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Abstract—Audio-visual information fusion enables a perfor-
mance improvement in speech recognition performed in com-
plex acoustic scenarios, e.g., noisy environments. It is required
to explore an effective audio-visual fusion strategy for audio-
visual alignment and modality reliability. Different from the
previous end-to-end approaches where the audio-visual fusion
is performed after encoding each modality, in this paper we
propose to integrate an attentive fusion block into the encoding
process. It is shown that the proposed audio-visual fusion method
in the encoder module can enrich audio-visual representations,
as the relevance between the two modalities is leveraged. In
line with the transformer-based architecture, we implement the
embedded fusion block using a multi-head attention based audio-
visual fusion with one-way or two-way interactions. The proposed
method can sufficiently combine the two streams and weaken the
over-reliance on the audio modality. Experiments on the LRS3-
TED dataset demonstrate that the proposed method can increase
the recognition rate by 0.55%, 4.51% and 4.61% on average
under the clean, seen and unseen noise conditions, respectively,
compared to the state-of-the-art approach.

I. INTRODUCTION

Recently, with the rapid advance in deep learning, automatic
speech recognition (ASR) has become a reliable technique in
high signal-to-noise ratio (SNR) environments. In case the S-
NR is too low, the ASR performance will degrade significantly,
as the noise component dominates the microphone recordings.
In order to alleviate the effects from noise and increase the
speech recognition performance, many efforts have been put
on front-end techniques, e.g., speech quality and speech in-
telligibility enhancement [1–3]. However, the resulting speech
recognition is still far from desired requirements.

In reality, apart from the audio observations, usually people
also pay much attention to speaker’s lip movements for better
understanding the target speech, implying that human speech
perception is bimodal in nature [4]. Inspired by this, the visual
information can be leveraged to complement the traditional
audio modality for speech recognition. The visual modality
can become more important when the audio data is heavily
contaminated by ambient noises. It was shown that the video-
based lip motion also contains discriminative speech content
[5–7]. The audio-visual speech recognition (AVSR) [8–11]
that jointly uses the audio information and video information
outperforms the traditional audio-only ASR system over a
wide range of conditions, especially in noisy environments.
The combination of multi-modal information relies on suitable
fusion strategies to model the audio-visual alignment and

modality reliability. It is thus crucial to explore an effective
fusion strategy for the AVSR, particularly on when and how
to fuse the modalities.

With respect to the fusion stage, various audio-visual fusion
strategies have been proposed [12, 13]. Generally, they can
be classified into two categories: feature fusion [14, 15] and
decision fusion [15, 16]. For the feature fusion, the audio
features and the video features are fused in model and jointly
utilized in decoding. For the decision fusion, the audio-based
and video-based speech recognition results are simply com-
bined to make a final decision, like ROVER [17]. It was shown
that for AVSR systems, the feature fusion can achieve a better
performance, as the relevance of the multi-modal features is
taken into account [11, 18]. Moreover, recently the end-to-end
AVSR tends to perform audio-visual feature fusion on higher-
level representations of each modality after the encoding
process. For example, a dual-attention mechanism [10, 19]
was included to combine the audio and visual representations
in the decoder, which is designed to learn the correlation
between different input modalities. In [20], an improved fusion
method was proposed to decouple each modality from the
decoder and used an attention mechanism to fuse the audio
and visual features on the top layer of the encoder. However,
separating the feature fusion from the input modality encoding
as in previous approaches turns out to be sub-optimal (e.g.,
see section V). Therefore, different from the previous end-to-
end approaches, in this paper we integrate an attentive fusion
block into the encoding process rather than after the encoding
process, which can enrich the audio-visual representations by
adopting the relevance between the two streams.

Regarding how to fuse the audio-visual modalities, the most
commonly-used method is concatenation [9–11, 18, 19]. How-
ever, a simple feature concatenation fails to learn the correla-
tion between different modalities and the resulting model turns
out to be strongly dependent on the audio modality. Although
the attention-based mechanism in [20] can automatically learn
the alignment between the audio and visual modalities, which
effectively enhances the speech representation, the enhanced
audio stream was only sent to the decoder, which might not
sufficiently explore the supplementary discriminative infor-
mation from the video modality. In order to better use the
visual modality, in this paper, we follow the audio-visual
concatenation and exploit a multi-head attention with one-
way or two-way modality interactions to build an attentive
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fusion block. By integrating the fusion block into the encoding
process, we propose an attentive fusion enhanced audio-visual
encoding scheme for the transformer-based robust speech
recognition.

The rest of this paper is organized as follows. In Section
II, we introduce the structure of the proposed attentive fusion
enhanced audio-visual encoding model and the existing feature
fusion methods. In Section III, the embedded audio-visual
fusion block is presented. Section IV presents the experimental
setup, including the database, audio and video features and
the training strategy. Experimental results and discussions are
given in Section V. Finally, Section VI concludes this work.

II. DEEP FUSED AUDIO-VISUAL ENCODING

Feature fusion has been shown to be an effective and
dominant method for the AVSR. However, the best stage to
perform feature fusion is still unknown. Although the deep
encoding of each modality can obtain high-level representation
of the individual information, the subsequent fusion to further
model the relationship between different modalities is difficult.
In order to further utilize the coupling relationship between the
audio and video data, we propose to integrate the feature fusion
into the internal encoding module. For the convenience in
following discussions, based on the fusion stage, we will refer
the proposed method, fusion on the top layer of the encoder
and fusion in the decoder to as Early-fusion, Middle-fusion
and Late-fusion, respectively. Note that these three fusion
strategies will be compared at the same model scale.

A. Proposed Early-fusion encoding

In this section, we will present the proposed deep fused
audio-visual encoding architecture. As a basic architecture,
the transformer-based structure [21] will be exploited for
implementing the considered AVSR model. The transformer
uses a self-attention mechanism to learn the long-term time
dependence of speech features. It is characterized by the
capability of directly calculating the dependency regardless of
the distance between words. Compared to the recurrent neural
network (RNN) that requires an inherent order, it has better
parallelism and batch processing capability for long sequences.

The detailed structures of the proposed Early-fusion encoder
and the decoder are depicted in Fig. 1(a) and Fig. 1(c),
respectively. At first, the two modalities are encoded sepa-
rately using three transformer encoding blocks. Each block
consists of a multi-head attention (MHA) and a feed forward
network (FFN). Then, we combine the two modal features
by an embedded fusion block to obtain the concatenated
representation in the fusion domain. We deeply encode the
fused features to simultaneously model the audio and video
information and the interrelationship between them. Finally,
we use a decoder for a single stream to recognize the spoken
speech. Each decoder block takes the encoder output and the
previous block’s output (or, for the first block, the prediction
from the previous decoding step of the network) as the input.
Since the encoder acts on the representative fused features, the
model can sufficiently combine the two streams and learn the
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Fig. 1. The AVSR architecture using early/middle feature fusion strategy. The
involved MHA takes 16 heads into account. The size of the input layer, hidden
units and the output layer of the FFN is 512, 2048 and 512, respectively.
The output dimension of the fully connect (FC) layer after the audio-visual
concatenation is 512.
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Fig. 2. The AVSR architecture based on late feature fusion.

implicit relationship between the two modalities. Meanwhile,
due to the fact that the video information is combined with
the audio features by the fusion encoding, the over-reliance
on the audio modality can be weakened.

B. State-of-the-art fusion encoding

1) Middle-fusion: To compare the proposed encoding
scheme to the Middle-fusion and the Late-fusion, we use the
same transformer based architecture to implement the feature
fusion on the top layer of the encoder. The structure of the
encoder is shown in Fig. 1(b) and the decoder keeps the
same as that in Early-fusion. For the Middle-fusion method,
the fusion block is performed after the audio and video
features are fully separately encoded, such that the higher level
representations of each modality are then obtained.

2) Late-fusion: The Late-fusion strategy, as shown in Fig.
2, originates from [10]. The Late-fusion uses the dual attention
mechanism to couple the audio and video features at the
decoder side. In addition, we add an attentive fusion block
after the encoder, such that it can be more fairly compared
with the Early-fusion and Middle-fusion methods.

III. ATTENTIVE AUDIO-VISUAL FUSION BLOCK

In this section, we consider to use an MHA based audio-
visual (AV) fusion block for the proposed AVSR architecture.
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Fig. 3. The attentive fusion block with one/two-way interactions

In order to explore an effective fusion for the proposed
encoding method, we will take the one-way and two-way
interactions into account. The one-way MHA based fusion,
which allows the audio modality to aggregate information from
the video, is referred to as AV-align. The two-way interaction,
which allows the audio and video to aggregate information
from each other, is referred to as AV-cross. The concatenation
without fusion block is referred to as AV-concat.

A. AV-align

In order to better correlate the acoustic features with the
visual features at each time step, we use an AV-align block,
which is shown in Fig. 3(a). The input vector of the MHA
includes three parts: the input query (Q) vector extracted
from the acoustic features after modeling, the input key (K)
and value (V) vectors from the visual features. As such, the
attention mechanism latently adapts streams from the audio
modality to the visual modality, in which the features are
aligned. We then add the attended video features to the input
acoustic vector. The motivation behind this is to enable the
acoustic modality to learn the synchronization information
from the visual modality, and then supplement the original
audio features to obtain an enhanced representation with more
information and better noise robustness.

B. AV-cross

For AVSR, as usually the audio data contains far more
information on the target speaker than the video observations,
the model always tends to rely more on the audio features.
The AV-align incorporates the audio-video synchronization
information for the audio representation, which improves the
utilization of the visual modality to a certain extent. To further
resolve the over-dependence on the audio modality, we explore
a two-way interaction for the audio-visual fusion, which is
shown in Fig. 3(b). Clearly, the depicted AV-cross has a
symmetric structure. Specifically, in contrast to the AV-align
(where the audio features is taken as the Q vector, video
features as the K and V vectors for the audio-side MHA),
the AV-cross also takes the audio features as the K and V
vectors and the video features as the Q vector for the video-
side MHA. Therefore, we can obtain an enhanced visual

representation, which implicitly includes the synchronization
information from the audio modality. The information gap
between the two modalities can thus be reduced, and the model
can then balance the utilization of the two modalities.

IV. EXPERIMENTAL SETTING

To verify the proposed method, we will present the experi-
mental setup, including the audio-visual database, dual-modal
feature extraction and the training procedure in this section.

A. Database

The proposed AVSR method is evaluated on the LRS3-
TED dataset [22], which is one of the largest public audio-
video datasets in publicity. It contains 5594 videos downloaded
from YouTube and over 400 hours video clips extracted from
TED English speeches and TEDx speeches. The dataset is
divided into three groups: a 444-hour pre-training set, a 30-
hour training set, and a 1-hour testing set, which contain 132k,
32k, and 1452 samples, respectively. The pre-training set and
the training set are extracted from the same set of YouTube
video species, so they overlap in content, but the testing
set is completely independent. For the model pre-training,
in addition to LRS3-TED, we also use the pre-training set
from LRS2-BBC [10] to help the model obtain a good initial
recognition ability.

For robust speech recognition, we regard the audio con-
tained in LRS3-TED as the clean audio, as they are of high
quality. To synthesize the noisy sensor observations, we choose
white, babble, pink, factory1, factory2, and volvo noises from
the Noisex-92 dataset [23] and add them to the LRS3-TED
training set at different SNR levels. During the testing phase,
we use the babble noise as the seen noise and the buccaneer2
noise as the unseen noise, respectively.

B. Audio and video features

Video Feature: The video provided by LRS3-TED has a
resolution of 224 × 224 at a frame rate of 25 fps. Since the
mouth ROI is already centered, we directly resize the image
of each frame into 112 ×112 pixels. Then, we use a 3DCNN
and Resnet18 [24] in combination with a 512-dimensional FC
layer as the visual front to extract the frozen feature vector.
Similarly to [25], the parameters of the visual front are pre-
trained as a word-level lip-reading task.

Audio Feature: We compute an 80-dimensional filter-bank-
wise feature with a 25 ms window and 10 ms stride at a
sampling rate of 16 kHz. Since the frame rate of the video
is 25 fps, one video frame corresponds to 40 ms audio. In
order to obtain the same temporal scale for both modalities,
we concatenate the audio features in groups at an order of 4.
That is, we extract a 320-dimensional audio feature vector, as
the video frame rate is four times the audio shift.

C. Multi-condition training

For model training, we first select the samples less than 1500
audio frames (limited by the GPU memory) from the clean
pre-training set to pre-train the model. In order to make the
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Fig. 4. The WER in terms of the SNR using the babble noise for different fusion blocks: (a) AV-concat, (b) AV-align and (c) AV-cross.

trained model robust against noise, we consider multiple noise
conditions characterized by different SNR levels. Specifically,
we add the six types of noises mentioned in Section 4.A at
an SNR level in {20, 15, 10, 5, 0, -5} dBs to the LRS3-
TED training set. Then, we uniformly randomly select a clean
speech or a noisy speech (with the six SNR levels and six
noise types being taken into account) as each training sample.

During the pre-training phase, we introduce the curriculum
learning (CL) [26] in the first 4 epochs. During the formal
training phase, we set 2-epoch CL at the beginning. The
learning rate gradually decreases from 1−4 to 5−5 and from
1−4 to 5−6 for pre-training and training phases, respectively.
Teacher forcing, label smoothing and dropout with p = 0.1
are used for training. For testing, a beam search with a width
of 6 is used.

V. EXPERIMENT RESULTS AND DISCUSSION

A. Pre-experiment

In order to verify the effectiveness of the multi-condition
training strategy and the benefits of feature concatenation, we
compare the proposed late fusion model without the attentive
fusion block to [10], where the babble noise is added to the
audio stream at a SNR of 0 dB with a probability of p =
0.25. Besides, in [20], a merely AV-alignment based AVSR
approach was proposed, where the video stream is only used
for aligning the audio data and the model only sends the audio
stream to the decoder. To observe the superiority of the AV
concatenation, we will compare the AV-align enhanced middle
fusion model, which also uses the AV concatenation, to the
method in [20]. The word error rates (WERs) of the considered
AVSR system under the clean and babble noise conditions are
shown in Table I. It can be seen that using the proposed multi-
condition training can reduce the WER by 0.24% and 8.96%
under the clean and 0 dB babble noise conditions, respectively.
Therefore, we will use the multi-condition training uniformly
in the sequel. Further, the AV-align enhanced middle fusion
model can decrease the WER by 0.70%, 1.95%, and 11.25%
in the case of clean, 0 dB, and -5 dB SNRs, respectively,
compared to the AV-align without concatenation. Hence, we
can conclude that the feature concatenation is beneficial for
improving the AVSR performance. Since the middle fusion is
broadly used and the way of attention based AV-align fusion is

TABLE I
THE WERS OF THE CONSIDERED AVSR SYSTEM UNDER THE CLEAN AND

BABBLE NOISE CONDITIONS.
Train strategy Model clean 0dB -5dB

p=0.25 noisy train Late-fusion [10] 8.00% 44.30% –

multi-condition train
Late-fusion 7.76% 35.34% 60.50%

AV-align as [20] 7.69% 35.44% 67.49%
AV-align+concat 6.99% 33.49% 56.24%

recently proposed [20], the AV-align enhanced middle-fusion
will be taken as the baseline system.

B. Attentive Fusion Enhanced Audio-visual Encoding

In this subsection, we train the proposed Early-fusion mod-
el, Middle-fusion model and Late-fusion model, where the
training setup keeps the same. We consider two types of noises,
i.e., the babble noise and bulcanneer2 noise. The babble noise
is involved in the training phase, while the bucanneer2 noise
is not included for training. Both noises are added to the clean
data at different SNR levels.

In Fig. 4, we show the WER curves for the early-fusion,
middle-fusion and late-fusion methods using three fusion
blocks. It is clear that regardless of the fusion block that
is used by the model, the proposed Early-fusion method can
always obtain the best performance under any noisy condition,
while the Late-fusion method is always the worst. As pointed
out in [20], the Late-fusion strategy adds another attention
mechanism that attends to the second modality, and requires
the decoder to also learn the correlation between the input
modalities, which might overload the decoder. The Middle-
fusion method avoids the overload problem, but it cannot
accurately model the connotation information between the
audio and video data, since the two streams are fused after
a completely separate modeling and directly fed into the
decoder. Compared to the Late-fusion and the Middle-fusion
method, the proposed Early-fusion method can thus not only
avoid the overload problem, but also combine the two streams
more deeply. The deep combination of modalities enriches the
audio-visual representations, as the relevance between the two
streams is implicitly incorporated.

In order to investigate an appropriate encoding strategy, we
compare the AVSR performance using different fusion blocks
in Table II. Note that this is a similar comparison to Fig. 4,
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TABLE II
A COMPARISON OF WERS USING DIFFERENT FUSION TIMING STRATEGIES AND FUSION BLOCKS UNDER MULTIPLE BABBLE NOISE

CONDITIONS.
Fusion stage Fusion Block clean 20dB 15dB 10dB 5dB 0dB -5dB mean on noisy data

Late-fusion
AV-concat 7.76% 8.75% 9.56% 11.72% 19.17% 35.34% 60.50% 24.17%
AV-align 7.54% 8.13% 9.29% 12.13% 19.52% 33.92% 57.79% 23.46%
AV-cross 6.73% 7.25% 8.48% 11.47% 19.76% 38.55% 77.38% 27.15%

Middle-fusion
AV-concat 7.32% 8.06% 8.88% 11.70% 18.37% 33.96% 57.22% 23.03%

AV-align (baseline) 6.99% 7.99% 8.94% 11.30% 19.08% 33.49% 56.24% 22.84%
AV-cross 6.64% 6.93% 8.42% 11.03% 19.60% 37.08% 68.35% 25.24%

Early-fusion
AV-concat 6.67% 7.02% 8.33% 10.19% 16.96% 28.84% 53.03% 20.73%
AV-align 6.44% 6.97% 7.34% 9.09% 14.07% 24.37% 48.16% 18.33%
AV-cross 6.39% 6.64% 7.96% 10.21% 16.04% 30.25% 57.94% 21.51%

TABLE III
THE WERS OF THE CONSIDERED AVSR MODELS USING THE UNSEEN BUCCANEER2 NOISE AT DIFFERENT SNR LEVELS.

Fusion stage Fusion Block clean 20dB 15dB 10dB 5dB 0dB -5dB mean on noisy data

Late-fusion
AV-concat 7.76% 9.61% 11.53% 14.49% 20.94% 33.42% 50.99% 23.50%
AV-align 7.54% 9.61% 10.78% 14.40% 20.57% 32.41% 48.46% 22.71%
AV-cross 6.73% 8.76% 10.25% 13.63% 20.90% 35.93% 62.82% 25.38%

Middle-fusion
AV-concat 7.32% 9.20% 10.60% 14.08% 20.12% 31.29% 48.28% 22.26%

AV-align (baseline) 6.99% 8.88% 10.58% 13.65% 20.06% 30.85% 48.55% 22.10%
AV-cross 6.64% 8.47% 10.10% 13.81% 20.43% 34.07% 55.95% 23.81%

Early-fusion
AV-concat 6.67% 8.28% 10.12% 12.98% 17.81% 26.67% 41.89% 19.63%
AV-align 6.44% 7.86% 9.05% 10.39% 15.04% 23.79% 38.80% 17.49%
AV-cross 6.39% 7.99% 9.61% 12.23% 17.69% 28.42% 45.76% 20.28%

but from a different perspective. Obviously, in case the fusion
time is fixed, in general the AV-align performs better than
the AV-concat under both the clean and noisy conditions. The
AV-cross reaches a lower WER than the AV-align under high
SNR conditions, while for low SNR observations, the AV-align
method is lower in WER. The reason might be that under very
low SNR conditions, the visual stream in the AV-cross model
learns the synchronization information from the audio stream,
but also learns the high intensity noise. The reduction in the
modal information gap makes the model pay more attention
to the visual stream than the AV-align and the AV-concat,
which amplifies the effect of the audio noise and leads to a
reduction in robustness. In addition, it is worth mentioning that
the WER of the AV-cross enhanced Late-fusion and Middle-
fusion for -5 dB babble noise reaches up to 77.38% and
68.35%, respectively, while the WER of Early-fusion is only
57.94%, i.e., as optimal as the baseline system. This confirms
the benefit of using the proposed deep audio-visual encoding
method. Moreover, the proposed AV-align enhanced Early
fusion method can decrease the WER by 0.55% and 4.51%
on average compared to the baseline system under the clean
and babble noisy conditions, respectively. Therefore, we can
conclude that the AV-align based audio-visual fusion enables
a performance improvement for robust speech recognition.

In the case of the unseen buccaneer2 noise case, the obtained
recognition performance is shown in Table III. This is a similar
comparison to the case of the babble noise. Clearly, the AV-
align enhanced Early-fusion achieves the best performance
(i.e., 17.49% WER averaged over different SNR levels) and
reduces the WER by 4.61% compared to the baseline system.
More importantly, it is shown that the proposed attentive
enhanced audio-visual encoding method can be generalized

to the unseen noisy scenarios.

VI. CONCLUSIONS

In this work, we proposed an attentive enhanced audio-
visual encoding method for robust speech recognition, where
the audio-visual fusion is performed using an embedded fusion
block within the encoding module. Due to the joint audio-
visual encoding, the information contained in the two streams
can be more completely modeled. Experimental results showed
that the proposed AVSR model can sufficiently combine
the two modalities and thus improve the speech recognition
performance under both the clean and noisy environments.
For the proposed method, the extension of integrating audio-
visual fusion into the encoding process to other multi-modal
tasks is straightforward, such as emotion recognition based
on multi-modality. Notably, it is interesting that the AV-cross
method, which uses two-way interactions based on the MHA
mechanism, achieves a lower WER for high SNRs, while its
performance drops rapidly with a lower SNR. In the future,
we will investigate to improve the robustness of the AV-cross
method under low SNR conditions.
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