhibited a
few negative power values in the reflection power profile.

The latest room acoustic models [14], [15] have tended
to rely on synthetic RIRs generated from reconstructed 3D
room geometry due to the practical limitations in performing
large-scale acoustic measurements for various source-receiver
positions across the 3D room space. However, the substantial
use of image processing and deep learning algorithms in these
models make them numerically complex and computationally
very demanding. Hence, the current scenario puts forth the re-
quirement for a computationally modest and pragmatic model
based on sound field measurements without compromising
data authenticity.

In this paper, we propose a novel approach to reverberation
analysis by representing the reflected field directivity as an
angular power distribution based on von Mises-Fisher (vMF)
mixture model. Over the last two decades, researchers have
established the competence of vMF mixture models to process
directional data in the fields of biomedical imaging [16]–[18],
renewable energy [19], computer vision [20], [21], speaker
identification [22], and speech modelling [23]. Through this
paper, we are introducing vMF mixture modelling in the
field of room acoustics for higher-dimensional analysis of
directional data by exploiting its multivariate density function.

The proposed method converts the reverberant field powers
corresponding to different reflection directions into directional
power vectors for fitting a vMF mixture model. We de-
termine the field powers beforehand using the state-of-the-
art estimation algorithm proposed in [13] on the grounds
of its aforementioned advantages. The vMF mixture density
function produces a non-negative reflection power profile,
thereby overcoming the shortcoming of [13] and encapsulates
the extensive sound field information into suitable statistical
parameters. The transformation of standard RIRs into a power
distribution function reduces the redundancy of the raw data.
Consequently, it scales down the measurement effort since
the RIRs between sufficiently sampled points across the room
space are adequate for faithful reproduction of the angular
power distribution model.

The remainder of this paper is organized as follows: Section
II presents the system model and background framework, fol-
lowed by the problem definition and objectives of this research
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Fig. 1: Geometrical illustration of the source-receiver system

work. In Section III, we describe the procedure for estimating
the reverberant field power using the spatial correlation model
in the spherical harmonics domain. Section IV explains the
new directivity model and highlights the transformation of
reverberant field power data into directional power vectors.
Section V outlines the experimental setup and evaluates the
preliminary results of the proposed model. Finally, in Section
VI, we conclude the paper and present future research plans.

II. SYSTEM MODEL

Consider the source-receiver arrangement illustrated in Fig.1
with a spherical microphone array of radius r consisting of
Q omnidirectional microphones located at the origin O. Let
H(xq,yo, k) be the RTF between the source located at yo =
(ro, θo, φo) and the qth microphone element located at xq =
(r, θq, φq), where q = 1, 2, ..., Q. Assuming the room as an
LTI system, the sound field received by the qth microphone
can be expressed in the frequency-domain as

Ψ(xq, k) = S(k)H(xq,yo, k) (1)

where S(k) is the Short-time Fourier transform (STFT) of the
source signal, and k is the wavenumber. Since the incident
sound field Ψ(xq, k) contains the dominant direct path along
with the early reflections and the reverberant field, we decom-
pose the RTF H(xq,yo, k) into the direct Hdir(xq,yo, k) and
reflected Hrvb(xq,yo, k) components as

H(xq,yo, k) = Hdir(xq,yo, k) +Hrvb(xq,yo, k). (2)

Assuming that the distance between the source and micro-
phone array is significantly larger than 2L2/λ, where L is the
aperture size of the microphone array and λ is the wavelength,
we can consider the sound field as a composition of plane
waves [13]. Let the gain of the direct path incoming from
direction ŷo be GD(k), then the direct component of RTF is
a plane wave of the form

Hdir(xq,yo, k) = GD(k)e
ikŷo.xq . (3)

Similarly, let GR(k, ŷ) be the gain of the reflected plane
wave arriving from direction ŷ = (1, θ, φ) for θ ∈ [0, π] and

φ ∈ [0, 2π), then the reflection component of RTF from all
directions is

Hrvb(xq,yo, k) =

∫ 2π

0

∫ π

0

GR(k, ŷ)e
ikŷ.xq sin θdθdφ. (4)

Substituting (2), (3) and (4) in (1), we expand Ψ(xq, k) as

Ψ(xq, k) = S(k)GD(k)e
ikŷo.xq

+ S(k)

∫ 2π

0

∫ π

0

GR(k, ŷ)e
ikŷ.xq sin θdθdφ. (5)

By inspecting the above representation, the total power con-
tributed by the reflected components is:

PR = E{|S(k)|2}
∫ 2π

0

∫ π

0

E{|GR(k, ŷ)|2} sin θdθdφ (6)

where E{·} is the expectation operator.

A. Harmonic Expansion of Angular Power Distribution
The function E{|GR(k, ŷ)|2} across different ŷ gives the

directional distribution of PR. For computational convenience
and efficient estimation using limited coefficients, we decom-
pose E{|GR(k, ŷ)|2} using spherical harmonics as

E{|GR(k, ŷ)|2} =
∞∑
v=0

v∑
u=−v

γvu(k)Yvu(ŷ) (7)

where Yvu(·) is called the spherical harmonic function of vth

order and uth mode, and γvu are the corresponding reflection
gain coefficients. In order to model the 3D reflected field
power distribution, we write the power of reflected component
from look direction ŷ as

PR(k, ŷ) =

∞∑
v=0

v∑
u=−v

Γvu(k)Yvu(ŷ) (8)

where Γvu(k) = E{|S(k)|2}γvu(k) are the reflection power
coefficients. Thus, the reflected power from any direction can
be determined once we estimate the Γvu(k) coefficients.

B. Problem Formulation
The magnitude of the reflected power PR(k, ŷ) conveys the

strength of effective reflectance from all surface points located
along the ŷ direction. Therefore, the PR(k, ŷ) values sampled
over a set of arbitrary directions ŷ can provide the relative
strength of reflectance across the room boundary, and its
diverse combination from several RIRs can serve as directional
data. Our objective is to deduce the reflection gain directivity
statistically from this set of PR(k, ŷ) values by fitting a prob-
ability distribution model capable of characterizing directional
data.

The reflections from the inhomogeneous room surfaces
contribute to distinct statistical features in the reverberant
field power distribution. Also, this distribution should be a
multimodal function with multiple peaks corresponding to the
highly reflecting surfaces. Hence, a convex mixture model is
required to represent the angular power distribution as follows:

PR(k, ŷ) ≡ F(k, ŷ;∆) ≡
∑
ι

σιf(k, ŷ; δι) (9)
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where σι are the mixing coefficients, f(·) is the probability
density function modelling directional data, and δι are the
function parameters of the mixture components. In this paper,
we have chosen the vMF density function as f(·) since it is
the optimal choice for characterizing multi-dimensional direc-
tional data [24]. The function F(·) represents the compound
model and ∆ is its parameter comprising of all σι and δι.

The main task in modelling the room reverberation directiv-
ity is the estimation of ∆ by fitting the compound model F(·)
on directional power vectors derived from the PR(k, ŷ) data.
Before that, we determine the PR(k, ŷ) values by processing
the incident sound field over the spherical microphone array
using RIR measurements for different source positions inside
the room of interest.

III. ESTIMATION OF REVERBERANT FIELD POWER

In this section, we estimate the Γvu(k) coefficients and
subsequently calculate the reflected field powers PR(k, ŷ) for
any arbitrary direction in the room using the spatial correlation
method in the spherical harmonics domain [13] according to
the following steps:

Step 1: Estimating spherical harmonic coefficients of the
incident sound field

We obtain the incident sound field ψ(xq, t), where t is the
time-dependency, by convolving the RIR h(xq,yo, t) captured
by the spherical microphone element xq with any clean
signal from the source at yo. We can express the sound
field transform function Ψ(xq, k) as the Helmholtz wave
equation solution to the interior sound field problem in the
spherical harmonics domain [25]. Since this work uses a rigid
microphone array, the radial solution coefficient jn(kr) is
adjusted to obtain the modified expression of Ψ(xq, k) as

Ψ(xq, k) =

∞∑
n=0

n∑
m=−n

αnm(k)bn(kr)Ynm(θq, φq) (10)

where αnm are the corresponding spherical harmonic co-

efficients. The function bn(kr) = jn(kr) − j
′
n(kr)

h′
n(kr)

hn(kr)

where jn(·) and hn(·) denote the spherical Bessel and Hankel
functions of order n, respectively, and j

′

n(·) and h
′

n(·) are their
corresponding first derivatives.

Using the orthogonal property of spherical harmonics [26],
we can derive the incident sound field coefficients αnm(k) as

αnm(k) =

∑Q
q=1 Ψ(xq, k)Y

∗
nm(θq, φq)

bn(kr)
. (11)

For practical implementation, we truncate (10) to an order N
such that N = dkre and Q ≥ (N +1)2 to avoid the high-pass
nature of higher-order Bessel functions and spatial aliasing
problems [27].

Step 2: Estimating reflection power coefficients Γvu(k) and
power of reflected components PR(k, ŷ)

From the αnm(k) coefficients obtained using (11), we define
a spatial cross-correlation matrix in the modal domain as

R(k) , E{α(k)αH(k)} (12)

where α(k) = [α00(k) α1−1(k) · · · αNN (k)]
T
1×(N+1)2 and

αH(k) is the Hermitian transpose of α(k).
According to the spatial correlation model proposed in [13],

the estimation problem of reflection power coefficients Γvu(k)
can be formulated as a matrix equation [28]

r̃(k) = B(k)p(k) (13)

where

r̃(k) =



R0000

R001−1
...

R00NN

R1−100
...

RNNNN


, (14)

B(k) =



b0000 d000000 · · · d0000V V
b001−1 d001−100 · · · d001−1V V

...
...

...
...

b00NN d00NN00 · · · d00NNV V
b1−100 d1−10000 · · · d1−100V V

...
...

...
...

bNNNN dNNNN00 · · · dNNNNV V


, (15)

p(k) =



PD
Γ00

Γ1−1
...

ΓV−V
...

ΓV V


, (16)

Rnmn′m′ is the (n2+n+m+1)th row and (n′2+n′+m′+1)th

column component of R(k),

bnmn′m′ = (i)n−n
′
Y ∗nm(θo, φo)Yn′m′(θo, φo) can be calcu-

lated based on source location,

dnmn′m′vu = (i)n−n
′
(−1)−m

√
(2v+1)(2n+1)(2n′+1)

4π W1W2,
where W1 and W2 are Wigner 3j symbols [29] given by

W1 =

(
v n n′

0 0 0

)
and W2 =

(
v n n′

u −m m′

)
, and

PD = E{|S(k)|2|GD(k, ŷ)|2} is the direct path power.

Since B(k) and r̃(k) have known elements, we can estimate
p(k) which contains the desired reflection power coefficients
Γvu by solving (13) using the least-squares method given by

p̂(k) = B†(k)r̃(k) (17)

where [·]† and [̂·] represent pseudo-inverse and estimated
values, respectively.

From the estimated p̂(k) array, we filter the Γvu elements
and substitute in (8) to find the reflected powers PR(k, ŷ) for
different incoming ŷ directions across the 3D room space. To
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avoid an undetermined system while solving (17), we truncate
(8) to an order V such that V =

⌊√
(N + 1)4 − 1

⌋
[13].

IV. MODELLING OF REVERBERANT FIELD DIRECTIVITY
USING VMF MIXTURE DISTRIBUTION

The PR(k, ŷ) values for different ŷ sampled across the
room define the directional characteristics of the room rever-
berant field. The proposed method uses the multivariate vMF
mixture distribution to extract this information for a faithful
representation of the field directivity.

A. Multivariate vMF Mixture Distribution

The vMF distribution is the most straightforward parametric
distribution for modelling multi-dimensional directional data
distributed over a unit hypersphere [24]. The probability
density function of a D-variate vMF distribution is given by

fvMF(z;µ, κ) =
κ(

D
2 −1)

(2π)
D
2 I(D

2 −1)
(κ)

exp(κµT z) (18)

where z is a D-dimensional random unit vector, µ is the mean
direction vector, κ is the concentration parameter, and In(·)
is the modified Bessel function of the first kind at order n.
The function should also satisfy the constraints: ||µ|| = 1,
κ ≥ 0 and D ≥ 2. It has minimal parameters compared to
other directional models and can be used to design closed-
form expressions [16]. Also, the vMF distribution allows
decomposition of any function defined on a hypersphere using
the property that the product of two vMF distributions is
another unnormalized vMF [16], [24].

In accordance with (9), we require a convex mixture of
unimodal vMFs to model the angular power distribution of
the room reverberant field. Therefore, PR(k, ŷ) follows a vMF
mixture distribution given by

f(z;M ,κ,w) =

A∑
a=1

wafvMF(z;µa, κa) (19)

where A is the total number of components in the mixture
model f(·), M = {µa}Aa=1 are the mean vectors of f(·), κ =
{κa}Aa=1 are the concentration parameters of f(·), and w =
{wa}Aa=1 are the weighting factors that satisfy the constraints
wa ≥ 0 and

∑A
a=1 wa = 1.

The function f(z;M ,κ,w) forms the compound model
F(k, ŷ;∆). Consequently, the main task of estimating ∆
involves the fitting of f(·) on PR(k, ŷ) data to find the
parameters M , κ and w.

B. Fitting the vMF Mixture Model

Initially, we follow the method described in Section III to
form a comprehensive training data set {PR(k, ŷ)(j)}Jj=1 from
PR(k, ŷ) values corresponding to different ŷ directions and
source positions. Before using this data set to train the vMF
mixture model f(·), we have to convert each PR(k, ŷ)(j) into
a unit vector conveying directional reflection power magnitude
using the rules of coordinate geometry.

The first step in this data transformation is the normalization
of {PR(k, ŷ)(j)}Jj=1 to a range of [0, 1]. If the elevation
and azimuth angles of the look direction ŷ are θ and φ,
respectively, then the unit-vector components of PR(k, ŷ)(j)

are defined as:

z
(j)
1 = |PR(k, ŷ)(j)| sin θ cosφ, (20a)

z
(j)
2 = |PR(k, ŷ)(j)| sin θ sinφ, (20b)

z
(j)
3 = |PR(k, ŷ)(j)| cos θ, (20c)

z
(j)
4 =

√
1−

[(
z
(j)
1

)2
+
(
z
(j)
2

)2
+
(
z
(j)
3

)2]
. (20d)

Thus the reverberant field power PR(k, ŷ)
(j) is converted

into a 4D unit vector z(j) =
[
z
(j)
1 , z

(j)
2 , z

(j)
3 , z

(j)
4

]T
and

{PR(k, ŷ)(j)}Jj=1 is transformed to a set of independent and
identically distributed vectors, denoted by Z = {z(j)}Jj=1.

We use Z as the training data to estimate the parameters
of a 4-variate vMF mixture model using the Expectation-
Maximization (EM) algorithm given in [30]. It is also inte-
grated with the clustering algorithm based on the Bayesian
Minimum Message Length (MML) criterion proposed in [31]
to decide the number of mixture components that best fit
Z. Once the parameters are estimated, we use the vMF
mixture model f(z;M ,κ,w) to visualize the angular power
distribution of the room reverberant field.

V. EXPERIMENTAL RESULTS

This section presents the experimental setup to acquire the
RIRs and evaluates the performance of the proposed directivity
model for a rectangular test room of size 3.7 × 4.2 × 2.7
m. The upper-half portions of the right and front walls of
this room had glass surfaces. We expect the angular power
distribution model to identify the reflection variations from
various objects across the room boundary, particularly the
significant reflections from the glass surfaces.

The experiment used an em32 Eigenmike [32], the 32-
element rigid spherical microphone array with radius r =
0.042 m, to measure the RIRs. We placed the Eigenmike at the
geometric center of the room and considered the center of the
receiver array as the origin O of the coordinate system adopted
for our model shown in Fig. 1. The RIRs were measured with
three repeats of a 2-second linear sweep signal emitted from
a source placed at a distance ro = 1 m from O and the same
elevation as the Eigenmike, i.e., in the XY plane with θo = π

2 .
We repeated the measurements for different source azimuth
positions φo ∈ [0, 2π) with 20o increments to obtain a range
of RIRs.

In the next stage of the experiment, we convoluted a
3-second clean speech signal sampled at 48 kHz with a
32-channel 19200-tap RIR sequence to obtain the incident
sound field ψ(·, t). We transformed it into the frequency-
domain sound field Ψ(·, k) through STFT to find the αnm(k)
coefficients using (11). The frequency components ranging
from 2000 Hz to 5000 Hz were selected for the subsequent
processing according to Section III to deduce PR(k, ŷ) values
for φ ∈ [0, 2π) with 2o increments and θ = π

2 .
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Fig. 2: Reverberant field power in the XY plane for different
source positions

For the elementary analysis presented in this paper, we
have averaged the reflected power values PR(k, ŷ) across the
frequencies for each ŷ direction in the XY plane. Henceforth,
the frequency dependency (k) is omitted, and we treat the
reverberant field power PR(ŷ) as a function of direction. We
repeated this process for all the measured RIRs to create a
comprehensive training data set {PR(ŷ)(j)}Jj=1.

A. Training Data

The simulation results in Fig. 2 show the PR(ŷ) plots
across the XY plane of the room for a few different source
positions. The magnitude variations in the reflection power
profile convey the difference in reflective properties across the
walls, and its distinct peaks indicate the relative positions of
highly-reflecting surfaces inside the room with respect to the
source location. If we compare the results of different source
locations, the profiles exhibit similar shape but with relative
shifts and different peak magnitudes due to the change in
displacements between the source and reflecting surfaces. This
behavior suggests a fixed reference position of the reflecting
surfaces but random reflection paths. This randomness is
exploited by the vMF model to extract the directivity pattern of
the room reverberant field. The similarity in reflection profiles
also reveals the redundancy in the RIR measurements. Hence
a proper subset of the RIRs can still produce the same angular
power distribution.

The PR(k, ŷ) values estimated based on the method given
in [13] is only a fraction of the actual reflected power. It shows
a few negative values, as visible in Fig. 2, due to the truncation
of the infinite summation in (8). However, the truncation error
is minimum at high values of V , and since we are interested
only in the relative power distribution across the room, this
problem is solved by the data transformation mentioned in
Section IV. Thus, in the penultimate step of the experiment, we
converted {PR(ŷ)(j)}Jj=1 into the directional power vectors
{z(j)}Jj=1 before introducing to the vMF-mixture parameter
estimation algorithm. The training vectors are visualized as
spherical data in Fig. 3. The position of each data point
corresponds to the direction ŷ and the normalized directional
power |PR(ŷ)(j)| is color-coded according to the scale shown
in the figure.

Fig. 3: {z(j)}Jj=1 visualized as spherical data distribution

B. Reverberant Field Directivity Model

In the final step, we use the vMF mixture model to inter-
pret the directivity information from the distributed training
vectors. The algorithm fitted a 4-component vMF mixture
model, and the estimated parameters are recorded under
Table.I. Thus the proposed approach condensed the extensive
sound field information from eighteen 32-channel 19200-tap
RIR sequences into the mean M[4×4], concentration κ[4×1]
and weight w[4×1] parameters of the vMF mixture function.
Finally, we substituted the estimated parameters in (19) to
generate the power density for testing vectors z corresponding
to arbitrary directions sampled across the room space.

The resulting angular power density, shown in Fig. 4,
illustrates the directional distribution of room reverberation
by identifying the regions of varying reflectances. The high-
est reflection density or dominant reverberation direction
coincides with the function maximum around φ = 225o,
which corresponds to the glass surface points on the front
wall. We can also observe relatively high magnitudes across
φ ∈ [0o, 45o]∩ [315o, 360o) indicating considerable reflections
emanating from the glass surface portions on the right wall.
The remaining lower magnitude areas are probably the result
of normal wall reflections and higher-order reflections from the
glass surfaces. The miscellaneous objects present in the test
room also influence this distribution. The directions around
φ = 90o seem to be composed of comparatively absorbent
surfaces. Hence, the directivity model in Fig. 4 conforms with
the real test room environment and recognizes the directions
of distinct reflective surfaces.

We can create a more intricate directivity model using
the training data corresponding to ŷ and source positions
across the XYZ plane. It also allows the visualization of the
frequency-dependent behavior of the reverberant field using

TABLE I: Estimated parameters of vMF mixture distribution

a µa κa wa

1 [0.46, 0.02, 0, 0.89] 0.9684 0.2138
2 [-0.03, 0.31, 0, 0.95] 0.9752 0.2991
3 [0.02, -0.37, 0, 0.93] 0.9698 0.2743
4 [-0.47, -0.05, 0, 0.88] 0.9616 0.2128

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

698



(a) Angular power density generated from the vMF mixture function (b) 2D projection of reverberation directivity

Fig. 4: Room reverberant field directivity represented using vMF mixture distribution

the PR(k, ŷ) data of each wavenumber k as the training input
into the vMF-mixture parameter estimation algorithm.

The processing of reflection power coefficients, training, and
production of the directivity model took less than 10 s for the
mentioned dataset on an ordinary laptop with an Intel Core i5
1.6GHz CPU and 8GB RAM, whereas the latest techniques
of reverberant scene reproduction using image processing and
neural networks [14], [15] take a few minutes even on a
higher grade processor. Moreover, our model is based on
the real acoustic information obtained from the RIRs, which
avoids the need for large feature-matching databases for an
accurate reverb environment evaluation. The application of
the vMF mixture function allows statistical expression of
spatial correlation between the higher-order Eigenbeams. It
potentially contains in-depth information about the spatial and
frequency-related properties of numerous reflection channels
inside the room, which were not conceivable earlier using the
conventional methods [4]–[13]. We will utilize this informa-
tion in future works to analyze the frequency-dependent room
acoustic behavior under different room environments, source-
receiver conditions, and other external factors.

VI. CONCLUSION

In this paper, we presented an angular power distribution
model based on vMF mixture function to represent the room
reverberation directivity. The experimental results prove the
viability of the model in recognizing significant reflections
across the room while overcoming the shortcomings of ex-
isting models. The proposed approach reduces data size and
redundancy by encapsulating the information from a large
number of long RIR sequences into a few parameters of the
vMF density function. Therefore, we get a simple model with
manageable data requirements for analyzing the directional
characteristics of room reverberation.

The future works involve the analysis of high-frequency
behavior of room reverberation field and the development of
further functionalities to evolve as a reliable statistical room
acoustic model. The ability of the directivity model to identify
reflecting surfaces can be further extended to estimate wall
impedance variations and for 3D room geometry projection in
VR algorithms.
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