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Abstract—This paper is the first study to apply deep mutual
learning (DML) to end-to-end ASR models. In DML, multi-
ple models are trained simultaneously and collaboratively by
mimicking each other throughout the training process, which
helps to attain the global optimum and prevent models from
making over-confident predictions. While previous studies ap-
plied DML to simple multi-class classification problems, there
are no studies that have used it on more complex sequence-to-
sequence mapping problems. For this reason, this paper presents
a method to apply DML to state-of-the-art Transformer-based
end-to-end ASR models. In particular, we propose to combine
DML with recent representative training techniques. i.e., label
smoothing, scheduled sampling, and SpecAugment, each of which
are essential for powerful end-to-end ASR models. We expect that
these training techniques work well with DML because DML has
complementary characteristics. We experimented with two setups
for Japanese ASR tasks: large-scale modeling and compact mod-
eling. We demonstrate that DML improves the ASR performance
of both modeling setups compared with conventional learning
methods including knowledge distillation. We also show that
combining DML with the existing training techniques effectively
improves ASR performance.
Index Terms: end-to-end ASR, deep mutual learning, Trans-
former, scheduled sampling, SpecAugment

I. INTRODUCTION

In the automatic speech recognition (ASR) field, there has
been growing interest in developing end-to-end ASR systems
that directly convert input speech into text. While traditional
ASR systems have been built from noisy channel formulations
using several component models (i.e., an acoustic model,
language model, and pronunciation model), end-to-end ASR
systems can learn the overall conversion in one step without
any intermediate processing.

Modeling methods and training techniques help to achieve
powerful end-to-end ASR models. Recent studies have devel-
oped modeling methods that include connectionist temporal
classification [1], [2], a recurrent neural aligner [3], a recurrent
neural network (RNN) transducer [4], and an RNN encoder-
decoder [5]–[9]. In particular, Transformer-based modeling
methods have shown the strongest performance in recent
studies [10]–[15]. In addition, a few effective training tech-
niques are label smoothing [16], scheduled sampling [17],
and SpecAugment [18], [19]. These techniques effectively
prevent over-fitting problems caused by maximum likelihood
estimation, and combining them can improve end-to-end ASR
systems [20]. Furthermore, recent studies have focused on
building compact models because computation complexity and

memory efficiency must be considered in practice. The most
representative technique is knowledge distillation [21] (i.e.,
teacher-student learning) that trains compact student models
to mimic a pre-trained large-scale teacher model. In fact,
knowledge distillation is an effective compact end-to-end ASR
modeling technique [22]–[24].

To achieve a more powerful and compact end-to-end ASR
model, we focused on deep mutual learning (DML) [25], one
of the most successful learning strategies in recent machine
learning studies. In DML, multiple student models simulta-
neously learn to solve a target task collaboratively without
introducing pre-trained teacher models. In fact, each student
model is constrained to mimic other student models, thereby
helping it to find a global optimum and prevent it from mak-
ing over-confident predictions. DML enables us to construct
stronger models using a unified network structure rather than
independent learning. In addition, DML can be used to obtain
compact models that perform better than those distilled from
a strong but static teacher. In previous studies, DML was used
on simple multi-class classification problems, such as image
classification [25]–[28]. However, no studies have tried DML
on more complex sequence-to-sequence mapping problems.

This paper presents a method to incorporate DML in state-
of-the-art Transformer-based end-to-end ASR models. In par-
ticular, we propose to combine DML with the existing training
techniques for end-to-end ASR models. DML is closely related
to label smoothing [16]; both aim to prevent models from
making over-confident predictions. While label smoothing uses
a uniform distribution to smooth the ground-truth distribution,
DML leverages the distributions predicted by other student
models. Combining both kinds of smoothing should efficiently
prevent over-confident predictions. In addition, DML is related
to scheduled sampling [17] and SpecAugment [18], [19].
While scheduled sampling and SpecAugment aim to maintain
consistency between similar conditioning contexts, DML aims
to maintain consistency between different student models. We
expect that these consistency strategies complement each other.

Our experiments using the Corpus of Spontaneous Japanese
(CSJ) [29] examined two experimental setups: large-scale
modeling and compact modeling. We found that DML im-
proves the ASR performance of both modeling setups com-
pared with conventional learning methods, including knowl-
edge distillation. We also found that combining DML with
the existing training techniques effectively improves ASR
performance.
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II. END-TO-END ASR WITH TRANSFORMER

This section briefly describes end-to-end ASR that uses
Transformer-based encoder-decoder models based on auto-
regressive generative modeling [10]–[14], [30]. The encoder-
decoder models predict a generation probability of a text
W = {w1, · · · , wN} given speech X = {x1, · · · ,xM},
where wn is the n-th token in the text and xm is the
m-th acoustic feature in the speech. N is the number of
tokens in the text and M is the number of acoustic features
in the speech. In the auto-regressive generative models, the
generation probability of W is defined as

P (W |X;Θ) =

N∏
n=1

P (wn|W1:n−1,X;Θ), (1)

where Θ represents the trainable model parameter sets and
W1:n−1 = {w1, · · · , wn−1}. In our Transformer-based end-
to-end ASR models, P (wn|W1:n−1 X; Θ) is computed using
a speech encoder and a text decoder, both of which are
composed of a couple of Transformer blocks.

A. Network structure

Speech encoder: The speech encoder converts input acoustic
features X into the hidden representations H(I) using I
Transformer encoder blocks. The i-th Transformer encoder
block composes i-th hidden representations H(i) from the
lower layer inputs H(i−1) as

H(i) = TransformerEncoderBlock(H(i−1);Θ), (2)

where TransformerEncoderBlock() is a Transformer en-
coder block that consists of a scaled dot product multi-head
self-attention layer and a position-wise feed-forward network
[10]. The hidden representations H(0) = {h(0)

1 , · · · ,h(0)
M ′} are

produced by

h
(0)
m′ = AddPostionalEncoding(hm′), (3)

where AddPositionalEncoding() is a function that adds a
continuous vector in which position information is embedded.
H = {h1, · · · ,hM ′} is produced by

H = ConvolutionPooling(x1, · · · ,xM ;Θ), (4)

where ConvolutionPooling() is a function composed of
convolution layers and pooling layers. M ′ is the subsampled
sequence length depending on the function.

Text decoder: The text decoder computes the generative
probability of a token from preceding tokens and the hidden
representations of the speech. The predicted probabilities of
the n-th token wn are calculated as

P (wn|W1:n−1,X;Θ) = Softmax(u
(J)
n−1;Θ), (5)

where Softmax() is a softmax layer with a linear transfor-
mation. The input hidden vector u

(J)
n−1 is computed from J

Transformer decoder blocks. The j-th Transformer decoder

block composes j-th hidden representation u
(j)
n−1 from the

lower layer inputs U
(j−1)
1:n−1 = {u(j−1)

1 , · · · ,u(j−1)
n−1 } as

u
(j)
n−1 = TransformerDecoderBlock(U

(j−1)
1:n−1,H

(I);Θ),
(6)

where TransformerDecoderBlock() is a Transformer de-
coder block that consists of a scaled dot product multi-
head masked self-attention layer, a scaled dot product multi-
head source-target attention layer, and a position-wise feed-
forward network [10]. The hidden representations U

(0)
1:n−1 =

{u(0)
1 , · · · ,u(0)

n−1} are produced by

u
(0)
n−1 = AddPositionalEncoding(wn−1), (7)

wn−1 = Embedding(wn−1;Θ), (8)

where Embedding() is a linear layer that embeds input token
in a continuous vector.

B. Typical objective function

In end-to-end ASR, a model parameter set can be optimized
from the utterance-level training data set U = {(X1,W 1),
· · · , (XT , W T )}, where T is the number of utterances in the
training data set. An objective function based on the maximum
likelihood estimation is defined as

Lmle(Θ) = −
T∑

t=1

Nt∑
n=1

∑
wt

n∈V

P̂ (wt
n|W t

1:n−1,X
t)

logP (wt
n|W t

1:n−1,X
t;Θ), (9)

where wt
n is the n-th token for the t-th utterance and

W t
1:n−1 = {wt

1, · · · , wt
n−1}. V represents the vocabulary sets,

and N t is the number of tokens in the t-th utterance. The
ground-truth probability P̂ (wt

n|W t
1:n−1,X

t) is defined as

P̂ (wt
n|W t

1:n−1,X
t) =

{
1 (wt

n = ŵt
n)

0 (wt
n ̸= ŵt

n),
(10)

where ŵt
n is the n-th reference token in the t-th utterance.

C. Training techniques

There are several training techniques in the end-to-end
ASR modeling. This paper introduces the following three
techniques.
Label smoothing: Label smoothing is a regularization tech-
nique that can prevent the model from making over-confident
predictions [16]. This encourages the model to have higher
entropy at its prediction. This paper introduces a uniform
distribution to all tokens in vocabulary that smooths the
ground-truth probabilities. Thus, an objective function that
uses the label smoothing is defined as

Lls(Θ) = −
T∑

t=1

Nk∑
n=1

∑
wt

n∈V

P̃ (wt
n|W t

1:n−1,X
t)

logP (wt
n|W t

1:n−1,X
t;Θ), (11)
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Fig. 1. Deep mutual learning using two student models.

P̃ (wt
n|wt

1, · · · , wt
n−1,X

t) =

(1− α)P̂ (wt
n|W t

1:n−1,X
t) + α

1

|V|
, (12)

where α is a smoothing weight to adjust the smoothing term.
Scheduled sampling: Scheduled sampling is a technique that
randomly uses predicted tokens as conditioning tokens in the
text decoder [17]. This technique helps reduce the gap between
teacher forcing in a training phase and free running in a testing
phase. An objective function that uses scheduled sampling is
defined as

Lss(Θ) = −
T∑

t=1

Nk∑
n=1

∑
wt

n∈V

P̂ (wt
n|W t

1:n−1,X
t)

logP (wt
n|S(W t

1:n−1),X
t;Θ), (13)

where S() is a scheduled sampling function with random
behavior for the conditioning tokens.
SpecAugment: SpecAugment is a technique that augments
input acoustic feature representations [18], [19]. This tech-
nique consists of three kinds of deformations: time warping,
time masking, and frequency masking. Time warping is a
deformation of the acoustic features in the time direction. Time
masking and frequency masking mask a block of consecutive
time steps or frequency channels. An objective function that
uses SpecAugment is defined as

Lsa(Θ) = −
T∑

t=1

Nk∑
n=1

∑
wt

n∈V

P̂ (wt
n|W t

1:n−1,X
t)

logP (wt
n|W t

1:n−1,G(Xt);Θ), (14)

where G() is the SpecAugment deformation function with
random behavior for the input acoustic features.

III. PROPOSED METHOD

This section details deep mutual learning (DML) for end-
to-end ASR. In addition, we present objective functions when
combining DML with several training techniques.

A. Deep mutual learning for end-to-end ASR

In DML, K different model parameters {Θ1, · · · ,ΘK}
are simultaneously trained to mimic each other, while the
conventional training method learns the model parameters to
predict ground-truth probabilities for the training instances.
Figure 1 represents DML using two student model parameters.
A DML-based objective function for training the k-th model
parameter Θk is defined as

Ldml(Θk) = (1− λ)Lmle(Θk) + λ
1

K − 1

K∑
i=1,i̸=k

D(Θi||Θk),

(15)
where D(Θi||Θk) is a mimicry loss to mimic the i-th model,
and λ is an interpolation weight to adjust the influence of the
mimicry loss. The mimicry loss is computed from

D(Θi||Θk) = −
T∑

t=1

Nk∑
n=1

∑
wt

n∈V

P (wt
n|W t

1:n−1,X
t;Θi)

logP (wt
n|W t

1:n−1,X
t;Θk). (16)

In a mini-batch training, K model parameters are optimized
jointly and collaboratively. Thus, K models are learned with
the same mini-batches. In each mini-batch step, we compute
predicted probability distributions using the K models and
update each parameter according to the predicted probability
distributions of the others. These optimizations are conducted
iteratively until convergence. We finally pick up the single
model with the smallest validation loss or a pre-defined
compact model.

B. Deep mutual learning with training techniques

DML can be combined with existing training techniques
for end-to-end ASR. This paper proposes new objective func-
tions specific to using DML with label smoothing, scheduled
sampling, and SpecAugment. Note that all techniques can be
simultaneously combined with DML.
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Deep mutual learning with label smoothing: Both label
smoothing and DML avoid peaky predictions with very low
entropy. When combining label smoothing with DML, we
define an objective function that trains k-th model parameter
Θk as

Ldml+ls(Θk) = (1−λ)Lls(Θk)+λ
1

K − 1

K∑
i=1,i̸=k

D(Θi||Θk),

(17)
where Lls is the same as Eq. (11).
Deep mutual learning with scheduled sampling: When
combining scheduled sampling with DML, we aim to make
model more robust to various conditioning tokens by main-
taining consistency between different models with different
conditioning contexts. Thus, an objective function for the k-th
model parameter is defined as

Ldml+ss(Θk) = (1− λ)Lss(Θk)

+ λ
1

K − 1

K∑
i=1,i̸=k

Dss(Θi||Θk), (18)

Dss(Θi||Θk) = −
T∑

t=1

Nk∑
n=1

∑
wt

n∈V

P (wt
n|Si(W

t
1:n−1),X

t;Θi)

logP (wt
n|Sk(W

t
1:n−1),X

t;Θk), (19)

where Lss is the same as Eq. (13). Si() and Sk() are the
functions for the scheduled sampling with different random
seeds.
Deep mutual learning with SpecAugment: When combining
SpecAugment with DML, we aim to make model more robust
to various acoustic feature examples by maintaining consis-
tency between different models with different deformation. An
objective function for the k-th model parameter is defined as

Ldml+sa(Θk) = (1− λ)Lsa(Θk)

+ λ
1

K − 1

K∑
i=1,i̸=k

Dsa(Θi||Θk), (20)

Dsa(Θi||Θk) = −
T∑

t=1

Nk∑
n=1

∑
wt

n∈V

P (wt
n|W t

1:n−1,Gi(X
t);Θi)

logP (wt
n|W t

1:n−1,Gk(X
t);Θk), (21)

where Lsa is the same as Eq. (14). Gi() and Gk() are the
functions for the SpecAugment with different random seeds.

IV. EXPERIMENTS

We experimented using CSJ [29]. We divided the CSJ into
a training set (512.6 hours), a validation set (4.8 hours), and
three test sets (1.8 hours, 1.9 hours, and 1.3 hours). We used
the validation set to choose several hyper parameters and
to conduct early stopping. Each discourse-level speech was
segmented into utterances in accordance with our previous
work [31]. We used characters as the tokens.

A. Setups

We examined two types of experimental setups: large-scale
modeling and compact modeling.

• Large-scale modeling: We set I = 8 for the encoder
blocks and J = 6 for the decoder blocks. When in-
troducing DML, we prepared 4 large-scale models and
evaluated the single model with the least validation loss.

• Compact modeling: We set I = 2 for the encoder
blocks and J = 1 for the decoder blocks where other
parameters were the same as the large-scale modeling.
When introducing the knowledge distillation [21] or the
deep mutual learning, we prepared 1 compact model and
3 large-scale models and evaluated the compact model.

In both setups, Transformer blocks were composed using the
following conditions: the dimensions of the output continuous
representations were set to 256, the dimensions of the inner
outputs in the position-wise feed forward networks were set
to 2,048, and the number of heads in the multi-head attentions
was set to 4. For the speech encoder, we used 40 log mel-scale
filterbank coefficients appended with delta and acceleration
coefficients as acoustic features. The frame shift was 10 ms.
The acoustic features passed two convolution and max pooling
layers with a stride of 2, so we downsampled them to 1/4
along with the time-axis. In the text decoder, we used 256-
dimensional word embeddings. We set the vocabulary size to
3,262.

For the optimization, we used the Adam optimizer with
β1 = 0.9, β2 = 0.98, ϵ = 10−9 and varied the learning
rate based on the update rule presented in previous studies
[10]. The training steps were stopped based on early stopping
using the validation set. We set the mini-batch size to 32
utterances and the dropout rate in the Transformer blocks
to 0.1. When we introduced label smoothing, we set α as
0.1. Our scheduled sampling-based optimization process used
the teacher forcing at the beginning of the training steps,
and we linearly ramped up the probability of sampling to
the specified probability at the specified epoch (20 epoch).
Our SpecAugment only applied frequency masking and time
masking where the number of frequency masks and time
step masks were set to 2, the frequency masking width was
randomly chosen from 0 to 20 frequency bins, and the time
masking width was randomly chosen from 0 to 100 frames. λ
was set to 0.4 in DML. We used a beam search algorithm in
which the beam size was set to 20.

B. Results

We evaluated various setups using DML and the training
techniques in large-scale modeling and compact modeling se-
tups. Table 1 shows experimental results in terms of character
error rate.

First, in the large-scale modeling setup, the results show
that each training tip improves Transformer-based end-to-
end ASR performance, and combining the techniques effec-
tively improved ASR performance. SpecAugment significantly
improved performance in particular. These results indicate
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TABLE I
EXPERIMENTAL RESULTS IN TERMS OF CHARACTER ERROR RATE (%).

Label Scheduled SpecAugment Knowledge Deep mutual learning Test 1 Test 2 Test 3smoothing sampling distillation (DML)
Large-scale - - - - - 8.83 6.49 7.19
modeling

√
- - - - 8.41 6.23 6.74

-
√

- - - 8.59 6.31 6.30
- -

√
- - 7.48 5.59 5.86√ √ √
- - 7.24 5.13 5.40

- - - -
√

8.19 5.78 6.37√
- - -

√
8.05 5.67 6.30

-
√

- -
√

7.90 5.57 5.62
- -

√
-

√
7.02 4.92 5.28√ √ √

-
√

6.87 4.73 5.02
Compact - - - - - 12.80 9.43 10.01
modeling

√ √ √
- - 11.37 7.88 8.44

- - -
√

- 11.67 8.28 9.08√ √ √ √
- 11.15 7.58 8.31

- - - -
√

11.23 7.82 8.74√ √ √
-

√
10.65 7.19 7.93

that training techniques are important for the Transformer-
based end-to-end ASR models. In addition, we improved ASR
performance by introducing DML into the Transformer-based
end-to-end ASR models, both with and without training tech-
niques. It is thought that DML could help discover the global
optimum and prevent models from making over-confident pre-
dictions. The highest results were attained by combining DML
and all the training techniques. This suggests that combining
DML with existing training techniques effectively improves
ASR performance.

Next, in the compact modeling setups, the results show
that DML improved performance even more than knowledge
distillation. This indicates that DML in which student models
interact with each other during all the training steps effectively
transfers knowledge in large-scale end-to-end ASR models to
the compact end-to-end ASR models. These results confirm
that DML is a good solution to build Transformer-based end-
to-end ASR models.

V. CONCLUSIONS

We have presented a method to incorporate deep mutual
learning (DML) in Transformer-based end-to-end automatic
speech recognition models. The key advance of our method
is to introduce combined training strategies of DML with
representative training techniques (label smoothing, scheduled
sampling, and SpecAugment) for end-to-end ASR models. Our
experiments demonstrated that the DML improves ASR per-
formance of both large-scale modeling and compact modeling
setups compared with conventional learning methods, includ-
ing knowledge distillation. We also showed that combining
DML with existing training techniques effectively improves
ASR performance.
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