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Abstract—In-domain speech data significantly improve the
speech recognition performance of acoustic models. However,
the data may contain confidential information and exposure of
transcriptions may lead to a breach in speakers’ privacy. In
addition, speaker identification can be problematic when speakers
want to hide their membership of a certain group. Thus, the in-
domain data must be deleted after its period of use. However,
once the data are deleted, models cannot be updated for future
architectures. Privacy preservation is necessary when retaining
speech data; it is important that the transcriptions cannot be
reconstructed and the speaker cannot be identified. This paper
proposes a privacy preserving acoustic model training (PPAMT)
method that satisfies these requirements and formulates the
sensitivities of three features (n-grams, phoneme labels, and
acoustic features) for PPAMT. A sensitivity analysis showed
that phoneme labels and acoustic features were less susceptible
to PPAMT than n-grams, which is optimal because accurate
phoneme labels and acoustic features are needed for acoustic
model training. Speech recognition experiments showed that the
word error rate degradation by PPAMT was less than 0.6% as
a result of this property.

I. INTRODUCTION

When training acoustic models for automatic speech recog-
nition (ASR), in-domain data are effective, even if the amount
is small [1], [2]. However, transcriptions of in-domain data
tend to contain highly confidential information, and speaker
identification can also be problematic when speakers want to
hide their membership of a certain group. Thus, in-domain data
must be discarded after its period of use, but once the data are
deleted, the model cannot be updated for model architectures
proposed in the future. Continuous use of in-domain data with
privacy preservation is desirable. One of the goals of privacy
preserving data mining (PPDM) [3], [4] is to reduce the risk
of the identification and disclosure [5]. PPDM is necessary to
prevent the disclosure of speech data and personal identities.

Few studies have been conducted on PPDM in the field
of speech processing. One approach is a secure calculation
[6], [7] but it requires more computation than a non-secure
calculation. In addition, its operation protocol must be also
modified when changing models, and it cannot be used for
data preservation.

Another approach is data shuffling, which deletes personal
information, but sequential discriminative training [8], [9] or
an end-to-end approach [10] cannot be used; because the time
sequence of acoustic features is completely lost. The time
sequence of acoustic features must be preserved in order to
use the aforementioned approaches.

Recently, restoring training data from trained models has
become feasible [11]. Training data cannot be restored from
conventional Gaussian mixture models (GMM) because they
only retain the mean and variance of the acoustic features
of the training data. Meanwhile, deep neural network (DNN)
models trained using the in-domain data are vulnerable to
attacks and they need to be trained using the privacy-preserved
dataset.

As mentioned above, for the PPDM of speech data, original
in-domain data must be deleted so that personal information
cannot be restored from the anonymized dataset. At the same
time, the time sequence of the privacy-preserved dataset must
be retained. The use of real data is also important for acoustic
model training. Although a deep autoencoder can be used
to generate training data [12], generalization models cannot
sufficiently represent speech dynamics [13]. This paper pro-
poses a privacy preserving acoustic model training (PPAMT)
method to satisfy these requirements. A PPDM survey paper
[14] classified various PPDM techniques (Table 1 in [14]).
According to this classification, our framework is related to
perturbation, randomization, and anonymization techniques.

Privacy can be categorized into two types: input privacy
and output privacy. Input privacy adds noise to data such
as in privacy preserving data publishing (PPDP). PPAMT
mainly preserves input privacy. Utterances are divided into
word phrases which are then randomly concatenated to fur-
ther randomize transcriptions. We formulated the probability
of influence from PPAMT for three types of features: n-
grams, phoneme labels, and acoustic features. In addition,
to anonymize speakers, we used k-anonymization [15], [16]
based on speaker clustering, which prevents attackers from
specifying the target speaker from more than k candidates.

The output privacy of PPAMT appears in the prior distri-
bution of the tri-phone states, which is used to convert DNN
outputs into posteriors. The difference of prior distributions
between before and after PPAMT is evaluated similarly to
differential privacy (DP) [17] by perturbation [18] or random
sampling [19].

The remainder of this paper is as follows. Section II
proposes PPAMT, which uses perturbation and randomiza-
tion, and analyzes the sensitivity of the above three features.
Section III describes how to anonymize speakers by using
speaker clustering. Experiments described in Sec. IV show the
effectiveness of the proposed PPAMT for a large-vocabulary
continuous speech recognition (LVCSR) task.
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Fig. 1. System overview of PPAMT

II. PRIVACY PRESERVING ACOUSTIC MODEL TRAINING
(PPAMT)

A. Overview

We propose a PPAMT framework shown in Fig. 1, which
satisfies the requirements mentioned in the introduction. The
requirements are to delete personal information while keeping
the time sequence of features. The basic operations of PPAMT
are perturbation and randomization [14]. First, sentences are
divided into word phrases based on short pauses or boundaries
between the phrases. Then, the phrases are randomly concate-
nated to construct new sentences.

There are N(s) utterances for the s-th speaker (1 ≤ s ≤ S)
where the total number of training speakers is S. The original
N(s) utterances are divided by D(s) times into N ′(s) word
phrases composed of a few words, i.e., N ′(s) = N(s)+D(s).
After division, randomly selected W (s) word phrases are
concatenated to make ⌊N ′(s)/W (s)⌋ sentences, where ⌊·⌋ is
a flooring function. Because W (s) phrases are selected from
N ′(s) phrases, the total number of combinations Nc is

Nc = N ′CW × N ′−WCW . . . =

⌊N′−W
W ⌋∏
i=0

N ′−iWCW , (1)

where s is omitted for readability. At least one of the original
sentence can be restored with probability pR = N ′/Nc, which
is almost zero when N ′ ≫ W . The subsections below describe
the sensitivity of three types of features to PPAMT.

B. n-grams

Uni-grams do not change. In this framework, uni-gram
privacy can be attained by dropping the corresponding word
phrases. Bi-grams change at the beginning and the right-hand
side at each division. The probability of being influenced after
the total

∑
s D(s) divisions is

pL2
=

2

Nw

∑
s

D(s), (2)

where Nw is the total number of words in the training
dataset. This probability indicates the sensitivity of bi-grams
to PPAMT.

Tri-grams change at the beginning and the right-hand side
at each division. The probability is

pL3
=

4

Nw

∑
s

D(s). (3)

C. Phoneme labels

Mono-phone labels do not change. Tri-phone labels change
at four parts: the beginning, both sides of the division, and the
end. The probability under the assumption that each label has
the same duration is

pπ3
=

4

Nπ3

∑
s

D(s), (4)

where the total number of tri-phone labels is Nπ3 .

D. Acoustic features

Acoustic features are concatenated in contiguous ±ϕ
frames, i.e., for each frame, features over (2ϕ + 1) frames
are used. When there are a total of NF frames in the training
data, the features used have NF (2ϕ+ 1) frames.

Acoustic features change at four parts, i.e., the left-hand
part of the beginning, both sides of the division, and the right-
hand side of the end. For each part, features over

∑ϕ
φ=1 φ =

(ϕ+1)ϕ
2 frames change. Thus, the division changes the features

in 2(ϕ+ 1)ϕ
∑

s D(s) frames. The probability is

pF =
2(ϕ+ 1)ϕ

NF (2ϕ+ 1)

∑
s

D(s). (5)

E. Relation of three types of features

In general, the sensitivities in Eqs. (3), (4), and (5) can
be expressed by the relation: pL3

≫ pπ3
> pF because of

the order NF > Nπ3
≫ Nw. This relationship indicates that

phoneme labels and acoustic features are less susceptible to
PPAMT than n-grams. This is optimal for training acoustic
models because this means that n-grams are more randomized
than phoneme labels and acoustic features. N-grams must
be randomized sufficiently in order to prevent others from
restoring the original transcriptions, whereas phoneme labels
and acoustic features must be accurate in order to train
accurate models on the dataset.

F. Output privacy of prior distribution of DNN

The prior distribution of tri-phone states t is also changed
by PPAMT. The discrepancy between the original prior distri-
bution P and the prior distribution after PPAMT, P ′, can be
measured similarly to DP [17], as

ϵ(t) = | log(P (t))− log(P ′(t))|. (6)

III. SPEAKER ANONYMIZATION

In addition to the requirements in Sec. II, speaker
anonymization can be achieved by speaker clustering.
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A. Speaker clustering based on i-vector

k-anonymization, which is one of the PPDP techniques, is
used to anonymize speakers. This technique can anonymize
training speakers and the number of the training speakers.
After training speakers are divided into multiple clusters,
the utterances of k-different speakers belonging to the same
cluster are mixed. If all utterances are composed of multiple
speakers, the training data are robust against attacks based on
speaker identification techniques. First, speaker clusters are
created based on i-vectors [20]. i-vectors are derived from a
factor analysis that decomposes speech into a speaker/channel
invariant and a variant, i.e., V n = v + Tzn where V n is a
GMM super vector adapted for an utterance n and depends on
a speaker and a channel; v is a GMM super vector, which is
independent of the speaker and channel and is obtained from
a universal background model; T is a low-rank rectangular
matrix composed of basis vectors that span all variable spaces,
and zn is an i-vector for the utterance n. All N utterances are
clustered by k-means algorithm based on a cosine similarity
of zn to anonymize speakers.

B. Random concatenation

After C clusters are created from speaker clustering, the
c-th speaker cluster contains

∑
s∈S(c) N(s) utterances, i.e.,∑

s∈S(c) N
′(s) word phrases, where S(c) is the speaker group

belonging to the c-th cluster. These phrases are randomly
concatenated. This adjusts the number of speakers in the
training data, S, to the desired number of clusters C. If the
number of speakers in every cluster is greater than or equal
to k, k-anonymization is achieved, i.e., k is the minimum
number of speakers in the same cluster. If each cluster has the
same number of speakers, k is ⌊S/C⌋. i-vectors in randomly
concatenated utterances are the average of multiple speakers’
i-vectors, which are robust against speaker identification. Com-
pared with the PPAMT in Sec. II, it is possible to mix different
language contexts and increase the language perplexity in the
ratio S/C.

C. Speaker adaptation does not preserve privacy

Speaker adaptation is insufficient for preserving privacy. For
example, feature-space maximum likelihood linear regression
(fMLLR) [21] is a typical technique that transforms an acous-
tic feature vector x to obtain the feature vector y adapted to the
s-th speaker by applying transformation matrix As and bias
bs as y = Asx+bs. If As and bs are discarded after training
to preserve privacy, they can still be estimated; because GMM
models for speaker adaptation must be reserved to estimate
transform matrices for unknown test users. These parameters
can be estimated from target speaker utterances as Âs and
b̂s. An original feature x̂ can be estimated from the inverse
as x̂ = Â−1

s [y − b̂s]., enabling speaker identification. This
identification is accurate especially when the condition number
of As is small.

IV. EXPERIMENTS

A. Experimental setups

We validated PPAMT using the Corpus of Spontaneous
Japanese (CSJ) [22], one of the most widely used LVCSR
tasks for building Japanese ASR systems. The vocabulary
size is about 70k. We used DNN training tools from the
Kaldi toolkit [23] with an attached recipe to construct a
baseline system. Acoustic features were transformed from a
13-dimensional mel-frequency cepstral coefficient with linear
discriminant analysis to obtain 40-dimensional acoustic fea-
tures concatenated in contiguous ±ϕ(= 17) frames. fMLLR-
based unsupervised speaker adaptation was applied. The DNN
was composed of seven layers with 9, 388 output nodes (tri-
phone states) and each layer had 1, 905 nodes.

The CSJ dataset contained two domains. The in-domain
data were academic lectures (CSJ A) and the out-of-domain
data were general lectures and interviews (CSJ R&S). We
evaluated the open CSJ A test set composed of ten lectures
by ten different speakers in terms of word error rate (WER)
[%]. For decoding, a tri-gram language model was constructed
from the in-domain data, which was common to all systems.
The in-domain training data (CSJ A set) originally contained∑

s N(s) = 159, 297 sentences in NF = 85, 999, 942 [frames]
(239 hours). The number of speakers was S = 986. In total,
there were Nw = 3, 871, 539 words (41, 862 different words)
with Nπ3

= 12, 004, 648 tri-phone labels, in which there were
41 types of monophones and 413 = 68, 921 types of triphones.
After

∑
s D(s) = 952, 346 divisions,

∑
s N

′(s) = 1, 111, 643
word phrases were obtained. In this experiment, sentences
were divided according to the occurrence of short pauses
or Japanese post-positional particles. Before division, each
sentence had Nw/

∑
s N(s) = 24.3 words on average. After

division, each phrase contained Nw/
∑

s N
′(s) = 3.48 words

on average, and W = 10 word phrases were randomly
concatenated to construct 111, 509 sentences. In addition,
for the experiment in Sec. IV-E, we used the out-of-domain
training data (CSJ R&S set) that contained 2,222 speakers and
101,208,464 [frames] (281 hours).

B. PPAMT and feature sensitivity

Fig. 2 shows examples of concatenated phrases. Slash
marks indicate the boundaries between phrases, which each
contained a few words. The average duration of each phrase
was NF /N = 77.4 [frames] (0.774 [sec]). In this case, the
sensitivities were pL3 = 0.984 ≫ pπ3 = 0.317 > pF = 0.194,
which confirmed the relationship in Sec. II-E.

ex 1: 仕事の / その情報の / えー / 四番目と / 高いと /
誤り率は / おります / 人に / 調べ物を / 結果を / 現在までに

ex 2: すぐ検索して / えー / 本発表は / 納めまして /
だから / 途中で / えー / 最も一致が / おー / の / います /
基づくフィードバックだと / 認知活動の

Fig. 2. Examples of randomly concatenated phrases.
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TABLE I
WER[%] OF PROPOSED PRIVACY PRESERVATION WHEN ONLY IN-DOMAIN

DATASET WAS AVAILABLE.
CE sMBR

all in-domain data available 11.71 11.05
phrase division 15.43 14.44

random concatenation (PPAMT) 14.88 13.76
speaker anonymization (10 clusters) 15.09 14.17
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16
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11

15.09

Original # of training speakers (986)

Fig. 3. WER[%] of CSJ test set when speaker clustering was used for speaker
anonymization.

Table I shows the WER when only in-domain dataset was
available. After a cross-entropy (CE) DNN acoustic model was
obtained, sequential minimum Bayes risk (sMBR) discrimina-
tive training [9] was conducted. The first row is the upper
limit WER when all in-domain speakers were used without
privacy preservation. The second row is the WER with phrase
division only. Although each word phrase contained only a few
words and their duration was short, the acoustic model was
properly trained. Random concatenation of the phrases, i.e.,
PPAMT, improved the WER because tri-phoneme variations
were increased by the concatenation. sMBR was effective for
PPAMT because the time sequences of acoustic features were
reserved, which was an advantage of the proposed PPAMT.
Speaker anonymization with ten clusters attained k(= 98)-
anonymization, although the WER were degraded by 0.2%
for CE and 0.4% for sMBR.

C. Number of speaker clusters

Fig. 3 shows the relationship between the number of speaker
clusters C and WER. The performance largely did not depend
on the number of clusters for both C < S and C > S. Thus
speaker anonymization with arbitrary k is feasible.

D. Subsampling of in-domain speakers without privacy
preservation

Another way to continuously use in-domain data is subsam-
pling, in which partial in-domain data are used only when the
speaker has agreed to the use of personal data. Fig. 4 shows the
relationship between the number of training speakers, which
were non-preserved, and WER. When the number of training
speakers was less than 100, the performance significantly
degraded. When the number of non-preserved speakers was
200 (approximately 1/5 of the total number), a 3% degradation
of WER was observed.

The use of non-preserved speakers was also beneficial for
PPAMT. Fig. 5 shows the relationship between the num-
ber of non-preserved speakers in PPAMT and WER. In the
case of 200 non-preserved speakers, the WER degraded only
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Fig. 4. WER[%] on the CSJ testset when training data were subsampled.
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Fig. 5. WER[%] on the CSJ testset when partial speakers were preserved.

TABLE II
WER[%] OF PROPOSED PRIVACY PRESERVATION WHEN ADDITIONAL

OUT-OF-DOMAIN DATASET WAS AVAILABLE. () SHOWS THE IMPROVEMENT
FROM TABLE I.

CE
all in-domain data available 11.44 (0.27)

random concatenation (PPAMT) 12.03 (2.85)
speaker anonymization (10 clusters) 11.98 (3.11)
cf. only out-of-domain data available 14.14

0.7%, although subsampling degraded the WER by 3%. Even
when the number of non-preserved speakers was reduced, the
performance degradation was less than that of subsampling.
This indicates that PPAMT outperformed subsampling even
when partial in-domain data were available without privacy
preservation.

E. Effectiveness of additional out-of-domain dataset

Table II shows the WER when additional out-of-domain
dataset was available. Additional out-of-domain data were
particularly effective for PPAMT because domain-independent
knowledge could be learned. On the other hand, when only
out-of-domain data were available, WER (= 14.14%) was
much higher, indicating that privacy-preserved in-domain data
significantly improved performance. In this case, speaker
anonymization did not degrade the performance as in
Sec. IV-C.

Fig. 6 shows the relationship between the number of non-
preserved speakers in the in-domain dataset and WER. The
WER degradation was 0.59% even without non-preserved
speakers. When 200 speakers were used without privacy
preservation, WER degradation was 0.26%.

F. Output privacy for prior distribution

Fig. 7 shows the cumulative probability in the prior distri-
bution as in Eq. (6). The difference for 90% of the states was
less than ϵ = 0.5. The difference exceeded ϵ = 2 for only
2.7% of the states. This shows that high privacy preservation
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Fig. 7. Difference in logarithmic probabilities of prior distribution for tri-phone
states, ϵ in Eq. (6).

of prior distributions can be attained using PPAMT in terms of
output privacy because most prior distributions did not change.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a PPAMT method using pertur-
bation and randomization as key operations. We formulated
the sensitivities of three features (n-gram, phoneme labels,
and acoustic feature) to PPAMT, i.e., the probabilities of
being influenced by PPAMT. This indicates that the acoustic
features and phoneme labels were less susceptible to PPAMT
than the language features, which is optimal property for
acoustic model training with privacy preservation. In addition,
speaker anonymization was attained by speaker clustering.
WER degradation by PPAMT was less than 0.6%, while the
transcriptions could be restored with a negligible probability.
Speaker anonymization did not degrade the performance with
the inclusion of out-of-domain data. In future, we will conduct
further theoretical analysis on the proposed PPAMT, particu-
larly in terms of output privacy.
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