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Abstract— Spoken-term detection (STD) has recently attracted 

increased interest in speech-based retrieval research. STD is the 

task of finding sections in speech data matching a query consisting 

of one or more words. Query by example (QbE) using spoken 

queries is another important research topic in STD. Although the 

use of posteriorgrams (sequences of output probabilities 

generated by deep neural networks from speech data) is a 

promising approach for QbE, that method results in long retrieval 

times and excessive memory usage. We previously proposed a 

method that replaces posteriorgrams for spoken queries with 

sequences of state numbers for triphone hidden Markov models, 

omitting calculations of local distance. While that method greatly 

reduced retrieval times, it still required large amounts of memory 

to store speech data posteriorgrams. We therefore newly propose 

a method for reducing memory usage and retrieval times by 

compressing speech data posteriorgrams into sets of posterior 

probability vectors for each utterance, each speech document, or 

all speech data, rather than storing all posterior probability 

vectors for each frame of speech data. Evaluation experiments 

conducted using open test collections for the “SpokenDoc” tasks 

of the NTCIR-10 and NTCIR-12 workshops demonstrate memory 

usage reduction by the proposed method. 

Keywords— Spoken-term detection; Query by example; Average 

posterior probability vector 

I. INTRODUCTION 

The development and spread of cloud systems has increased 

opportunities for use of large multimedia datasets, including 

voice data. A retrieval function is required to find a specific 

scene in a large audio dataset. Studies of spoken-term detection 

(STD), the task of detecting a section where a search word 

(query) is spoken, have been actively conducted to realize such 

a function.  

STD workshops have been held in Japan and overseas [3–5, 

16–18], evaluating STD systems from viewpoints such as 

retrieval accuracy, retrieval time, required memory, and 

indexing time. With the spread of smart devices, research in 

recent years has extended to so-called query by example (QbE) 

and spoken-query STD, where queries are given by voice. 

Posteriorgram matching is a representative method for 

realizing QbE. Posterior probabilities for each state in a 

triphone hidden Markov model (HMM) are generated at every 

frame by outputs from a deep neural network (DNN) whose 

inputs are features extracted from speech data and a spoken 

query. The posterior probabilities for all states are obtained at 

each frame as a posterior probability vector. Posteriorgrams 

consist of posterior probability vectors for speech data. While 

posteriorgram matching between posteriorgrams of spoken 

queries and speech data provides high retrieval accuracy, these 

methods also require long retrieval times and large amounts of 

memory [6]. This is because posterior provability vectors have 

several thousands of dimensions, and posteriorgrams require 

memory space for several thousands of posterior probability 

vectors for all frames across the entirety of speech data. Further, 

it requires long times to calculate inner products between two 

posterior probability vectors at every grid point in dynamic 

programming (DP) or dynamic time-warping matrixes to 

obtain local distances. 

To reduce retrieval times, we previously proposed a method 

for determining the maximum likelihood state for each 

posterior probability vector of each frame in a posteriorgram 

[7]. The maximum likelihood state is associated with the state 

denoting the highest posterior probability among the posterior 

probability vector states. The method extracts a maximum 

likelihood state sequence (MLSS), namely, the maximum 

likelihood state sequence for a spoken query. 

A MLSS does not require calculations for obtaining local 

distances, such as the inner product of two posterior probability 

vectors, and it refers to only the posterior probability in 

posteriorgrams at every grid point in a DP matrix. Use of a 

MLSS reduces retrieval times, but maintaining the retrieval 

accuracy of posteriorgram matching still consumes large 

amounts of memory, equivalent to the posteriorgram size. 

The paper propose a novel method for reducing memory 

consumption by compressing speech-data posteriorgrams to an 

average posterior vector matrix of speech data instead of 

maintaining all speech-data posteriorgrams. The proposed 

method introduces three types of compression unit, namely, 

those for utterances, spoken documents, and all speech data. In 

the proposed method, speech data are first converted into a 

maximum likelihood state sequence, then a state number is 

assigned to each frame. Next, “category frames” indicating the 

same maximum likelihood state number for speech data are 

extracted. Posterior probability vectors are averaged for all sets 

of same-category frames. Posteriorgrams are then compressed 

to a set of averaged posterior probability matrixes for the 

appearing states. It is unnecessary to generate average posterior 

probability vectors for non-appearing states because these 
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states are not referred to in DP matching. Each posterior 

probability in the average posterior probability vector is 

converted to a local distance in the same manner as in the 

maximum likelihood state method. Average posterior 

probability matrixes are transformed to distance matrixes, 

which are constructed for each compression unit. For example, 

the number of distance matrixes equals the number of spoken 

documents when the compression unit is set to spoken 

documents. In DP matching, the local distance is only referred 

to in the distance matrixes for each compression unit of speech 

data. In this paper, this proposed method is called the average 

posterior probability vector (APPV) method. APPV reduces 

both retrieval times and memory usage. 

The remainder of this paper is organized as follows. Section 

2 describes the conventional STD system and acoustic distance. 

Section 3 describes the proposed acoustic distances in detail. 

Section 4 describes application of the “SpokenDoc” open test 

collections from the NTCIR-10 and NTCIR-12 workshops to 

evaluate retrieval accuracies in the proposed method, and 

Section 5 presents our conclusions. 

II. RELATED WORK 

A. Posteriorgram Matching [6] 

Using posteriorgram matching between a spoken query and 

speech data at the frame level in QbE generally provides high 

retrieval accuracy. Equation (1) gives the local distance 

between two posterior probability vectors for a spoken query 

and the speech data. CDP matching is performed calculating 

each distance for all DP grid points [11, 12].  

 

𝐷𝑖𝑠 (𝑷𝒒(𝒊), 𝑷𝒅(𝒋)) = −𝑙𝑜𝑔10(𝑑𝑜𝑡(𝑷𝒒(𝒊), 𝑷𝒅(𝑗))) 

 

Here, 𝑷𝒒 is the posteriorgram of the spoken query, and 𝑷𝒒(𝒊) 

is the posterior probability vector for the i-th frame. Similarly, 

𝑷𝒅 and 𝑷𝒅(𝒋) are respectively the posteriorgram of the speech 

data and the posterior probability vector at the j-th frame. 

Because the inner product of 𝑷𝒒(𝒊)  and 𝑷𝒅(𝒋)  indicates 

similarity between the two vectors, its negative logarithm is 

used as the local distance. Calculation of this inner product 

requires a long retrieval time, because the posterior probability 

vector for 𝑷𝒒(𝒊)  and 𝑷𝒅(𝒋)  in Equation (1) is of several 

thousand dimensions. Storing speech data posteriorgrams thus 

also requires a large amount of memory. 

B. Maximum Likelihood State Sequence 

The MLSS method [7] was proposed to reduce retrieval 

times in posteriorgram matching. MLSS replaces 

posteriorgrams for spoken queries with sequences of maximum 

likelihood state numbers for each frame. This method does not 

require calculation of the inner product between posterior 

probability vectors for local distances, which are computed in 

advance. MLSS refers to only the distance matrix instead of 

posteriorgrams of speech data. 

Figure 1 shows an image of a MLSS. Speech data are 

converted into posteriorgrams in advance. All posterior 

probabilities in posteriorgrams are converted into local 

distances by Eq. (2), and this distance matrix is stored instead 

of the speech data posteriorgrams. Spoken queries are 

converted to posteriorgrams (upper left in Fig. 1), and a 

maximum likelihood sequence (maximum likelihood state 

number sequence) is obtained from the posteriorgram of the 

spoken query (upper right in Fig. 1). Because the distance 

matrix is referred to only to obtain a local distance in DP 

matching, no calculation of local distances is required. For 

example, if the third frame of a query denotes state 1 in the 

figure, the distance of the second frame of speech data is 

obtained by referring to the first row in the distance matrix, 

circled in red. 

 

𝐷𝑖𝑠(𝒊, 𝑷𝒅(𝒋)) = −𝑙𝑜𝑔10(𝑷𝒅(𝑖, 𝑗)) 

 

 

 

Fig. 1 Maximum likelihood state sequence image. 

III. AVERAGE POSTERIOR PROBABILITY VECTOR 

COMPRESSION 

MLSS reduces retrieval times, but the retrieval accuracy is 

slightly deteriorated as compared with posteriorgram matching, 

and memory usage remains unchanged. We thus propose the 

average posterior probability vector (APPV) method, which 

reduces memory consumption by compressing speech data 

posteriorgrams for each speech data compression unit. As 

mentioned above, three types of compression unit are described 

in this paper: those for utterances, spoken documents, and the 

entirety of speech data. The following describes the proposed 

method in detail. 

In the APPV method, the matching process is nearly 

identical to that under MLSS. Speech data are compressed for 

each compression unit. Figure 2 illustrates the process for 

constructing an APPV, taking all speech data as the 

compression unit. Speech data are converted to posteriorgrams 

(left part in Fig. 2), and each posteriorgram frame is assigned 

to the HMM state whose posterior probability indicates the 

highest posterior probability vector (bottom of left part). Each 

speech data frame is associated with the maximum likelihood 

state number. Because all frames are categorized by state 
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number, frames with same frame numbers are gathered for each 

speech data compression unit. Average posterior probabilities 

for each state are computed and average posterior probability 

vectors for frames with the same state number are obtained for 

each compression unit (right part in Fig. 2). The posteriorgram, 

therefore, can be compressed because posterior probability 

vectors in a compression unit are replaced with average 

posterior probability vectors. All posterior probabilities in 

APPV are converted into local distances by Eq. (3), and this 

distance matrix is stored instead of the speech data 

posteriorgrams. Here, 𝑨𝑷𝒅 is the APPV matrix of the speech 

data, and 𝑨𝑷𝒅(𝒋) is the average posterior probability vector for 

the j-th frame. For example, when taking a spoken document 

as the compression unit, the number of distance matrixes is the 

number of spoken documents. When the entirety of speech data 

is the compression unit, there is only one distance matrix. 

During CDP matching, local distances refer to only the distance 

matrixes of the average posterior probability vectors. 

The required memory size is only 36 MB (4 bytes per 

dimension × 3,000 states × 3,000 dimensions per state) for a 

single distance matrix, because each state is an average 

posterior probability vector of 3,000 dimensions when the 

number of states is 3,000. Given 30 hr of speech data, the 

maximum likelihood sequence is 21 MB (2 bytes per 

dimension × 1 dimension per frame × 100 frames per sec × 30 

hr × 3,600 sec per hr) to hold the state number, a total of 57 

MB. 

 

𝐷𝑖𝑠(𝒊, 𝑨𝑷𝒅(𝒋)) = −𝑙𝑜𝑔10(𝑨𝑷𝒅(𝑖, 𝑗)) 

 

 

Fig. 2 Constructing an APPV. 

IV. EVALUATION EXPERIMENTS 

A. Experimental Conditions 

We used 2,525 presentation speeches (about 560 hr of 

speech data) from the Corpus of Spontaneous Japanese [8], 

excluding 177 speeches, to train acoustic and language models. 

The input features were 83 dimensions, comprising 80 

dimensions of filter bank features and 3 dimensions of pitch 

features. Table 1 shows the feature extraction conditions. 

The ESPnet [9] shared encoder consists of 12 layers, 2,048 

units, and 320 hidden units. 3,213-dimensional output 

probabilities corresponding to characters are generated from 

the output layer of the shared encoder and regarded as the 

feature vector. The connectionist temporal classification (CTC) 

of a hybrid CTC/attention-based end-to-end architecture 

receives the feature vector to the shared decoder and out puts, 

a posterior probability vector of 3,214 dimensions of characters 

and the blank symbols. We use posteriorgrams obtained from 

the CTC architecture for speech retrieval. 

In preliminary experiments, we improved search accuracies 

by processing blanks so that their state numbers were not 

consecutive. Therefore, the maximum likelihood sequence is 

saved with blank portions with consecutive state numbers 

removed. 

When computing retrieval times, we used an Intel Core i7-

4770 CPU and 16 GB of RAM. 

Table 1 Conditions for feature extraction. 

 

Table 2 ESPnet learning requirements. 

 

B. Test Sets 

We used open test collections from NTCIR-10 and NTCIR-

12 as test sets in the evaluation experiments. We constructed 

and recorded 100 spoken queries uttered by a total of ten 

students (five of each gender) because there were no spoken 

queries in the NTCIR-10 dataset. The NTCIR-12 dataset, 

however, provides 113 spoken queries uttered by ten persons. 

NTCIR-10 and NTCIR-12 respectively contain 104 Spoken 

Document Processing Workshop (SDPWS) presentation 

speeches (40,746 utterances over about 29 hr) and 98 SDPWS 

presentation speeches (37,782 utterances over about 29 hr). 

Mean average precision (MAP; the average of 10 APs × APs 

of the number of queries) was used as an evaluation index for 

retrieval accuracy. 

 

Feature parameter 

83 dimensions 

(FBANK, 80 dim 
+ Pitch, 3 dim) 

Window length 25 ms 

Frame shift 10 ms 

Sampling frequency 16 kHz 

Number of quantization bits 16 

Learning library PyTorch 

Number of epochs 22 

Batch size 8 

Number of states 3,214 

(3) 
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Table 3 The two open test collections. 

 NTCIR-10 NTCIR-12 

Speech 

data 

SDPWS, 104 

presentations, 

29 hr,  

40,746 utterances 

SDPWS, 98 

presentations, 

29 hr,  

37,782 utterances 

Queries 
Formal run: 100 

(10 persons) 

Formal run: 113 

(10 persons) 

 

C. Comparison with Former Research 

We conducted evaluation experiments to compare the 

proposed APPV method with MLSS under the conditions 

described above. In this section, all posteriorgrams for all 

speech data (104 SDPWS speeches and 98 SDPWS speeches) 

were compressed into a single average posterior probability 

vector matrix. Figure 3 shows the results, with bar graphs 

showing MAP and line graphs showing memory consumed. 

MLSS retrieval accuracies for NTCIR-10 and NTCIR-12 

were 81.72% and 81.54%, respectively. When compression 

was performed for all speech data, APPV retrieval accuracies 

for NTCIR-10 and NTCIR-12 were 71.66% and 70.20%, 

respectively, and the average MAP decreased by 10.69. 

However, MLSS required 30.03 GB and 28.08 GB of memory 

for NTCIR-10 and NTCIR-12, respectively, while APPV 

required only 18 MB for both. Required memory size was thus 

reduced by about 1/1,450. Under both MLSS and APPV, the 

retrieval time for both NTCIR-10 and NTCIR-12 was 0.9 sec. 

The deterioration in retrieval accuracy under APPV is 

mainly due to the decreased amount of information in the 

speech data. Also, conversion errors from posteriorgrams of 

speech data to maximum likelihood state number sequences 

likely generate inaccurate average posterior probability vectors. 

 

 

Fig. 3 Comparison of the previous and proposed methods. 

D. Evaluation Experiment According to a Compression Unit 

In Section IV.C, posteriorgrams for all speech data were 

compressed into one average posterior probability vector 

matrix. An average posterior probability vector matrix can be 

constructed for each presentation speech or each utterance. For 

example, all posteriorgrams for the NTCIR-10 SDPWS 

presentation speech data were compressed into a single APPV 

matrix. Because each posteriorgram of each presentation 

speech is compressed into a single APPV matrix, 104 APPV 

matrixes were created in this case. Similarly, each 

posteriorgram of each utterance is compressed into a single 

APPV matrix, so 40,746 matrixes are composed in this case. 

We also conducted experiments using the two other 

compression units for each presentation speech and each 

utterance. Figure 4 shows the experimental results with 

different compression units for each presentation speech and 

each utterance. 

 

 

Fig. 4 Retrieval performance by compression unit for each 

presentation speech and each utterance. 

Compared with the compression unit of all data, the required 

memory size (amount of information) increased in the order of 

each utterance, each presentation speech, and all presentation 

speeches, and the MAP retrieval accuracy improved with 

amount of information. At the compression unit of each 

utterance, the MAP deterioration was only 1.27 pts for NTCIR-

10 and 3.62 pts for NTCIR-12, and the required amount of 

memory was reduced to about 1/4 for both NTCIR-10 and 

NTCIR-12 as compared to MLSS. Retrieval times were the 

same, 0.9 sec. 

V. CONCLUSIONS 

We proposed the APPV method, which reduces memory 

requirements by compressing QbE speech data posteriorgrams 

into average posterior probability vectors for all speech data, 

each presentation speech, or each utterance. Compared with 

MLSS on average for NTCIR-10 and NTCIR-12, the proposed 

method maintained the same retrieval time as that under MLSS 

while reducing memory consumption to about 1/1,450. 

However, the retrieval accuracy decreased by 10.69 pts. The 

retrieval accuracy at the compression unit of each utterance 

improved by 8.35 pts on average as compared with the case of 

using all speech data as the compression unit, and the required 

memory size was reduced to 1/4 of MLSS while suppressing 

MAP deterioration to within 2.5 pts. In future studies, we will 

investigate best clustering methods for constructing APPV. 
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