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Abstract—Speech enhancement using augmented Kalman filter
(AKF) suffers from the inaccurate estimates of the key pa-
rameters, linear prediction coefficients (LPCs) of speech and
noise signal in noisy conditions. The existing AKF particularly
enhances speech in colored noise conditions. In this paper, a
deep residual network (ResNet)-based method utilizes the LPC
estimates of the AKF for speech enhancement in various noise
conditions. Specifically, a ResNet20 (constructed with 20 layers)
gives an estimate of the noise waveform for each noisy speech
frame to compute the noise LPC parameters. Each noisy speech
frame is pre-whitened by a whitening filter, which is constructed
with the corresponding noise LPCs. The speech LPC parameters
are computed from the pre-whitened speech. The improved
speech and noise LPC parameters enable the AKF to minimize
residual noise as well as distortion in the enhanced speech.
Objective and subjective testing on NOIZEUS corpus reveal that
the proposed method exhibits higher quality and intelligibility in
the enhanced speech than some benchmark methods in various
noise conditions for a wide range of SNR levels.

Index Terms—Speech enhancement, augmented Kalman filter,
residual network, LPC, whitening filter.

I. INTRODUCTION

The main objective of a speech enhancement algorithm

(SEA) is to eliminate the embedded noise from the noisy

speech signal. The SEAs can be used as a pre-processing tool

for many signal processing systems, such as voice communica-

tion systems, hearing-aid devices, voice operated autonomous

systems. Various SEAs, such as spectral subtraction (SS) [1],

[2], minimum mean square error (MMSE) [3], [4], Wiener

Filter (WF) [5], [6], Kalman filter (KF) [7], augmented KF

(AKF) [8], deep neural network (DNN) [9], and machine

learning-based KF/AKF [10], [11], [12] have been introduced

over the decades. This paper integrates a deep residual network

with AKF for single-channel speech enhancement.

Paliwal and Basu for the first time introduced KF for

speech enhancement in white noise condition [7]. In KF, a

speech signal is represented by an autoregressive (model) and

represented in the Kalman recursion equations. KF gives a

linear MMSE estimate of the clean speech given the observed

noisy speech for each sample within each a frame. Therefore,

the performance of KF-based SEA depends on how accurately

the key parameters, such as LPCs are estimated in noisy

conditions. It is demonstrated in [7] that the LPC parameters

estimated from the clean speech shows excellent performance.

On the contrary, the LPC parameters computed from the

noisy speech are inaccurate and degrades the KF performance

for speech enhancement. In [8], Gibson et al. introduced an

augmented KF (AKF) for enhancing colored noise corrupted

speech. In this method, the LPC parameters for the current

noisy speech frame are computed from the filtered signal of

the previous iteration by AKF. Although the enhanced speech

(after 2-3 iterations) shows SNR improvement, however, suf-

fering from spectral distortion as well as musical noise. In

[13], Roy et al. proposed a sub-band iterative KF-based SEA.

Since it only enhances the high-frequency sub-bands (SBs)

among the 16 decomposed SBs of noisy speech, some noise

components may still remain in the low-frequency SBs. The

enhanced speech also suffers from distortion. In [14], George

et al. introduced a robustness metric-based tuning of the AKF

for enhancing colored noise corrupted speech. However, it

is shown that the robustness metric-based tuning of the bias

in the AKG gain is particularly applicable in colored noise

conditions. Also, the tuning process of the AKF gain causes

distortion in the enhanced speech. To address this problem, a

sensitivity metric-based tuning of the AKF has been proposed

[15]. Although it produces less distorted speech, however,

performance becomes degraded in real-life noise conditions.

The deep neural network (DNN) has been used widely for

speech enhancement over the decades. It shows a noticeable

improvement over the traditional SEAs [1], [3], [5], [7].

Motivated by the time-frequency (T-F) masking technique in

computational auditory scene analysis [16], the early DNN-

based SEAs focus on the mask estimation, which is used to

reconstruct the clean speech spectrum. In [9], Wand and Wang

introduced a multi-layer perceptron (MLP)-based ideal binary

mask (IBM) estimation method. An estimate of the clean

speech spectrum is given by multiplying the estimated IBM

with the noisy speech spectrum [17]. In [18], it was shown that

the ideal ratio mask (IRM) exhibits better speech enhancement

accuracy over the IBM. Usually, the masking-based SEAs [9],

[17], [18] keep the phase spectrum unprocessed in the sense

that it is less affected by noise. However, in [19], Paliwal

et al. showed that the improvement of the phase spectrum

also improves the perceptual quality of the enhanced speech.

In this circumstance, Williamson et al. introduced a complex

ideal ratio mask (cIRM)-based SEA for further improving the

speech enhancement accuracy [20]. The cIRM is capable to

recover both the amplitude and the phase spectrum of the clean

speech. In general, it was observed that the masking-based

SEAs introduce residual noise in the enhanced speech [18].
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Also, in speech enhancement context, the traditional MLP and

DNN-based methods [9], [18], are not able to learn the long-

term dependencies inherent in the noisy speech.

In [21], a fully-convolutional network (FCNN)-based SEA

has been proposed. The FCNN processes the raw-waveform

of the noisy speech, giving an estimate of the clean speech

waveform. Thus, the enhanced speech does not affected by

the phase, unlike other acoustic-domain SEAs [17], [18]. In

[22], Zheng et al. introduced a phase-ware SEA using DNN.

Here, the phase information (converted to the instantaneous

frequency deviation (IFD)) is jointly used with different masks,

namely the ideal amplitude mask (IAM) as a training target.

The clean speech spectrum is reconstructed with the estimated

mask and the phase information (extracted from the IFD).

Yu et al. introduced a KF-based SEA, where the LPC pa-

rameters are estimated using a traditional DNN [23]. However,

the noise covariance is estimated during speech pauses of the

noisy speech, which is irrespective in conditions having time

varying amplitude. Recently, some advance deep learning-

based KF/AKF methods [10], [11], [12] have been introduced

to estimate the LPC parameters for improving speech enhance-

ment performance. These methods were also found to enhance

speech in various noise conditions.

The direct estimation of speech from the noisy speech

using the benchmark deep learning methods may suffer from

residual noise and distortion. Our investigation reveals that

the noise estimation using deep learning technique would be

more beneficial, as it is a crucial parameter for most of the

SEAs in literature. For example, the AKF-based SEA suffering

from the inaccurate estimates of noise LPC parameters in

practice. This paper introduces a ResNet20 to accurately

estimate the noise LPC parameters of the AKF. Specifically,

the ResNet20 gives an estimate of the noise waveform to

compute the noise LPC parameters for each noisy speech

frame. A whitening filter is also constructed with the noise

LPCs to pre-whiten each noisy speech frame. The speech LPC

parameters are computed from the pre-whitened speech. The

AKF constructed with the improved speech and noise LPC

parameters leading to the capability of speech enhancement

in various noise conditions. The performance of the proposed

method is compared against some benchmark methods using

objective and subjective testing on NOIZEUS corpus.

II. AKF FOR COLORED NOISE SUPPRESSION

Assuming the colored noise, v(n) to be additive with the

clean speech, s(n) and uncorrelated each other, at sample n,

the noisy speech, y(n) is given by:

y(n) = s(n) + v(n). (1)

s(n) and v(n) in (1) can be modeled with pth and qth order

AR models as [24]:

s(n) = −

p
∑

i=1

ais(n− i) + w(n), (2)

v(n) = −

q
∑

j=1

bjv(n− j) + u(n), (3)

where {ai; i = 1, 2, . . . , p} and {bj ; j = 1, 2, . . . , q} are the

LPCs, w(n) and u(n) are assumed to be white noise with zero

mean and variance σ2

w and σ2

u, respectively.

Equations (1)-(3) can be used to form the following aug-

mented state-space model (ASSM) of AKF as [14]:

x(n) = Φx(n− 1) + dz(n), (4)

y(n) = cTx(n). (5)

In the above ASSM,

1) x(n) = [s(n) . . . s(n− p+1) v(n) . . . v(n− q+1)]T

is a (p+ q)× 1 state-vector,

2) Φ =

[

Φs 0
0 Φv

]

is a (p + q) × (p + q) state-transition

matrix with:

Φs =















−a1 −a2 . . . ap−1 ap
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0















,

Φv =















−b1 −b2 . . . bq−1 bq
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0















,

3) d =

[

ds 0
0 dv

]

, where ds =
[

1 0 . . . 0
]⊤

, dv =
[

1 0 . . . 0
]⊤

,

4) z(n) =

[

w(n)
u(n)

]

,

5) cT =
[

cTs cTv
]

, where cs =
[

1 0 . . . 0
]T

and

cv =
[

1 0 . . . 0
]T

are p× 1 and q × 1 vectors,

6) y(n) is the observed noisy speech at sample n.

Firstly, y(n) is windowed into non-overlapped and short

(e.g., 20 ms) frames. For a particular frame, the AKF computes

an unbiased linear MMSE estimate, x̂(n|n) at sample n, given

y(n) by using the following recursive equations [14]:

x̂(n|n− 1) = Φx̂(n− 1|n− 1), (6)

Ψ(n|n− 1) = ΦΨ(n− 1|n− 1)ΦT + dQdT , (7)

K(n) = Ψ(n|n− 1)c(cTΨ(n|n− 1)c)−1, (8)

x̂(n|n) = x̂(n|n− 1) +K(n)[y(n)− cT x̂(n|n− 1)], (9)

Ψ(n|n) = [I −K(n)cT ]Ψ(n|n− 1), (10)

where Q =

[

σ2

w 0
0 σ2

u

]

is the process noise covariance.

For each noisy speech frame, the error covariances, Ψ(n|n−
1) and Ψ(n|n) corresponding to x̂(n|n − 1) and x̂(n|n),
and the Kalman gain K(n) are continually updated on a

samplewise basis, while ({ai}, σ2

w) and ({bk}, σ2

u) remain

constant. At sample n, g⊤x̂(n|n) gives the estimated speech,
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ŝ(n|n), where g =
[

1 0 0 . . . 0
]⊤

is a (p + q) × 1
column vector. As in [14], ŝ(n|n) is given by:

ŝ(n|n) = [1−K0(n)]ŝ(n|n− 1) +K0(n)[y(n)− v̂(n|n− 1)],
(11)

where K0(n) is the 1st component of K(n), given by [14]:

K0(n) =
α2(n) + σ2

w

α2(n) + σ2
w + β2(n) + σ2

u

, (12)

where α2(n) and β2(n) are the transmission of a posteriori

error variances by the speech and noise models from the

previous time sample, n− 1 [14].

Equation (11) reveals that K0(n) has a significant impact

on ŝ(n|n) estimates (the output of the AKF). In practice, the

inaccurate estimates of ({ai}, σ2

w) and ({bk}, σ2

u) introduce

bias in K0(n), which affects the estimates of ŝ(n|n). In the

proposed SEA, a ResNet20 is used to utilize the LPC estimates

for the AKF, leading to an improved ŝ(n|n) estimate.

III. PROPOSED SPEECH ENHANCEMENT SYSTEM

Fig. 1 shows the block diagram of the proposed SEA. Unlike

the AKF method in Section II, a 32 ms rectangular window

with 50% overlap was considered for converting y(n) (1)

into frames, y(n, l), i.e., y(n, l) = s(n, l) + v(n, l), where

lǫ{0, 1, 2, . . . , N−1} is the frame index with N being the total

number of frames in an utterance, and M is the total number

of samples within each frame, i.e., nǫ{0, 1, 2, . . . ,M − 1}.

Fig. 1. Block diagram of the proposed SEA.

A. Proposed ({bk}, σ2

u) and ({ai}, σ2

w) Estimation Method

The speech LPC parameters, ({ai}, σ2

w) are very sensitive

to noise. Since the clean speech, s(n, l) is unavailable in

practice, it is difficult to estimate these parameters accurately.

In the existing AKF-based SEA, an estimate of the noise

waveform, v̂(n, l) is obtained from some initial noisy speech

frames by considering that there remains no speech [14]. Then

compute ({bk}, σ2

u) from v̂(n, l), which remains constant dur-

ing processing all noisy speech frames for a given utterance.

This concept is only applicable to enhancing colored noise

corrupted speech to some extent. However, due to the real-

world noise may contain time varying amplitudes, it requires

to update ({bk}, σ2

u) for each noisy speech frame. Therefore,

({bk}, σ2

u) estimation process in [14] becomes irrespective

with the noise conditions having time varying amplitudes.

In this paper, we introduce a ResNet20 (described in section

III-B) to estimate the noise waveform, v̂(n, l) corresponding

to each y(n, l). Then ({bk}, σ2

u) (q = 20) are computed from

v̂(n, l) using the autocorrelation method [24]. To reduce bias

in the estimated ({ai}, σ2

w) for each noisy speech frame, we

compute them from the corresponding pre-whitened speech,

yw(n, k) using the autocorrelation method [24]. The framewise

yw(n, k) is obtained by employing a whitening filter, Hw(z)
to y(n, k). With estimated {bk}, Hw(z) is constructed as [24]:

Hw(z) = 1 +

q
∑

k=1

bkz
−k. (13)

B. ResNet20 for Noise Waveform Estimation

Fig. 2 shows the architecture of the proposed ResNet20

for noise waveform estimation. Motivated by the Resnet50

(containing 50 layers) [25], we propose a reduced version,

namely the ResNet20 (containing 20 layers) model. It is due

to the ResNet50 [25] was introduced for image recognition,

where a stack of 50 2-dimensional convolutional (Conv2D)

layers-based deep learning technique improved the accuracy of

recognition. However, the deep architecture of a network varies

over applications. We investigate and find that the reduced

ResNet model, i.e., ResNet20 to be effective in estimating

the noise waveform from the noisy speech waveform on a

framewise basis. Instead of Conv2D layer in ResNet50 [25],

the proposed ResNet20 is constructed with the 1-dimensional

convolution (Conv1D) layer, since the target is to process the

1D speech signal. It reduces the number of training parameters,

which minimizes the training time accordingly. In addition, we

have used the causal Conv1D layer [26]. Fig. 3 demonstrates

the operating principle of the standard and causal Conv1D

layers. The standard Conv1D layers (Fig. 3 (a)) are comprised

of filters that capture the local correlation of nearby data

points, thus leaking the future information into the current data

during operating. Conversely, in the causal Conv1D layer (Fig.

3 (b)), the output at any time step t only uses the information

from the previous time steps, i.e., 0 to t−1 [26]. It allows the

ResNet20 for real-time noise waveform estimation.

The proposed ResNet20-based method takes the noisy

speech waveform, yl = {y(0, l), y(1, l), . . . , y(M − 1, l)}
as input, yielding an estimate of the noise waveform, v̂l =
{v̂(0, l), v̂(1, l), . . . , v̂(M − 1, l)}. Specifically, yl is passed

through the input layer, which is a fully-connected layer of size

512, followed by the layer normalization (LN) [27] and SELU

activation [28] layer. Reason of using SELU activation is that

it has less impact on vanishing gradients than that of ReLU
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Fig. 2. Architecture of the proposed ResNet20 for noise waveform estimation.

[29] and ELU [30]. Also, SELUs itself learn faster and better

than ReLU and ELU even if they are combined with layer

normalization [28]. The input layer is followed by 6 bottleneck

residual blocks (RBs). Each RB contains 3 Conv1D layers.

Each of the Conv1D layers is pre-activated by LN followed

by SELU activation function. The output size of the first and

the second Conv1D layer is 64, while the third one is 512. In

addition, the first and third Conv1D layer has the kernel size

of 1, whilst the second Conv1D layer has the kernel size of 3.

Therefore, the first Conv1D layer in each RB compresses the

input to a lower-dimensional embedding. The last RB (6th) is

followed by the output layer, which is a fully-connected layer

(output size 512) with tanh units [31].

The stack of six RBs containing 18 Conv1D layers in the

proposed ResNet20 exhibits a deep architecture. It is observed

that the Conv1D layers in the lower RBs (close to the input

layer), the gradients calculated from the backpropagated error

signals of the Conv1D layers in the higher RBs, become

Fig. 3. One-dimensional CNN structure with (a) standard convolution and (b)
causal convolution.

progressively smaller or vanishing. It is referred to as the

vanishing gradient problem [32]. Due to the vanishing gra-

dients, connection weights at Conv1D layers in the lower RBs

are not modified much, which reduces the learning capability

during training. As long as the ResNet20 goes deeper, its

performance gets saturated or even starts degrading rapidly. To

alleviate this problem, a skip connection mechanism has been

introduced in [25]. To improve the flow of information and

gradients throughout the proposed ResNet20, we also utilize

skip connections between the input and out layers of the RBs.

The skip connection is represented by dotted line (Fig. 2). It

can be seen that the skip connection bypass the output of each

RB and added to the output of the next RB. To facilitate the

skip-connection, the output size of the third Conv1D layer in

each RB is set to 512. The skip-connection does not add any

extra parameter or computational complexity. Rather, it acts

as an identity mapping of the ResNet20 model, which ensures

that the Conv1D layers in the higher RBs will perform as good

as the Conv1D layers in the lower RBs.

IV. SPEECH ENHANCEMENT EXPERIMENT

A. Training Set

For training the proposed ResNet20, a total of 30, 000
clean speech recordings are randomly selected belonging to

the train-clean-100 set of the Librispeech corpus [33], the

CSTR VCTK corpus [34], and the si∗ and sx∗ training sets of
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the TIMIT corpus [35]. Among the 5% of 30, 000, i.e., 1500
speech recordings are randomly selected for cross-validation

of the ResNet20 accuracy during training. That means, 28, 500
speech recordings are used for training of the ResNet20. On

the other hand, a total of 500 noise recordings are randomly

selected from the QUT-NOISE dataset [36], the Nonspeech

dataset [37], the Environmental Background Noise dataset

[38], [39], the noise set from the MUSAN corpus [40]. In

addition, the 5% of 500, i.e., 25 noise recordings are selected

for cross-validation purposes, while the remaining 475 of them

are used for training. All the clean speech and noise recordings

are single-channel with a sampling frequency of 16 kHz.

B. Training Strategy

The following training strategy was employed to train the

proposed ResNet20 for noise waveform estimation:

• The widely used ’mean square error’ is used as the loss

function during training.

• The Adam algorithm [41] with default hyperparameters

is also adopted for the gradient descent optimisation.

• Gradients are clipped between [−1, 1].
• A total of 120 epochs are used to train the ResNet20.

• The number of training examples in an epoch is equal

to the number of clean speech recordings used in the

training set, i.e., 28, 500.

• A mini-batch size of 1 noisy speech signal is used.

• The noisy speech signals are generated as follows: each

randomly selected clean speech recording (without re-

placement) is corrupted with a randomly selected noise

recording (without replacement) at a randomly selected

SNR level (-10 to +20 dB, in 1 dB increments).

C. Test Set

For objective experiments, 30 clean speech utterances be-

longing to six speakers (3 male and 3 female) are taken from

the NOIZEUS corpus. The speech recordings are sampled at

16 kHz [42, Chapter 12]. We generate a noisy speech data

set by corrupting the speech recordings with (traffic) and

(restaurant) noise recordings selected from the noise database

used in [38], [39] at multiple SNR levels varying from -5dB

to +15 dB, in 5 dB increments. It is also important to note

that the speech and the noise recordings are unseen and not

used in training the proposed ResNet20 method.

D. Evaluation Metrics

The objective quality and intelligibility evaluation are car-

ried out through the perceptual evaluation of speech quality

(PESQ) [43] and quasi-stationary speech transmission index

(QSTI) [44] measures. We also analyze the spectrograms of

the enhanced speech produced by the proposed and benchmark

SEAs to quantify the level of residual noise and distortion.

The subjective evaluation was carried out through blind

AB listening tests [45, Section 3.3.4]. It is conducted on the

utterance sp05 (“Wipe the grease off his dirty face”) corrupted

with 5 dB traffic noise. The enhanced speech produced by

five SEAs as well as the corresponding clean and noisy speech

recordings, a total of 42 stimuli pairs played in a random order

to each listener, excluding the comparisons between the same

method. For each stimuli pair, the listener prefers the first or

second stimuli which is perceptually better, or a third response

indicating no difference is found between them. A 100% award

is given to the preferred method, 0% to the other, and 50% to

each method for the similar preference response. Participants

could re-listen to stimuli if required. Five English speaking

listeners participate in the AB listening tests. The average of

the preference scores given by the listeners, termed as the

mean preference score (%).

The performance of the proposed method is carried out

by comparing it with the benchmark methods, such as raw-

waveform processing using FCNN (RWF-FCN) method [21],

phase-aware DNN (IAM+IFD) method [22], deep learning-

based KF (DNN-KF) method [23], AKF-Oracle method

(where ({ai}, σ2

w) and ({bk}, σ2

u) are computed from the clean

speech and noise signal) and no-enhancement (Noisy).

E. Results and Discussion

Fig. 4 (a)-(b) demonstrates that the proposed SEA consis-

tently shows improved PESQ score over the benchmark SEAs,

except the AKF-Oracle method for all test noise conditions as

well as the SNR levels. The IAM+IFD method [22] relatively

exhibits better PESQ score among the benchmark methods

across the noise experiments. The no-enhancement (Noisy)

shows the worse PESQ score in any condition.

Fig. 4 (c)-(d) also shows that the proposed method demon-

strates a consistent QSTI score improvement across the noise

experiments as well as the SNR levels, apart from the AKF-

Oracle method. The existing IAM+IFD method [22] is found

to be competitive with the proposed method typically at low

SNR levels. However, at high SNR levels, all SEAs, even

the no-enhancement (Noisy) case relatively shows competitive

QSTI scores across the noise conditions.

It can be seen that the enhanced speech produced by the

proposed SEA (Fig. 5 (f)) exhibits significantly less residual

noise than that of the benchmark SEAs (Fig. 5 (c)-(e)) and is

closely similar to the AKF-Oracle method (Fig. 5 (g)). When

going from RWF-FCN method [21] to IAM+IFD method [22]

(Fig. 5 (c)-(e)), noise-flooring is seen decreasing. The informal

listening tests conducted on the enhanced speech also confirm

that the benchmark SEAs relatively produce annoying sound as

compared to negligible audio artifacts by the proposed method.

The outcome of AB listening tests in terms of mean

preference score (%) is shown in Fig. 6. It can be seen that

the enhanced speech produced by the proposed SEA is widely

preferred by the listeners (around 72%) than the benchmark

methods, apart from the AKF-Oracle method (around 81%)

and clean speech signal (100%). The IAM+IFD method [22]

is found to be the best preferred (60%) amongst the benchmark

methods, followed by the DNN-KF method [23] (48%), and

RWF-FCN method [21] (31%).

V. CONCLUSION

This paper introduced a deep residual network-based aug-

mented Kalman filter for speech enhancement in various
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noise conditions. Specifically, the proposed ResNet20 gives

an estimate of the instantaneous noise waveform for each

noisy speech frame. The noise LPC parameters are computed

from the estimated noise. Each noisy speech frame is pre-

whitened by a whitening filter, which is constructed with the

corresponding noise LPCs. The speech LPC parameters are

computed from the pre-whitened speech. Since the ResNet20

is trained with a large training set, it is capable to accurately

estimate the speech and the noise LPC parameters in various

noise conditions. The AKF constructed with the improved

speech and noise LPC parameters is capable to minimize

residual noise and distortion in the enhanced speech. Extensive

objective and subjective testing on NOIZEUS corpus reveal

that the proposed method outperforms some benchmark meth-

ods in various noise conditions for a wide range of SNR levels.
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