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Abstract—In sound classification, commonly used speech per-
ceptual features, such as the Mel-frequency cepstral coefficient
and the Mel-spectrogram, ignore information other than the
frequency features in raw waveforms. We cannot conclude that
these discarded parts are meaningless. To avoid missing informa-
tion in the time series, we previously proposed the bit sequence
representation, which maintained the temporal characteristics
of the sound waveform and improved its performance over the
original waveform. The present study validated our findings on
three datasets, namely two datasets for music/speech classification
and one for English speech classification. We also compared
the classification performances when the features were not pre-
processed with that when the maximum amplitude was restricted.
As a result, we found that appropriately limiting the maximum
amplitude is effective in improving the classification performance.

I. INTRODUCTION

Sound classification includes tasks, such as speech recogni-
tion (ASR), acoustic event detection (AED), acoustic scene
classification (ASC), and music/speech discrimination. In
these tasks, sound perceptual feature extraction processes
are generally required before using classification algorithms,
such as the commonly used Mel-frequency cepstral coefficient
(MFECCO) [1], [2], [3], Mel-spectrogram, perceptual linear pre-
dictive coefficient [4], and power-normalized cepstral coeffi-
cients [5]. The recognition performance of different features
differs depending on specific tasks. For example, in the task
of ASC, P. Tilak et al. [6] used an end-to-end approach to
perform a direct classification with raw waveforms, which
outperformed the MFCCs. In the speech recognition task,
experiments demonstrated the MFCCs like features have a
significantly better recognition performance [3], [5]. In other
words, we need a generic feature that can be used in different
tasks.

After investigation, we found that all the commonly used
feature extraction approaches only analyzed the frequency
component and discarded the information in the acoustic wave
other than the frequency and the amplitude. However, we
do not assert that the discarded portion contains no useful
information.

Under the assumption that the information discarded by the
frequency features is useful, we abandoned using the Mel-
spectrogram and the MFCCs in our previous work [7]. Instead,
we used a temporal-based feature, called bit sequence repre-
sentation, which deformed from the original acoustic sample,
to propose a deep neural network-based sound classification
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approach. We used two different bit sequence representations
to prove that the feature has a higher recognition performance
than the MFCCs and a good robustness in both AED and
music/speech discrimination tasks.

This paper discusses the validity of bit sequence represen-
tation in music/speech discrimination tasks and an English
utterance classification task through two sets of experiments.
In the first set of experiments, we compare the differences
in the classification performances of the three datasets under
a similar network structure using the original waveform, the
bit sequence representation of the acoustic waveform without
any pre-processing for end-to-end recognition, and the pre-
processed MFCCs features. In the second set of experiments,
we compare the classification performances of the bit sequence
representation and the raw waveforms by adjusting the wave-
form’s amplitude maximum.

Based on the preceding experiments, we investigate and
analyze the effectiveness of the end-to-end approach using bit
sequence representation in different tasks and find the effect
of adjusting the maximum amplitude of the waveform on the
classification performance. The contributions of this paper are
as follows:

o This study presents three different forms of bit sequence
representations (int16, float16, and float32) that improve
the feature performance.

o This feature does not lose information from the wave-
form. Compared to the MFCCs, which require complex
calculations and convolution with filters, the bit sequence
representation only needs to change the method of read-
ing the raw waveforms.

« By plotting the spectrograms, the significance of the high
and low-bit features in the bit sequence representation is
confirmed to lay the foundation for further research.

o The bit sequence representation has the same perfor-
mance level as the MFCCs in the English utterance
classification task. Combined with the conclusions of
our previous studies, the bit sequence representation has
better cross-tasking capabilities than MFCCs.

o The experiments show that restricting the maximum am-
plitude of the raw waveforms can effectively improve the
recognition effect, regardless of which feature is used.

The remainder of this paper is organized as follows: the next
section describes three forms of bit column performance and
the neural network architectures used for two types of audio
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classification tasks; Section 3 describes the dataset details, Kernel size Music or Speech
expgrimental sgtups for the tho tasks, and the results; and 156 3(7,2)
Section 4 provides our conclusions. —
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[2], [8], [9], ASC [10], [11], [12], AED [13], [14], [15], and
music/speech discrimination [16], [17]. More recently, end-
to-end approaches have become increasingly popular. Many
sound classification systems using end-to-end approaches have
achieved unprecedented results [18], [19]. Our proposed bit
sequence representation only changes the method of reading
data without losing any information of raw waveforms, does Classification results

t . h . . d b d Stride: (8, 1) Time series length:16000 1

not require pre-em asis processin and can be used as an 00— —o = >

oature for the endtoend o : o
Kcmcls  Swide: 6. T

= I FC

T

0000001100100110

00001001

Bit sequence width 32

the direction of time

Fig. 1. Music/Speech classifier.

input feature for the end-to-end approach.

Three classification tasks are handled in this study: two
music/speech discrimination tasks and an English utterance
classification task. In our previous work [7], we proposed two
types of bit sequence representations of a raw audio waveform » |
and provided two network structures inspired by convolutional ime seris length:248
(Conv.), long short-term memory (LSTM), fully-connected
deep neural networks [20]. We continued to use these network =_|
strul():tures herein with selections and adjustments based on the Time series 1::::718;‘
tasks and chose three types of bit sequence: a 16-bit sequence
of integers; a 32-bit sequence of single-precision floating-point
numbers; and a 16-bit sequence of half-precision floating-point  model. However, the convolution method in the Conv. layers
numbers. is different. This model uses the bit width as the channel size
in the convolution of the audio bit sequences; thus, each digit

of the bit sequence is convolved. The details of the model
The bit sequence representation of a sound waveform is  parameters are indicated in Table II.

expressed not as an integer value but as a bit sequence, and is
represented as two-dimensional data of “number of samples”
and “digits of the bit sequence.” We can perform convolutional ~A. Dataset Details
processing like an image by representing sound waves in two The first dataset is called the GTZAN dataset [23] in
dimensions. Marsyas. This dataset consists of two music and speech
classes. Each class comprises of 64 audio files. Each audio
file is in a 30 s WAV format (22,050 Hz ampling frequency,
Fig. 1 shows an overview of the music/speech discrimi- single channel and 16 bits per sample). In our experiments,
nation experiment model with a 32-bit input bit length. This we divided and downsampled the dataset into a 10 s WAV
sound classification model has a structure that extracts features  format (8,000 Hz sampling frequency, single channel, and 16
from the bit sequence of a raw audio waveform using three- bits per sample) and used 384 wave-formatted files. In the
layer CNNs. The classification is performed in the subsequent  dataset, 70% of the data was used for the training, and the
bi-directional GRU [21] layer and fully-connected layer. The others were used for the evaluation.
model uses softmax cross-entropy as the loss function, Adam The other dataset is a radio dataset collected by ourselves
as the optimizer, with an initial learning rate of 0.0002, and the  for music/sound discrimination tasks. The collected data were
number of output classes depends on the dataset used in the from actual Japan broadcasted programs. This dataset consists
experiment (2 or 6). Other details of the model parameters are  of 17,973 training audio files and 115 evaluation audio files.
indicated in Table I. Fig. 2 shows a schematic diagram of the Each file is in a 10 s WAV format (8,000 Hz sampling
model used in the English utterance classification experiments.  frequency, single channel, and 16 bits per sample). For the
This model has a structure that is very similar to that of experiments, the radio data were divided into six categories:
the abovementioned sound classification model, in which the music, music and speech, speech, laughter, silence, and envi-
features are extracted from the bit sequences at three Conv. ronmentally sound. We assigned one of the six labels to an
layers, and then classified at the LSTM [22] layer and the audio file.
fully-connected layer, and we use the same loss function and We also used the Google Speech Commands Dataset ver.
optimizer as in the speech/music discrimination experiment 2 [24] to investigate the applicability of the bit sequence

32¢h
Time series length:1997

LSTM
Stride: (2 1)

Bit sequence width 16 or 32

Fig. 2. English utterance classifier.

A. Bit Sequence Representation

III. EXPERIMENTS

B. Structure of the Classifier
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TABLE 1
STRUCTURE DETAILS OF MUSIC/SPEECH CLASSIFIER.
Layers l — F catures
| Bit (int16/float16) | Bit (float32) [ Raw waveforms | MFCC
Dropout 0.1 0.1 - 0.1
Dense 16 32 - 39
Dropout 0.2 0.2 0.2 0.2
Reshape (80,000, 16, 1) (80,000, 32, 1) (80,000, 1, 1) (1,001, 39, 1)
Conv. 1 (15, 6), (7, 2), 16 | (15, 6), (7,2), 16 | (15, 1), (7, 1), 16 | (15, 12), (7, 6), 16
Dropout 0.2 0.2 0.2 0.2
Conv. 2 (15, 3), (7, 1), 32 | (15,3), (7,2),32 | (15, 1), (7, 1),32 | (15, 4),(7,2),32
Dropout 0.2 0.2 0.2 0.2
Conv. 3 (15, 1), (7, 1), 64 | (15,2),(7,2), 64 | (15, 1), (7, 1),64 | (15, 1), (7, 1), 64
Reshape (231, 256) (231, 192) (231, 64) (1, 64)
BiGRU 256 256 256 256
Dense (softmax) 2o0r6 20r6 20r6 2o0r6
TABLE 11
STRUCTURE DETAILS OF ENGLISH UTTERANCE CLASSIFIER.
Layers | . Features
[ Bit [ Raw waveforms | MFCC
Mask -1 0 -
Reshape (16,000, 1, 16) (16,000, 1, 1) (197, 39, 1)
Conv. 1 (32, 1), (8, 1),32 | (32, 1), (8, 1),32 | (25, 1), (6, 1), 128
Dropout 0.4 0.4 0.4
Conv. 2 (16, 1), 8, 1), 64 | (16, 1), (8, 1),64 | (6, 1), (2, 1), 256
Dropout 0.4 0.4 0.4
Conv. 3 8, 1), (2, 1), 128 | (8, 1), (2, 1), 128 -
Dropout 0.4 0.4 -
Reshape (121, 128) (121, 128) (12, 256)
LSTM 128 128 128
Dropout - - 0.4
Dense 128 128 128
Dropout - - 0.4
Dense (softmax) 35 35 35

representation of a sound wave to the utterance classification
asides from music/speech discrimination. The dataset consists
of 35 different types of utterances, which totaled to 105,829
audio files. Each audio data file is in the WAV format (16,000
Hz sampling frequency, single channel, and 16 bits per sample)
with less than 1 s duration. Approximately 10% of the audio
files was less than 1 s, and we adjusted the data to be 1 s. In the
experiment, 84,843 sound files were used for learning; 11,005
sound files were used for the evaluation, and the remaining
files were used for the verification. The audio files were
distributed such that the same speaker will not be included
in the training, evaluation, or verification set at the same time.

The GTZAN dataset is referred to herein as the D1. The
self-collected radio dataset is referred to as D2. The Google
Speech Commands Dataset used for the word utterance clas-
sification is referred to as D3.

We conducted two sets of experiments to investigate the
effectiveness of the end-to-end classification method, which
directly classifies bit sequences without pre-processing, and
the influence of the sound wave amplitude.

B. Experimental Setup

1) End-to-end experiments with bit sequence representa-
tion: We conducted the first experiment to investigate the ef-
fectiveness of the end-to-end classification approach, which di-
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rectly classifies bit sequences without pre-processing by com-
paring three different bit sequence representations, MFCCs
with pre-processing, and the raw waveform input without
conversion to bit sequences. The evaluation scale was based on
the classification accuracy of the evaluated data. Three kinds
of bit sequence representations referred to an integer value
converted to a 16-bit sequence, a single-precision floating-
point value converted to a 32-bit sequence, and a half-precision
floating-point value converted to a 16-bit sequence.

2) Amplitude variation experiment: The second experiment
was conducted to investigate the influence of the waveforms
amplitude change on the bit sequence input by varying the
waveform amplitudes and evaluating each classification using
the accuracy rate. The amplitudes were varied by changing
the maximum amplitude of each waveform such that the am-
plitudes of the entire waveform were aligned. The maximum
value of the amplitude to be adjusted was 2", where n ranges
from O to 15. The maximum sound waveform value was set
to a power of 2 to make it easier to understand how much bit
length affects the sound classification considering that the bit
length representing 2" changes as n changes. All values after
the decimal point were rounded down to an integer value,
when the waveform amplitude varied. Thus, the waveform
amplitudes were aligned and converted into three different bit
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TABLE III
CLASSIFICATION ACCURACIES [%] FOR VARIOUS SORTS OF INPUT
FORMATS.
| Dataset

Input Feature [ BI ‘ D3 ‘ D3

intl6 96.5 | 89.6 | 85.0

float16 947 | 88.7 | 84.3

foat32 96.5 | 87.8 | 849

Raw waveforms 85.1 88.7 | 22.7

MFCC 939 | 904 | 91.1

sequences used as input to the sound classification model. We
also investigated a method of classifying raw waveforms to
compare them with the bit sequence.

C. Experimental Results and Visualization Analysis

Table III shows the classification accuracy for each dataset
by each input representation.

The bit sequence accuracy for D1 was higher for MFCCs
and the raw waveforms. On the contrary, the classification
accuracy for D2 and D3 was higher for MFCCs than the
bit sequence representation. However, no significant difference
was found in the classification accuracy between the MFCCs
and the bit sequences in all datasets; therefore , the bit se-
quences were an effective input for the sound classification. No
significant change in the classification accuracy was observed
as the bit sequence was changed; thus, no problem was en-
countered in using any type of bit sequence representation, and
we can achieve a fair classification accuracy. Furthermore, the
accuracy of the bit sequence representation in D1 was better
than that of the MFCCs. In other words, the bit sequences
can achieve a higher classification accuracy than the pre-
processing method depending on the tasks to be handled.
However, in D3, the classification accuracy of the direct input
of raw waveforms was significantly lower than that of the
bit sequence representation.Even in cases where classifying
raw waveforms was difficult, depending on the task, a highly
accurate sound classification can be achieved by converting
the waveforms to bit sequences.

Table IV shows the classification accuracy for each input
type when the maximum amplitude was aligned. The clas-
sification accuracy in all datasets was improved by aligning
the maximum amplitude of the sound waves compared to
the results shown in Table III, which shows the classification
accuracy without aligning the maximum amplitude.

This improvement restricted the maximum value of all
sound files during sound classification to prevent some parts
of the sound files from being outliers with extremely large
amplitudes, thereby reducing misclassification results. There-
fore, aligning the maximum amplitude of the sound waveform
is considered to be helpful when using the raw waveforms as
the input and can be used as a new normalization method of
raw waveforms. Moreover, the classification accuracy did not
significantly change when the amplitude of the bit sequence
representation was aligned, indicating that no significant differ-
ence existed in the sound classification, regardless of which bit
sequence representation was used. However, the classification
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Fig. 3. Spectrogram of a raw waveform.

accuracy was markedly lower when the maximum amplitude
was 1 or 2 than when the maximum amplitude was four
or more. When converting an integer to a bit sequence, an
amplitude of 2 can only be expressed in two bits. A high
classification performance cannot be achieved in any dataset
with only two bits of information. Therefore, more than 3
bits of information must be used to realize accurate sound
classification.

We visualized the spectrogram of each digit of the bit
sequence to check what information is contained in a bit
sequence representation. For comparison, we also present
herein the spectrogram of the untransformed raw waveforms.
Fig. 3 shows the spectrogram of the raw waveforms. Fig. 4
illustrates the spectrogram of the sound waveform converted to
a 16-bit integer string. Fig. 5 displays the spectrogram of the
sound waveform converted to a 16-bit half-precision floating-
point string, where ch is the digit of each bit sequence. The
higher the value, the higher the bit sequence. For example, chO
indicates the lowest bit, whereas chl5 indicates the highest
bit. If we convert the sound waveform into a 16-bit string of
integers (Fig. 4), we can confirm that the sign bit, which is the
highest-order bit, and the three high-order bits of ch10 to ch12
have features that are similar with those in Fig. 3. Therefore,
the upper three bits of the bit sequence representation were
found to contain features similar to the raw waveforms. As a
result, sound classification with high accuracy is challenging
when a bit sequence is used for the sound classification, unless
it contains the upper 3 bits.

This tendency is shown in Table IV to be true not only
for 16-bit integers, but also for floating-point numbers. In
other words, a bit sequence with a maximum amplitude of
approximately 3 bits is essential for classification. Fig. 5
shows that the upper bits of ch10 to ch15 had characteristics
similar to those of Fig. 3, which depicts a spectrogram of
the raw waveforms. The highest-order bits of the floating-
point number were the sign bit and the exponent part con-
taining the information necessary for the sound classification.
Table IV shows that the information necessary for the sound
classification were included in the sign bit and the exponent
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TABLE IV
CLASSIFICATION ACCURACIES [%] FOR THE AMPLITUDE-RESTRICTED AUDIO.

Maximum amplitude value

Input Feature }

T | 2 [ & | 8 | 16 [ 32 | 64 | 128 [ 256 | 512 | 1024 | 2048 | 4096 | 8192 | 16384 | 32678

nti6 506 | 939 | 974 | 974 | 074 | 974 | 982 | 982 | 974 | 982 | 99.1 | 990 | 982 | 965 | 990 | 96.5

DI float16 579 | 956 | 974 | 97.4 | 97.4 | 965 | 97.4 | 99.1 | 99.1 | 97.4 | 974 | 991 | 982 | 974 | 974 | 982
float32 632 | 930 | 974 | 97.4 | 99.1 | 965 | 982 | 99.1 | 965 | 982 | 974 | 974 | 974 | 982 | 974 | 974

Raw waveforms || 57.9 | 87.7 | 96.5 | 97.4 | 974 | 98.2 | 99.1 | 982 | 982 | 956 | 96.5 | 956 | 965 | 842 | 789 | 83.3

ntl6 60.9 | 80.9 | 80.0 | 88.7 | 90.4 | 89.6 | 87.8 | 88.7 | 870 | 87.8 | 88.7 | 87.8 | 89.6 | 89.6 | 878 | 887

D2 float16 87.0 | 87.0 | 87.0 | 86.1 | 852 | 87.8 | 87.8 | 87.8 | 86.1 | 87.0 | 90.4 | 87.0 | 86.1 | 86.1 | 89.6 | 86.1
float32 86.1 | 86.1 | 86.1 | 86.1 | 87.0 | 87.8 | 91.3 | 87.8 | 87.0 | 87.8 | 852 | 86.1 | 87.0 | 87.0 | 887 | 87.0

Raw waveforms || 60.0 | 87.0 | 86.1 | 92.1 | 913 | 87.8 | 87.8 | 87.8 | 87.0 | 87.0 | 87.0 | 887 | 87.0 | 887 | 878 | 870

nti6 38 [ 497 | 731 | 834 | 862 | 878 | 87.2 | 876 | 869 | 850 | 866 | 843 | 863 | 851 | 868 | 820

D3 float16 3.7 | 498 | 73.8 | 84.3 | 862 | 89.2 | 89.3 | 89.1 | 87.5 | 86.4 | 879 | 84.2 | 87.1 | 84.8 | 865 | 852
float32 38 | 470 | 73.8 | 82.6 | 86.6 | 883 | 88.0 | 89.0 | 87.5 | 87.0 | 867 | 859 | 845 | 852 | 857 | 839

Raw waveforms || 4.5 | 499 | 769 | 85.8 | 88.5 | 89.7 | 90.1 | 89.8 | 89.1 | 87.2 | 854 | 780 | 645 | 335 | 168 | 177
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Fig. 4. Spectrograms of each bit
waveform.

sequence (intl6 representation) of a raw

part when the maximum amplitude was 4 or more, even in a
floating-point number. These results show that the sound wave
was normalized by aligning the maximum amplitude in sound
classification, which was effective in classifying sound with
raw waveforms. However, almost no difference in the sound
classification was found no matter which bit sequence is used.
When the maximum amplitude value was restricted in the 16-
bit integer representation, at least three bits must be considered
to achieve a high sound classification accuracy.

IV. CONCLUSIONS

This study aimed to analyze sound classification charac-
teristics using bit sequence representations as the input. We
conducted two experiments using an end-to-end approach to
investigate the accuracy of the music/speech classification
and English utterance tasks and the effects of aligning the
amplitude maximums of the sound waves on classification.

In the end-to-end experiments using bit sequence repre-
sentations, the same classification accuracy was confirmed
by using any type of bit sequence compared with the pre-

2 4 6 8
time [s]

6 6 6
time [s] time [s] time [s]

Fig. 5. Spectrograms of each bit sequence (floatl6 representation) of a raw
waveform.

processed MFCCs. The experimental results for D1 showed
a bit sequence representation with a higher classification
accuracy than the MFCCs. Bit sequence representation can
be applied to various sound classification tasks. Moreover,
the sound classification accuracy is improved by aligning
the maximum amplitude of the raw waveforms. However,
achieving a high-accuracy sound classification is difficult if
the maximum amplitude of the raw waveforms is converted to
a 16-bit integer string. We also confirmed herein that achieving
a high-accuracy classification is difficult when the maximum
amplitude is tiny.
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