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Abstract—Dynamic range compression (DRC) and noise re-
duction algorithms are commonly used in hearing aids. They are
known to have opposite objectives concerning the Signal-to-Noise
Ratio (SNR) and to affect negatively the localization performance.
Yet, the study of their interaction received few attention. In
this work, we improve an existing combined approach of DRC
and noise reduction to bridge the gap between the algorithms
proposed independently in their respective communities. The
proposed solution is then compared to state-of-the-art algorithms
thanks to objective criteria assessing the spatial fidelity preser-
vation, the SNR improvement and the output dynamic range
reduction. Experimental results show that the standard serial
concatenation of noise reduction and DRC stages is unable to
improve the SNR and preserve the noise component acoustic
characteristics. They suggest that the proposed design restores
the noise localization cues and manages to improve the output
SNR.

Index Terms—Hearing aids, spatial hearing, beamforming,
dynamic range compression

I. INTRODUCTION

Dynamic range compression (DRC) is the main processing
in hearing aids for compensating the listener hearing loss. It
consists in amplifying quiet sounds and/or attenuating loud
ones. To do so, the gain function defining this amplifica-
tion/attenuation is split into two zones: (i) below a given
threshold the input signal is linearly amplified; (ii) above the
same threshold the gain follows a linear decreasing function
in the dB domain.

Usually, hearing aids compute the left and right DRC
gains independently. It has been showed that the difference
between the left and right DRC gain distorts the interaural
level difference (ILD) which is an important localization cue.
It results in a worsening of the localization performance for the
listener, which also affects speech understanding [27], [35].

The straightforward strategy to solve this issue is to apply
the same DRC gain to both ears. It restores the ILD as well
as the localization performance in anechoic environment [36].
However, other experiments failed to replicate this result [14],
[16]. Particularly, it has been recently highlighted that the
linked DRC fails at preserving the localization performance
in reverberant conditions [13]. The authors showed that, in
a reverberant environment, the preservation of the ILD is
not sufficient to ensure the preservation of the localization
cues. Indeed, usually, the DRC acts quickly in order to

follow the short-term speech level fluctuations. Therefore,
the reverberation tail is considered as a soft speech period
which has to be reinforced. The consequence is a lowering
of the direct-to-reverberant energy ratio (DRR), leading to
more internalization, image source diffusion for the listener
as well as more front-back confusion and source localization
splitting. The authors further showed by means of a percep-
tual evaluation that the Interaural Coherence (IC) [11] is an
objective criterion which better correlates with the localization
performance of the listener.

To address this issue, it has been proposed [12] to prolong
the DRC gain computed from the last direct sound period to
the reverberation tail in order to preserve the DRR. To do
so, in direct sound period, the DRC acts quickly whereas
in the segments dominated by reverberant speech, the DRC
acts slowly in order to prolong DRC attenuation from the
last direct sound dominated period. The authors showed that
such a direct-sound-driven DRC is able to restore both IC and
localization performance on the horizontal plane in presence of
reverberation. However, the design of this algorithm is limited
to a specific auditory scenario composed of one speaker
with reverberation but without background noise or other
interfering speakers. In noisy environment, the DRC is unable
to correct the speech dynamic range accurately [29]. Moreover,
it reduces the output SNR [6], [29].

This algorithm has been extended to a scenario including
background noise [24]. In this work, the authors use a speech
presence detector to drive the DRC time constant, in the
same way as in [12], where a direct sound detector was
used to drive the DRC in noise-free reverberant conditions.
The authors also defined explicitly the objectives of an ideal
hearing aids system: (i) amplifying the soft-speech segments;
(ii) keeping loud-speech segments below the pain level; (iii)
avoiding amplification of the noise in speech absence; and (iv)
preserving the original noise dynamic range. However, this
solution answers only partially to these objectives. Indeed, the
DRC gain applied on a noise-only segment is set according
to the one computed on the last frame where speech was
detected. As a consequence, the DRC gain highly differs from
one noise-only segment to another. This effect is illustrated in
Figure 1, where we can observe that the DRC gain on noise-
only segments varies from -20 dB at 1.8 s to -12 dB at 3 s,
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Fig. 1. Noisy speech and speech presence detection (top) and reduction gain
at 3 kHz of the SNR-aware DRC proposed by May et al. [24].

depending on the DRC at preceding speech frames. It should
be noted that this gain is frequency dependent. Therefore, at
each speech-absence period, the frequency response of the
filter applied to the noise segment differs in an uncontrolled
way.

So far, we presented studies considering the DRC as the
unique processing in hearing aids. However, an extensive work
has been done in the last two decades to improve SNR in
hearing aids [20], [30] before applying DRC. Speech enhance-
ment based on beamforming techniques [8] have become the
reference and are nowadays commonly used in commercial
hearing aids. State-of-the-art noise reduction algorithms such
as the Minimum Variance Distortionless Response (MVDR)
beamformer and the Multichannel Wiener Filter (MWF) have
the particularity of collapsing all the localization cues present
in the auditory scene toward the steering direction. Therefore,
the preservation of both speech and noise localization cues
through the noise reduction stage has attracted a lot of attention
in the last decade [18], [21], [22], [34] and is still an open
issue. The IC has also been introduced in this research field
both as an assessment criterion of the noise localization
cues preservation and as a penalty term in beamforming
optimization problems [23]. A common strategy to preserve
localization cues consists in mixing the beamformer output
with the original noisy signal at a reference microphone.
It is called multichannel Wiener filtering with partial noise
estimation (MWF-N) [33]. Localization performance in the
horizontal plane can be restored with an appropriate gain for
mixing the enhanced speech signal with the noisy one [22],
[32], [33].

In the literature, we observed that noise reduction with
beamforming and DRC are treated as two separate research
topics, even though they correspond to two key elements of
hearing aids. Only very few works studied their interaction
and the consequence of their combination on localization
and speech understanding performance [5], [17], [26]. Yet,

it has been pointed out that noise reduction and DRC have
antagonistic objectives [26]: the noise reduction stage aims
to reduce the background noise while the DRC amplifies
soft sounds and keeps loud sounds below the pain level. In
other words, after lowering the noise level thanks to the noise
reduction stage, the DRC increases it further. Therefore, it
was proposed in [26] to extract both speech and noise signals
from the input mixture using beamforming, then apply a DRC
independently to each signal before mixing them back to
obtain the final enhanced signal. The noise reintroduction level
in this final mixing operation is quite low (about -10 dB),
therefore residual interfering noise in the estimated speech
signal from the beamformer can greatly affect the final noise
level in the output mixture.

In this study, the authors only considered a monaural
hearing aid system (a two microphones Behind-The-Ear (BTE)
device), thus limiting the SNR improvement. Moreover, they
did not make the link between their method and the MWF-
N beamformer, and they did not assess their algorithm with
respect to the localization cues preservation. Finally, their
algorithm does not allow for the use of different time constants
to process the noise and the speech, even though the above-
mentioned studies suggest that it is relevant.

In this study, we propose to adapt the combined beamform-
ing and DRC system from [26] with respect to the recent
findings [12], [24]. Then, we add to the four aims of an
ideal hearing aids system from [24] another one addressing
the localization cues preservation. We rewrite them as follows:

1) reducing the speech dynamic range;
2) preserving the original noise dynamic range;
3) improving the output SNR;
4) preserving the localization cues of both speech and

noise.
Each objectives will be assessed thanks to standard objective
criteria.

The document is structured as follows: first, the data model
is depicted in section II and the proposed algorithm is pre-
sented in section III. Then, it will be assessed and compared
to the aforementioned algorithms in the section IV.

II. DATA MODEL

We consider an auditory scene composed of one speech
source of interest denoted s(t) and a spatially diffuse noise
denoted nm(t), where m ∈ {1, ...,M} is the microphone
index, and t is the discrete-time index. The signal received
at microphone m is expressed as follows:

xm(t) = (hm ? s)(t) + nm(t), (1)

where ? denotes the convolution operator, and hm(t) is the
impulse response of the acoustic channel from the speaker
to mth microphone. It can be expressed in the Short-Term
Fourier Transform (STFT) domain. Assuming that hm(t) is
short compared with the STFT analysis window, convolution
in the time domain becomes a simple product in the STFT
domain [2]:

xm(k, `) = hm(k) s(k, `) + nm(k, `), (2)
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where k and ` denote the frequency and frame indices,
respectively. It is convenient, for the following, to consider
this equation in the vector form by concatenating the terms
related to the microphones:

x(k, `) = h(k) s(k, `) + n(k, `), (3)

where x(k, `) = [x1(k, `), x2(k, `), ..., xM (k, `)]
T ∈ CM ,

h(k) ∈ CM and n(k, `) ∈ CM are defined similarly.
Both speech and noise DFT coefficients are modeled as

random variables following a zero mean isotropic complex
Gaussian distribution of variances φs(k, `) and φn(k, `), re-
spectively, and the noise is assumed to be spatially diffuse:

s(k, `) ∼ Nc(0, φs(k, `)) (4)
n(k, `) ∼ Nc(0, φn(k, `)Γdiff(k)) (5)

where Γdiff(k) ∈ CM×M is the spatial coherence matrix
corresponding to a diffuse noise field.

In addition, let us assume that the noise is always present
while the speech can be present or absent. It leads to the
following two mutually exclusive hypotheses H0 and H1:
• H0 : x(k, `) = n(k, `) ;
• H1 : x(k, `) = h(k)s(k, `) + n(k, `).
Moreover, we consider an anechoic scenario (i.e. without

reverberation) where the acoustic transfer functions h(k) are
assumed to be known.

III. PROPOSED ALGORITHM

Our objective is to apply an independent DRC on the speech
and noise signals, while improving the SNR and preserving
the localization cues of both speech and noise. We derive an
algorithm close to the proposition of Ngo et al. [26]. Our
approach differs in some points because the data model is not
exactly the same. These differences will be detailed in the
following. A schematic overview of the proposed algorithm is
provided in Figure 2. It incorporates three main stages that we
are going to detail in this section: (i) target speech and noise
separation with beamforming; (ii) speech presence probability
estimation; and (iii) dynamic range compression.

A. Source separation

The source separation algorithm is based on a MWF. It
consists in estimating the target speech signal at the left ear
reference microphone sL(k, `) = hL(k) s(k, `) by a linear
combination of the microphone signals in the STFT domain:

ŝL(k, `) = ŵL(k, `)Hx(k, `), (6)

where ŝL(k, `) is the speech estimate at the left-ear reference
microphone, ŵL(k, l) ∈ CM is an estimate of the unknown
coefficients (or weights) of the beamformer, and ·H denotes the
Hermitian transpose. The speech signal estimate at the right
ear ŝR(k, `) is defined similarly and for the sake of brevity,
only the left expression will be derived in the following.

The beamformer weights are estimated by solving an opti-
mization problem [8]. For the MWF beamformer, it consists

in minimizing the mean square error between the true signal
and its estimate:

ŵL(k, `) = argmin
w
{J1(w)}, (7)

where

J1 (w) = E
[∣∣sL(k, `)−wHx(k, `)

∣∣2] . (8)

We use an alternative formulation from [26] called MWF-Flex,
which leverages an estimate of the speech presence probability
(SPP). The corresponding cost function J1(wL(k, `)) can be
split into several terms, allowing us to set a speech distortion
weight depending on whether the speech is present or not:

J2(w) =P (`)
[
p(k, `)E

[
|sL(k, `)−wHx(k, `)|2

∣∣H1

]
+(1− p(k, `))E

[
|wHx(k, `)|2

∣∣H0

]]
+ (1− P (`))

[
1

µH0

E
[
|sL(k, `)−wHh(k)s(k, `)|2

]
+E

[
|wHx(k, `)|2

]]
, (9)

where P (`) ∈ [0, 1] is the broadband speech presence
probability, p(k, `) ∈ [0, 1] the narrowband speech presence
probability and µH0 ∈ R is the attenuation to be applied of
the speech component during the speech absence period.

The minimizer of (9) is given by [26]:

ŵL(k, `) =
(
φs(k, `)h(k)h(k)H + µ(k, `)Φnn(k, `)

)−1
× h(k)φs(k, `)hL(k)∗, (10)

where Φnn(k, `) = E
[
n(k, `)n(k, `)H

]
= φn(k, `)Γdiff(k),

the operator ·∗ denotes the complex conjugate, and

µ(k, `) = P (`)
1

p(k, `)
+ (1− P (`))µH0

. (11)

This solution can be decomposed into a Minimum Variance
Distorsionless (MVDR) beamforming filter wMVDR, a para-
metric Wiener filter wWF and a spatialization filter h∗L [3]:

ŵL(k, `) = wWF(k, `) wMVDR(k) hL(k)∗, (12)

where

wWF(k, `) =
ξ(k, `)

µ(k, `) + ξ(k, `)
(13)

and ξ(k, `) is the a priori SNR at the MVDR beamformer
output, defined by:

ξ(k, `) =
φs(k, `)

φn(k, `)wMVDR(k)HΓdiff(k)wMVDR(k)
. (14)

As we assume a spatially diffuse noise, the MVDR beam-
former turns into a maximum directivity index one [31]:

wMVDR(k) =
Γdiff(k)−1h(k)

h(k)HΓdiff(k)−1h(k)
. (15)

Assuming a time-independent noise spatial coherence matrix
makes the beamformer no longer time dependent. The diffuse
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Fig. 2. Schematic overview of the proposed algorithm.

noise coherence matrix is defined as the mean of the contri-
bution of D acoustic transfer functions uniformly spaced on
the horizontal planes:

Γdiff(k) =
1

D

D∑
d=1

hd(k)hd(k)H (16)

where hd is the anechoic transfer functions from the dth

direction.
The left ear noise estimate, n̂L(k, `), can be derived in a

similar way leading to:

n̂L(k, `) = xL(k, `)− ŝL(k, `), (17)

where xL(k, `) is the microphone signal used as a reference
for the left ear.

Our implementation of the MWF-Flex differs from [26]
because the data model is not exactly the same. In this study,
the authors do not assume the a priori knowledge of h and that
the noise is spatially diffuse. Therefore, they have to estimate
the speech and noise covariance matrices which is difficult and
not robust in presence of reverberation. Moreover, it allows us
to steer in an arbitrary direction i.e. selecting the desired target
rather than steering in an uncontrolled direction based on the
speech covariance matrix estimation. This is also an advantage
for the speech presence probability estimation presented in the
following.

B. Dynamic range compression

In this subsection, we start by describing the general oper-
ation of the DRC used in this work and then we will describe
how the DRCs are arranged in our algorithm.

The DRC consists in filtering the input signal by a gain
g(k, `) ∈ R depending on its input level. To do so, the
input signal is passed through a rectangular filterbank and the
instantaneous power of each band is computed. The resulting
power is filtered with a first order recursive low-pass filter
with time constants depending on whether the input signal
is in a rising period (attack) or in a falling one (release). The
release time constant is usually greater than the attack one. The
resulting signal envelop is expressed in dB and is denoted by

P̃ dB
b (`) in the following, where b denotes the frequency bands

associated with the above-mentioned filter bank.
The DRC gain expressed in dB is defined as follows for the

bth frequency band:

Gb(`) =

 G0 +
(
P̃ dB
b (`)− T

)( 1

R
− 1

)
if P̃ dB

b (`) > T

G0 otherwise,
(18)

where T is the compression threshold, G0 a constant gain, and
R is the compression ratio. Then, the gain is brought back into
the linear domain and passed through the inverse filterbank.

The drawback of the serial concatenation of the noise re-
duction stage and the fast-acting DRC is that the latter reduces
the SNR improvement achieved by the former. Therefore, it
has been proposed in [26] to use three DRCs in parallel, and to
switch from one to another depending on whether the speech
is active or not:

• ”DRCs” refers to the DRC applied when the speech is
present at this time-frequency point,

• ”DRCn H1” refers to the DRC applied when the speech
is active in the frame but not at this time-frequency point,

• and, ”DRCn H0” refers to the DRC applied when the
speech is absent of the frame.

A drawback of the original implementation of a such DRC
combination in [26] is the impossibility of using different
smoothing time constants for each DRC. Indeed, in the
authors’ implementation the attack/release smoothing is per-
formed on the final DRC gain in the dB domain. Maybe even
more problematic, the attack time constant is used to smooth
the gain both for the rising speech periods and for the transition
between an active speech period and a noise-dominated one.
The issue is similar for the release time constant.

In this work, we propose a different implementation by
combining the DRC gains in the linear domain rather than in
the dB domain, and by low-pass filtering of the input power
envelop rather than of the output gain in dB:

g(k, `) =P (`) [p(k, `)gs(k, `) + (1− p(k, `))gH1(k, `)]

+ (1− P (`)) gH0(k, `)
(19)
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where gs(k, `), gH1(k, `) and gH0(k, `) are the gains associated
to “DRCs”, “DRCn H1” and “DRCn H0”, respectively. It gives
us more flexibility and consistency with the standard DRC
designs used in hearing aids [13], [15], [24].

C. Speech presence probability estimation

The source separation algorithm, as well as the DRCs
presented previously, involve the knowledge of the narrow-
band and broadband speech presence probabilities p(k, `) and
P (`). In this subsection, we detail how the speech presence
parameters are estimated. To do so, we use the two hypotheses,
H0 and H1, presented in Section II.

Using the Bayes theorem, the a posteriori speech presence
probability, denoted by p(k, `) = P (H1|x(k, `)), can be
expressed as follows [28]:

p(k, `) =

(
1 +

q(k, `)

1− q(k, `)
(1 + ζ(k, `))e−

β(k,`)
1+ζ(k,`)

)−1
(20)

where q(k, `) = P (H0) is the a priori speech absence
probability, estimated recursively as in [4], ζ(k, `) is similar
to the SNR:

ζ(k, `) =
φs(k, `)

φn(k, `)
Tr
{
Γdiff(k)−1h(k)h(k)H

}
, (21)

with Tr{.} is the trace operator, and finally

β(k, `) = x(k, `)HΓdiff(k)−1h(k)h(k)HΓdiff(k)−1x(k, `)

× φs(k, `)

φn(k, `)2
. (22)

The speech and noise variances estimates, denoted by
φ̂s(k, `) and φ̂n(k, `) respectively, are defined as follows [10]:

φ̂s(k, `) = wMVDR(k)H
(
Φ̂xx(k, `)− φ̂n(k, `)Γdiff(k)

)
×wMVDR(k) (23)

φ̂n(k, `) =
1

M − 1
Tr
{

P(k)Φ̂xx(k, `)Γdiff(k)−1
}

(24)

where P(k) = I−h(k)wMVDR(k)H with I the identity matrix
of size M . The input data covariance estimate Φ̂xx(k, `) is
computed thanks to a recursive filter:

Φ̂xx(k, `) = α x(k, `) x(k, `)H +(1−α)Φ̂xx(k, `−1) (25)

where α is the smoothing factor.
The broadband speech presence detection, P (`), is com-

puted thanks to a hysteresis comparator with adaptive thresh-
olds:

P (`) =


1 if

∑
k

p(k, `) > thigh and P (`− 1) = 0

0 if
∑
k

p(k, `) > tlow and P (`− 1) = 1

P (`− 1) otherwise,
(26)

where tlow and thigh are computed by means of a one-
dimensional 2-means clustering algorithm over the p(k, `)
for the L last frames. Finally, P (`) is smoothed with a
recursive first order low-pass filter with attack and release time
constants to avoid the gate effect due to the DRC gain between
speech+noise and noise-only segments.

IV. EVALUATION

In this section, we assess the proposed algorithm according
to the different objectives defined in the introduction. For
each objective, a standard objective criterion is associated
and the performance are compared to reference algorithms we
already presented in the introduction. First, we will depict the
reference algorithms implementation. Second, we will present
the experimental set-up and, third, the assessment criteria will
be detailed. Finally, the results will be presented. The audio
examples for the first subject are available online1.

A. Reference algorithms

Firstly, the unprocessed signal is considered as a reference
and is called the linear condition. The independent and linked
conditions refer to a DRC applied to the left and right ears
microphones, independently or not, respectively. For the linked
condition, the DRC gains are computed independently for each
ear and the minimum gain is applied to both. The filterbank
is a rectangular octave-spaced one from 125 to 8 kHz. The
SNR-aware DRC proposed in [24] is also tested and called
May18. This algorithm consists in using a different set of
attack/release time constants depending on whether the speech
is active or not in the frame. In [24], the authors use another
data model leading to a different SPP estimation algorithm
than the one presented in section III-C. For the sake of
data model consistency, we use the latter. The MWF-N+DRC
consists in the serial concatenation of a MWF-N [33] and a
DRC. The MWF-N consists in a weighted sum between the
MWF output and the left (or right) reference microphone. It
achieves a trade-off between noise reduction and preservation
of the noise localization cues [34]. The MWF is implemented
as a concatenation of a fixed MVDR beamformer (see (15))
and a Wiener filter [3]. The trade-off parameter is set to 0.3
(noise reintroduction gain of -10 dB) in order to maximize
the IC [22]. Finally, the ideal condition consists in applying
the DRC to the speech sentence before spatialization [13] and
mixed the DRC output signals with a gain difference of 10 dB.

Frequency (Hz) 125 250 500 1k 2k 4k 8k
Threshold (dBSPL) 31 36 40 32 34 31 9
Ratio 2.2 2.2 1.8 1.9 2.2 2.9 2.6

TABLE I
DRC PARAMETERS

DRC Attack
(ms)

Release
(ms)

Gain G0

(dB)
DRCs 10 60 0
DRCn H1 10 2000 -6
DRCn H0 10 2000 -10
DRCn 2000 2000 -10

TABLE II
DRC OVERALL GAIN AND TIME CONSTANT PARAMETERS

1Audio examples repository URL: https://a-llave.github.io/demo
apsipa2020
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Fig. 3. The SNR improvement (∆SNR), speech and noise Effective Compres-
sion Ratio (ECR) and Interaural Coherence (IC) for each conditions. The box
limits represent the 1st and 3rd quartiles of the subjects results, the orange
line indicates the median, the Whiskers show the data range up to 1.5 times
the interquartile distance, and circles show outliers.

B. Experiment set-up

The auditory scene is simulated thanks to a 4 s-long male
speech sentence recording from the France Culture radio
station and a mono cafeteria recording. We use the first
fourteen BTE hearing aids anechoic HRTF from the OTIMP
database [25] (front and back microphones, M = 4) resulting
in as many stimuli. The noise stimulus is built from the mono
cafeteria recording. It is cut into 4 s pieces and spatialized
through virtual loudspeakers thanks to the BTE HRIR. The
loudspeakers are arranged in two rings at ±45◦ of elevation
with a horizontal resolution of 22.5◦. The speech stimulus is
placed at the frontal direction and presented at 75 dBSPLand
the SNR is equal to 5 dB. The tested algorithms are embedded
into an overlap-add framework with a 128 samples (8 ms) long
frame and 50 % overlap. The analysis and synthesis windows
are the square root of a Hann function and the sampling
frequency is 16 kHz. The DRC settings used in this work
are the same as in [13] and are summarized in the table I. The
low-pass filter time constant used in (25) for the estimation
of Φxx is 9 ms and the broadband speech presence detection
P (`) is smoothed with a similar recursive filter with attack
and release time constants of 2 ms and 20 ms, respectively.
The DRC thresholds and ratios for each frequency bands are
set as in [13] and are summarized in Tab. I. The overall gain
for each DRC as well as the time constants used for the power
envelop estimation are gathered in Tab. II.

C. Assessment criteria

1) Signal-to-Noise Ratio improvement: For a source s(t)
and a noise n(t), the SNR, in dB, is defined as follows:

SNR = 10 log10

N−1∑
t=0

s(t)2 − 10 log10

N−1∑
t=0

n(t)2 (27)

where N is the total number of samples in the time domain.
Only the periods where the speech is active are considered.
The SNR improvement (∆SNR) is defined as the difference
between the output SNR and the linear condition one.

For each condition, the required processing parameters are
computed from the noisy speech recording. The resulting
filters are applied to the mixed x(k, `) as well as the speech
and noise components separately. It allows us to compute the
true output SNR. This method is sometimes called the shadow-
filtering [24] in the literature.

2) Interaural Coherence: The IC is used to assess the
perception of the width of the auditory scene [19] and is
known to be important to access to the localization cues [7].
It is defined as the absolute maximum value of the normalized
cross-correlation between the left and right band-pass filtered
output signals, denoted by ỹL and ỹR with |τ | ≤ 1 ms [11],
[13]:

IC = max
τ

∣∣∣∣∣∣
∑
t
ỹL(t+ τ)ỹR(t)√∑

t
|ỹL(t)|2

∑
t
|ỹR(t)|2

∣∣∣∣∣∣ . (28)

The hearing aids output signals yL(t) and yR(t) are passed
through a filterbank modeling the auditory system composed
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of fourth order gammatone filters with equivalent rectangular
bandwidth spacing [9].

3) Effective Compression Ratio: The ECR is the ratio
between the dynamic range in input and output. The dynamic
range is computed by slicing the signal in short frames of
10 ms, computing the power (in dB) of each ones, and
then, taking the levels standard deviation [1]. This metric is
computed for each frequency channel and finally averaged
across the frequencies.

D. Results and discussion

In this section, we analyze the results of the experiments.
The performance of each algorithm is summarized in the
Figure 3.

1) SNR improvement: On one hand, as expected, the inde-
pendent and linked conditions show an SNR lowering greater
than 3 dB. This result is consistent with [6], [29]. As for the
SNR aware DRC from [24], it manages to contain this effect
but still reduces the SNR by 1.5 dB. On the other hand, in
the conditions including noise reduction techniques, the SNR
is lowered by 1.5 dB for the MWF-N+DRC condition and
improved by 3 dB for our proposition. This result suggests
that the parallel DRC combination overcomes the antagonistic
objectives dichotomy highlighted by Ngo et al. [26] and allows
us to reach the target SNR. However, we can see it remains
a large room of improvement to reach the ideal performance.
This is due to the noise component leakage into the speech
branch. This may be improved thanks to a more complex
beamformer.

2) Speech and noise ECR: An ECR greater than 1 indicates
a reduction of the dynamic range and vice versa. First, we
show that all the conditions without noise reduction stage
lead to a speech ECR lower than the ideal condition. Taking
advantage of beamforming, MWF-N+DRC and our proposition
achieve a better compression because the low-level speech seg-
ments are no longer mixed up with the background noise but a
gap remains compared to the ideal performance, possibly due
to speech estimation errors (in high frequency particularly).
However, our algorithm failed to improve the speech ECR
probably because of speech presence probability estimation
errors implying an excessive attenuation of the speech after a
silent period. Second, we show that the noise dynamic range
is increased (ECR < 1) for all the conditions. Our proposition
failed to improve the criterion. However, a part of the noise
component is highly correlated with the speech in such a way
that it is masked by the latter one. Informal tests suggest that
it is not perceived to be as problematic.

3) Interaural Coherence: Firstly, we have to note that the
input (linear) and the ideal IC are not equal because the input
and ideal SNR are not the same in the experiments. Similarly
to the ∆SNR, the conditions without noise reduction stage
reduces the IC. As for the MWF-N+DRC, due to the serial
concatenation of beamforming and DRC, it fails to increase the
IC up to the ideal one. Moreover, the inter-subject variability
is particularly important. Finally, our proposition manages to
get close to the IC of the ideal condition. More investigation is

needed to show if the remaining gap is perceptually important
or not.

V. CONCLUSION

In this study, we considered an auditory scene composed
of one speech source and a cafeteria noise (spatially diffuse
noise). Firstly, we pointed out that the serial concatenation
of beamforming algorithm and DRC fails at improving the
SNR, consistently with [26]. Moreover, it fails at preserving
the Interaural Coherence (IC) as well as they make the noise
comodulates with the speech envelop. Secondly, we proposed
an amelioration of an existing algorithm combining DRC and
noise reduction in order to increase both the SNR improvement
and the spatial fidelity of the auditory scene. We showed
that the proposed combined approach reaches the IC target
performance and manages to improve the SNR. However,
some estimation errors in our algorithm prevent the speech
and noise ECR from being improved. These outcomes have to
be confirmed thanks to perceptual tests.
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