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Abstract—Harmonic structure, an important characteristic of
speech signals, has been utilized in various speech processing
applications, such as dereverberation, fundamental frequency
(f0) estimation, voice activity detection (VAD), phase reconstruc-
tion and source separation. This paper presents a harmonic
structure mask for those speech enhancement applications based
on sparsity regularization via convex optimization. Specifically
speaking, we first derive a harmonic structure mask of the
noisy speech using f0 and VAD estimations, then use this mask
to protect harmonic components of speech during the sparsity
regularization process. The proposed mask benefits from the
additional harmonic information, leading to better protection
of harmonic components. Numerical experiments show that the
proposed mask can improve speech quality and intelligibility
compared to the previous work.

I. INTRODUCTION

Enhancing noisy single-channel speech corrupted by addi-
tive noise only from the noisy observation has been an active
topic in speech processing [1]. These works can be classi-
fied as spectral subtraction [2], minimum mean-square error
(MMSE) estimation [3], [4], machine learning [5] and sparsity
regularization [6]–[8] methods. Though the aforementioned
methods have yielded good performance, few of them took
harmonic structure into account. As a unique characteristic of
speech as well as many other audio signals such as musical
instruments, harmonic structure has been extensively used in
many speech processing applications, such as dereverberation
[9] , fundamental frequency (f0) estimation [10], voice activity
detection (VAD) [11], phase reconstruction [12] and source
separation [13]. In this paper, we describe theses studies taking
harmonic structure into consideration as “harmonicity-aware”.
The majority of harmonicity-aware speech processing appli-
cations are based on the assumption that speech is a weighted
superposition of several sinusoids at integer multiples of f0

including itself. This assumption can derive a binary harmonic
structure mask on the time-frequency domain, which illustrates
the locations on the time-frequency domain where harmonic
components may exist.

In this paper, we use this mask to bring harmonicity into
speech enhancement methods based on sparsity regularization
via complex optimization (e.g., [6], [7]). In particular, we
propose to design an element-wise mask (matrix) based on a
smoothed harmonic mask and insert it into the regularization

model from the previous work. This mask is calculated from
the binary harmonic mask and the window function of the
short-time Fourier transform (STFT). This smoothed harmonic
mask can control the sparsity of the estimation, leading to bet-
ter protection of harmonic sturcture. To evaluate the proposed
mask, a recently proposed optimization model presented in
[6]–[8] is chosen as the baseline method. Numerical experi-
ments compare the performances between the method with and
without the proposed mask. Results show that the proposed
mask helps to outperform the original method with better
speech quality and intelligibility at various SNRs conditions
under several noise types.

II. RELATION TO PRIOR WORK

Some previous works have succeed in bringing harmonic-
ity into their methods [14]–[18]. Here we briefly introduce
these works. Ref. [14] proposed a harmonic-regeneration us-
ing a non-linear operation to artificially create a fully har-
monic noisy observation and used it as additional information
to preserve harmonic components. Ref. [15] combined the
Wiener filtering with harmonic information and presented an
harmonicity-aware MMSE-optimal estimator. Ref. [16] took
advantage of harmonic phase reconstruction and presented a
harmonicity-phase-aware amplitude estimator. Ref. [17] ex-
tended the conventional hidden Markov model (HMM)-based
MMSE estimator to enhance the harmonic components for
voiced speech. These works, as well as many other related
ones, introduced harmonicity to their models as an independent
prior. In contrast to these works, we focus on bringing har-
monicity into speech enhancement methods based on sparsity
regularization in a much simpler way, which is the harmonic
structure mask.

Generally, two approaches are taken to introducing har-
monicity into convex optimization for speech enhancement.
The first one is inserting a harmonicity-aware prior, which is
difficult because of the unpredictable weightings for each har-
monic components are unknown, meaning that it is unrealistic
to calculate the cost (or “distance”) between the estimation and
the desired amplitude of each harmonic. This is the reason
why we take the other approach, adding a mask to support
the convergence, in this study. The proposed mask requires no
additional prior, and just simply lead the convergence into a
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harmonicity-protective direction. This simplicity indicates the
possibility that various modifications of the proposed mask
can be easily developed based on specific purposes.

III. HARMONIC STURCTURE MASK

A. Harmonic speech model and notation

We assume that clean speech x[n] is corrupted by additive
noise d[n] and the noisy observation is y[n] = x[n] + d[n].
The STFT coefficients of the noisy observation are denoted as

Y [k, τ ] = X[k, τ ] +D[k, τ ], (1)

where k, τ are indexes of frequencies and time frames re-
spectively. Y [k, τ ], X[k, τ ] and D[k, τ ] are the complex STFT
coefficients for y[n], x[n] and d[n] respectively. Based on the
following hypotheses [12],

• Voice speech is a weighted superposition of several
sinusoids at integer multiples of f0 including itself, the
harmonic frequencies are f [h, τ ] = (h + 1)f0[τ ], where
h denotes the index of harmonic components.

• Each harmonic component dominates the frequency
bands in its direct neighborhood and the influence of other
harmonic components on this neighbor can be neglected.

we define the frequency indexes of harmonic components as

k∗[h, τ ] = arg min
κ

|κ− Kf [h, τ ]

fs
|, (2)

where Kf [h, τ ]/fs is a non-integer value for mapping har-
monic frequencies into integer indexes. K, fs are the maxi-
mum of frequency indexes and the sampling-rate. Hence, the
binary mask of harmonic components is represented as

H[k, τ ] =

{
1, (k = k∗[h, τ ] ∧ v[τ ] = 1)
0, (otherwise)

, (3)

where v[τ ] shows whether τ th frame is a voiced frame (1
for true, 0 for false). The binary mask H[k, τ ] illustrates the
appearance of harmonic components on the time-frequency
domain. However, due to the analysis window function w[n]
used in STFT, harmonic components leak their power into the
neighbored frequency bands. Therefore, we can calculate a
more practical harmonic mask, which is smoothed (or blurred)
by the cyclic convolution between the binary mask H[k, τ ] and
the frequency response of w[n]. The smoothed harmonic mask
is denoted by

H
′
[:, τ ] = W [k] ~H[:, τ ], (4)

where W [k] is the amplitude response of w[n] and ~ denotes
the convolution operator along with the frequency direction.
The smoothed harmonic mask H ′[k, τ ] is an “element-wise
map” representing “how much power do harmonic components
have for every single time-frequency cell”. In this paper, the
proposed harmonicity-aware parametrization takes advantage
of H ′[k, τ ].

B. Sparsity control by proposed harmonic structure mask

It is known that the speech amplitude spectrogram is
sparse especially in those time-frequency cells without har-
monics. This characteristic has been used in many convex-
optimization-based speech enhancement applications [6]–[8].
Generally, most of the convex-optimization-based speech en-
hancement applications can be simplified as

Ŝ = arg min
S

1

2
‖Y − S‖2F + ‖S‖1,Λ + G(S), (5)

where Y, S ∈ RK×T+ are the noisy and estimation amplitude
spectrograms. G(S) is a cost function varies from different pur-
poses. ‖S‖F is the Frobenius norm of S. Λ ∈ RK×T+ denotes
an element-wise regularization parameter matrix for ‖S‖1,Λ.
This element-wisely parameterized `-1 norm is defined as

‖S‖1,Λ =

K∑
k=1

T∑
τ=1

Λ[k, τ ]S[k, τ ], (6)

where K × T is the size of the STFT coefficient matrix.
The concept of the proposed parametrization is to control

the sparsity of the estimation by modifying the original param-
eters using H

′
[k, τ ], in terms of better harmonic protection.

Basically, the bigger Λ[k, τ ] is, the more sparse Ŝ[k, τ ] will
be. Therefore, it is an extremely simple and natural way to
use H

′
[k, τ ] to modify Λ[k, τ ], because H

′
[k, τ ] represents

“which time-frequency cell should be sparse and how much
sparsity should be retained.” The proposed harmonicity-aware
parametrization Λ′[k, τ ] is proposed as

Λ′[k, τ ] = (1− H ′[k, τ ]

max{H ′}
)Λ[k, τ ], (7)

where max{∗} is the operator for extracting the maximum. For
those time-frequency cells with high H

′
[k, τ ] values, Λ′[k, τ ]

becomes extremely small, even 0, leading to the protection
effect of harmonics. On the contrary, for others with low
H

′
[k, τ ] values, Λ′[k, τ ] approximately remains unchanged,

leading to the noise reduction effect. We define this modifica-
tion mask as

H[k, τ ] = 1− H ′[k, τ ]

max{H ′}
. (8)

Figure 1 visualizes the harmonic masks and the proposed
modification mask.

IV. NUMERICAL EXPERIMENT

A. Baseline optimization model

To evaluate the proposed mask, we choose an optimization
model a recently proposed speech enhancement method based
on sparsity regularization [6] as the baseline. The optimization
model is formulated as

Ŝ = arg min
S

1

2
‖Y − S‖2F + ‖S‖1,Ω + ‖∇τS‖1,Θ , (9)

where ∇τ is the temporal derivative operator. Ω,Θ ∈ RK×T+

are the original element-wise parameter matrixes proposed in
[6]. This optimization model maximizes the sparsity of speech
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Fig. 1. Illustration of the proposed parametrization. (a): Clean speech spectro-
gram |X[k, τ ]|. (b): Binary harmonic mask H[k, τ ] representing where har-
monic components exist. (c): Smoothed harmonic mask H

′
[k, τ ] calculated

using (4). (d): The proposed parametrization modification mask H[k, τ ].

amplitude spectrogram as well as its temporal derivative
simultaneously, both of which should be sparse in those time-
frequency cells without harmonic components.

The original parametrization Ω is based on the noise power
estimation from L silent frames at the beginning of the noisy
observation, defined as

Ω[k, :] =
1

L

L∑
τ=1

|Y [k, τ ]|, (10)

where L is the number of silent frames. As shown in this
equation, Ω is temporally constant, and the parameters of
each frequency band are determined by the average ampli-
tude of noise. For those frequency bands with higher noise
amplitude estimations, Ω penalizes them more compared with
those bands with lower noise power. This noise-estimation-
based parametrization has been widely used in many other
studies [2], [3], [8], [19]. However, one of the weakness
of the noise-estimation-based parametrization strategy is that
it cannot handle time-varying noise such as speech babble
noise properly. To solve this issue, in this paper, the proposed
method improves its performance by incorporating harmonic
information to make sure the algorithm will not suppress
harmonics even when the accuracy of noise estimation is not
satisfying.

Θ controls the sparsity of the time derivative of S, defined

as

Θ[:, :] =
1

TK

K∑
k=1

T∑
τ=1

|∇τY |. (11)

Θ calculates the average of the total variation (TV) of the
noisy amplitude spectrogram Y and all elements of Θ are
identical. This unified value represents the TV level of the
noisy amplitude spectrogram, which is highly relevant to the
noise type (if the input SNRs are the same). For example,
those non-stationary noise types (e.g., speech babble noise)
with intense time fluctuation may result in a higher Θ than
stationary noise (e.g., white noise). Θ penalizes the TV of S
to achieve better performance.

By introducing the proposed harmonic structure mask into
(9), we get

Ŝ = arg min
S

1

2
‖Y − S‖2F + ‖S‖1,H�Ω + ‖∇τS‖1,H�Θ ,

(12)
where � is the Hadamard product. As shown in this equation,
the proposed parametrization just simply modifies the orig-
inal parameters Ω,Θ by element-wise multiplication by H,
and requires no additional prior to the optimization model.
Furthermore, note that for those unvoiced frames, the values
of proposed modification mask H equal to 1, meaning the
proposed method maximize the penalty of noise compared to
those time-frequency cells containing harmonics. This mech-
anism is considerably safe since only noise exists in unvoiced
frames.

Here we briefly describes that (9) and (12) are solved by
the alternating direction method of multipliers (ADMM) [20],
an iterative convex optimization solver.

B. Experiment and result

To evaluate the performance of the proposed mask, we
carried out objective evaluations evaluating speech quality
and intelligibility improvements by the perceptual evaluation
of speech quality (PESQ) [21] and the short-time objective
intelligibility (STOI) [22]. Twenty utterances (10 of female
and 10 of male) were randomly selected from the TIMIT
database [23] sampled at 8 kHz / 16 bit. The speech was
degraded by white Gaussian, speech babble and factory
noise from the NOISE-92X database [24] at various input
SNRs (-3 dB, 0 dB, 3 dB, 6 dB, 9 dB). STFT used 32
ms Hamming window with 1/4 shift and 2048 point discrete
Fourier transform. f0 & VAD were estimated by [25], [26]
respectively.

The evaluation targets are as follows: Base. : Solving (9).
Prop. : Solving (12) with estimated H. Prop.* : Solving (12)
with oracle H. The estimated and oracle H mean that H is
calculated by f0 & VAD derived from the noisy observations
and clean speech, respectively.

The experimental results are summarized in Table I. Results
show that the proposed mask can help (9) to perform better
and result in higher PESQ and STOI. For all types of noise,
the proposed mask with the estimated f0 & VAD has almost
the same performance compared with the baseline in terms of
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TABLE I
THE AVERAGE PESQ AND STOI. Underlined bold font MEANS THE BEST PERFORMED METHODS AND bold font FOR THE SECOND ONES.

White noise babble noise Factory noise

-3 dB 0 dB 3 dB 6 dB 9 dB -3 dB 0 dB 3 dB 6 dB 9 dB -3 dB 0 dB 3 dB 6 dB 9 dB

PESQ

Noisy 1.37 1.52 1.70 1.89 2.09 1.61 1.87 2.05 2.24 2.43 1.55 1.74 1.94 2.14 2.35
Base. 1.83 2.07 2.22 2.45 2.67 1.65 2.04 2.13 2.35 2.56 1.80 2.06 2.28 2.48 2.68
Prop. 1.85 2.08 2.31 2.51 2.70 1.71 2.09 2.18 2.39 2.60 1.78 2.05 2.29 2.50 2.70
Prop.* 2.12 2.31 2.48 2.65 2.80 1.91 2.11 2.30 2.50 2.67 2.06 2.29 2.44 2.62 2.79

STOI

Noisy 0.57 0.64 0.72 0.78 0.84 0.59 0.65 0.72 0.78 0.83 0.57 0.64 0.71 0.78 0.84
Base. 0.58 0.67 0.75 0.82 0.87 0.55 0.63 0.71 0.78 0.84 0.56 0.64 0.72 0.79 0.85
Prop. 0.61 0.71 0.78 0.84 0.88 0.58 0.67 0.74 0.80 0.85 0.59 0.68 0.76 0.82 0.87
Prop.* 0.65 0.72 0.79 0.84 0.88 0.60 0.68 0.75 0.81 0.88 0.62 0.69 0.76 0.82 0.87

Fig. 2. Spectrograms.

PESQ. However, given the oracle f0 & VAD, the proposed
method completely outperforms all of the other comparison
targets, which experimentally proves that the concept of im-
proving speech quality by controlling sparsity of harmonic
and non-harmonic time-frequency cells. As for the STOI
results, regardless of the accuracies of f0 & VAD estimations,
the proposed mask has better speech intelligibility than the
baseline. This is because that, STOI is designed with a time-
frequency weighting process which predicts higher speech
intelligibility scores if harmonics of speech are protected [22].

As the proof of the protection effect of the proposed mask,
Fig. 2 shows the difference between spectrograms of the
evaluation targets. From Fig. 2 We can see that the corrupted
harmonic components in the noisy spectrogram are completely
compressed in the baseline method. Whereas, with the help of
the proposed mask, the vanished harmonic components are
preserved.

Besides the numerical results, an example of converging
behaviors under white noise is illustrated in Fig. 3. The
converging behaviors of the baseline model achieved relatively
good performance for both PESQ and STOI but degraded
soon. This phenomenon implies that the baseline model cannot
stop the optimization model from penalizing some of the
vital harmonic components too much, leading to the degraded

Fig. 3. The converging behaviors under white noise at various input SNRs.

speech quality and intelligibility. However, the proposed mask
can protect harmonic components and lead the optimization
process towards a speech quality and intelligibility improving
direction, despite the fact that there is no harmonicity-aware
prior in this optimization model in the first place, and simply
achieve that with a single mask insertion. Clearly, the per-
formance of the proposed method is heavily affected by the
accuracy of f0 estimation, which indicates that the resolution
of time-frequency analysis matters. Currently, the proposed
method needs relatively high frequency resolution to ensure
the accuracy of f0 estimation, and this could be considered as
one of the limitation of the proposed method.

V. CONCLUSION

In this paper, we introduced a harmonic structure for speech
enhancement applications those based on sparsity regulariza-
tion. We presented a method to incorporate harmonic infor-
mation into existing optimization models by add a harmonic
structure mask. Numerical experiments based on a recently
proposed optimization model [6] showed the effectiveness of
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the proposed mask. The proposed mask is extremely simple,
yet able to bring speech quality and intelligibility improve-
ments to those existing optimization models. Note that the
proposed mask is not designed for some specific optimization
models, and it can be applied to many other similar works as
well.
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