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Abstract—This work describes the speaker verification system
developed by Human Language Technology Laboratory, National
University of Singapore (HLT-NUS) for 2019 NIST Multimedia
Speaker Recognition Evaluation (SRE). The multimedia research
has gained attention to a wide range of applications and speaker
recognition is no exception to it. In contrast to the previous
NIST SREs, the latest edition focuses on a multimedia track to
recognize speakers with both audio and visual information. We
developed separate systems for audio and visual inputs followed
by a score level fusion of the systems from the two modalities
to collectively use their information. The audio systems are
based on x-vector based speaker embedding, whereas the face
recognition systems are based on ResNet and InsightFace based
face embeddings. With post evaluation studies and refinements,
we obtain an equal error rate (EER) of 0.88% and an actual
detection cost function (actDCF) of 0.026 on the evaluation set
of 2019 NIST multimedia SRE corpus.

I. INTRODUCTION

Speaker recognition is one of the widely studied areas in
speech processing that has witnessed success over the last two
decades [1], [2]. Such success has made possible to deploy
the technologies from laboratory to real-world applications in
the recent years [3]–[9]. The National Institutes of Standards
and Technology (NIST) runs a speaker recognition evaluation
(SRE1) to benchmark the robustness of various systems in
adverse and realistic conditions [10]. Some of those adverse
conditions included in the past few editions are short utterance,
noisy environment, channel mismatch, language mismatch and
multi-speaker test scenario [10]. The top performing teams in
every editions show the scope towards addressing these issues
by development of robust systems [11]–[14].

The latest edition 2019 NIST SRE runs on two tracks. The
first track focuses on addressing the domain mismatch in terms
of language, similar to that of the past two editions in 2016
and 2018 [15]. The only difference being removal of fixed set
training condition and to observe the specific gain achieved by
open set training condition. On the other hand, the second track
sets out an entirely new direction to explore the multimedia
speaker recognition for the first time as a part of SRE [16]. It
aims to recognize a speaker’s identify collectively with both
audio and visual cues. This paper focuses on our participation
to 2019 NIST multimedia SRE and the developed systems for
the challenge with their associated results.

1https://www.nist.gov/itl/iad/mig/speaker-recognition

The research on processing multimedia for various applica-
tions have witnessed breakthrough in the recent years [17].
It has been successfully explored for applications such as
speech separation [18], speaker diarization [19] and automatic
speaker recognition [20]. While there are few works [21]–[24]
exploring audio-visual multimedia information in the context
of speaker recognition, they are not comparable to one another
due to lack of benchmark data in the past. Further, the very re-
cent explorations for benchmarking latest developments focus
dominantly either on speaker recognition or face recognition,
which is independent of multimedia processing. In this regard,
the latest 2019 NIST multimedia SRE plays a pivotal role to
have a common platform for evaluating performance of audio-
visual speaker recognition systems.

Both speaker recognition and face recognition systems
have evolved over the time to reach the current state-of-the-
art systems. In this work, we use x-vector based speaker
embedding for speaker recognition studies [25]. A previous
study [26] showed that mixed bandwidth systems help to
achieve improved results for speaker recognition. Therefore,
we resample the audio to build narrowband and wideband
audio data based separate systems. Additionally, we focus on
speech enhancement aspect as well to process the data from
real-world scenario in the challenge. On the other hand, the
visual system is based on ResNet-101 model for performing
face recognition [27]. Post evaluation, we also developed
more advanced InsightFace based system for face recognition
studies [28]. Finally, a score level fusion is performed for
the developed audio and visual systems to use audio-visual
information for the 2019 NIST multimedia SRE collectively.

The rest of the paper is organized as follows. Section II
describes the details of the audio systems developed for
speaker recognition studies. In Section III, the visual systems
developed for face recognition studies are described. The
results and analysis for the submitted and post evaluation
systems are reported in Section IV. Finally, the paper is
concluded in Section V.

II. AUDIO SYSTEMS

This section describes the details of audio systems devel-
oped as a part of 2019 NIST multimedia SRE. The audio
systems follow the x-vector based speaker modeling [25]. We
focus on two different aspects while developing the audio
systems. The first aspect deals with development of mixed

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

605978-988-14768-8-3/20/$31.00 ©2020 APSIPA APSIPA-ASC 2020



bandwidth (narrowband and wideband) systems, whereas the
second one focuses on applying speech enhancement to ob-
serve the impact on real-world data. We also consider a
baseline audio system to compare to our audio systems. Next,
we discuss the details of the developed audio systems for 2019
NIST multimedia SRE.

A. Baseline

We use the standard Kaldi2 system for having a baseline
system for the audio track. The pre-trained x-vector model3

is used to obtain a baseline system results. It is a system that
uses wideband 16 kHz audio data for training the models and
hence, we refer this system as x-vector16k-I in this work.

B. Mixed Bandwidth Systems

Motivated by the gains achieved by mixed bandwidth
systems in [26], we are interested in studying the impact
of narrowband and wideband systems to use their different
aspects. This also leverage us to use larger amount of corpora
for data augmentation during the training of x-vector extractor
than that is used for the baseline.

We develop two systems with narrowband and wideband
audio data, respectively. Both systems are composed by three
modules, namely, feature extraction, x-vector extraction and
linear discriminant analysis (LDA) with probabilistic LDA
(PLDA). The difference of these two systems is on the
sampling rate of speech data. The former considers 8 kHz
audio data, whereas the latter considers 16 kHz audio data.
Therefore, we refer these two systems as x-vector8k and x-
vector16k-II, respectively. The details of experimental setups
for the two systems are mentioned in the following.

1) Feature extraction: 23-dimensional mel frequency cep-
stral coefficient (MFCC) features are extracted from each
utterance, which is followed by cepstral mean normalization
with a window size of 3 seconds [29], [30]. An energy based
voice activity detection (VAD) method is then used to remove
the silence frames for training and development test data.

2) x-vector extraction: The setting of x-vector network
architecture (e.g., the number of hidden units per layer) and
the training process follows that in [31]. The summary of
corpora used for training, development and data augmentation
can be viewed from Table I. In addition, the specific details of
the corpus used for training the extractor for narrowband and
wideband systems are mentioned in Table II. We note that both
narrowband and wideband systems follow the same network
architecture to derive 512-dimensional x-vectors.

3) LDA-PLDA: After pre-processing on the input vectors,
LDA is first applied to minimize the channel and distance
variation and reduce the dimension of x-vectors to 150. Then,
PLDA is utilized as the back-end classifier. The data used
for LDA-PLDA training for both narrowband and wideband
systems can be viewed from Table II.

2http://kaldi-asr.org/
3http://kaldi-asr.org/models/m8

TABLE I
SUMMARY OF SPEECH CORPORA PARTITIONED INTO TRAINING AND

DEVELOPMENT SET.

Corpus Usage
Previous NIST SREs Training
Switchboard, VoxCeleb [32], [33]
MUSAN Music [34] & Noise Data Augmentation
RIRS Noise [35] Data Augmentation
2019 NIST SRE Dev Development

TABLE II
DETAILS OF TRAINING SETS FOR X-VECTOR EXTRACTOR AND

LDA-PLDA MODEL IN NARROWBAND AND WIDEBAND SYSTEMS.

System Details
x-vector extractor
2,412,648 utterances from 11,577

Narrowband speakers in switchboard, previous SREs,
VoxCeleb1 and VoxCeleb2 corpora.

Wideband 2,090,300 utterances from 7,185 speakers
in VoxCeleb1 and VoxCeleb2 corpora.

LDA-PLDA
Narrowband 176,081 utterances from 4,392 speakers

in previous SREs
Wideband 200,000 utterances from 6,345 speakers

in VoxCeleb1 and VoxCeleb2 corpora

C. WPE System

The challenge data for 2019 NIST multimedia SRE are col-
lected in uncontrolled environments and therefore, the audio
segments are affected by background noise. Hence, we focused
on speech enhancement aspect to improve the quality of input
audio to the x-vector based system. The weighted prediction
error (WPE) based dereverberation method is applied on the
audio to perform speech enhancement [36]. It is a statistical
method that uses delayed linear prediction model to find out
the prediction error, which is then optimized to obtain the
clean speech [36]. It is to be noted that we implement WPE
only for the narrowband system for this study. The remaining
system architecture follows the same as that of the x-vector8k
system. We refer this WPE based system as x-vector8k-WPE
in this work. Next, we discuss the visual systems developed
for 2019 NIST multimedia SRE.

III. VISUAL SYSTEMS

As discussed earlier, the 2019 NIST multimedia SRE
involves both audio-visual cues for recognizing a person.
Therefore, the enrollment video not only provides the target
individual’s voice segments, but also gives the target speaker’s
face information using the bounding boxes [16]. The visual
system is expected to automatically determine whether the
target person is present in another test video. In this work,
we develop two different systems for face recognition that
considers visual information to recognize the speakers. The
first one is based on ResNet-101 architecture and serves as a
baseline system for visual modality. On the other hand, the
second one uses the latest InsightFace based face embedding
framework, which we develop during post evaluation. Table III
summarizes various corpora that we used for developing the
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Fig. 1. Block diagram of the visual system for 2019 NIST multimedia SRE. In the enrollment videos, the baseline method crops the target faces based on
the given face bounding boxes, whereas the post evaluation method detects faces in the specific frames.

TABLE III
SUMMARY OF VISUAL CORPORA PARTITIONED INTO TRAINING AND

DEVELOPMENT SET.

Corpus Usage System
MS-Celeb-1M & Train Face Recognition BaselineAsian-Celebrity [27]
WIDER FACE [37] Train Face Detection Post Evaluation
MS1MV2 [38] Train Face Recognition Post Evaluation
2019 NIST SRE Dev Development Both

visual systems. We discuss the details of the baseline and the
post evaluation visual systems in the following subsections.

A. Baseline: ResNet-101

In this subsection, we describe the baseline for the visual
system that performs face recognition. It consists of a pipeline
that receives raw images and produces the similarity scores
between two segments. In the first stage, the specific faces
in each enrollment video are cropped based on the given
bounding boxes, then the frames in the whole test video
at a rate of one frame per second are extracted. The face
detection module takes the raw frames as input to detect the
faces appeared. The detection contains a bounding box and
five key points (eyes, nose and mouth), which is used to
align the faces with similarity transformation. In the second
stage, the aligned face images are converted to feature vectors
with the recognition model. We use ResNet-101 trained on
the cleaned version of MS-Celeb-1M database and Asian-
Celebrity database as the recognition model [27]. In the third
stage, we perform template matching operation to match faces
between two segments. The pair-wise similarity scores are
computed based on the extracted face embeddings, and the
average of top-10 pairs is regarded as the final score. Fig. 1
shows the block diagram of the visual system with different
stages involved to perform face recognition.

B. Post Evaluation: InsightFace

During post evaluation, we primarily focused on improving
our visual system. The general pipeline of the system follows
that of the baseline, but we used the latest methods at various
stages for face recognition [39]. We highlight the key differ-
ences of the post evaluation visual systems in the following.

1) Face Detection: Face detection is performed with
RetinaFace [40], which is the state-of-the-art framework in
WIDER FACE hard test set [37]. The RetinaFace is a robust
single-stage face detector, which added five facial landmarks
as the extra supervision signal to improve the performance.
We selected ResNet-50 model, which is trained on the WIDER
FACE database for face detection. Followed by this, multi-task
cascaded convolutional networks (MTCNN) [41] is applied to
perform face alignment. In this study, for enrollment videos,
we found the quality of some given bounding boxes are not
so high due to the poses, lighting conditions and crop quality,
hence, instead of using the given frames, 5 frames (given
frames plus the ± 2 frames for each one) are selected as the
specific frames to improve the performance. For these frames,
we extracted and detected the faces, whose overlap rate with
the given boxes is higher than the threshold.

2) Face Embedding: The face embeddings are extracted
using InsightFace [28], which considers additive angular mar-
gin loss to obtain highly discriminative features for face
recognition. This framework can find the maximum classifica-
tion boundary in the angular space. We considered ResNet-
100 model trained on the cleaned MS-Celeb-1M database
(MS1MV2) [38] to obtain 512-dimensional face embeddings.

3) Backends: For each trial, the cosine similarity score
between the extracted face embeddings in the enrollment video
and the test video is computed. Instead of selecting the top-10
scores as that in the baseline method, the average of top 20%
scores is taken here to get the final log-likelihood ratio (LLR)
result using logistic regression.
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TABLE IV
PERFORMANCE OF AUDIO, VISUAL AND AUDIO-VISUAL (AV) SYSTEMS ON

THE DEVELOPMENT SET OF 2019 NIST MULTIMEDIA SRE.

Modality System EER (%) minDCF actDCF
x-vector16k-I 12.96 0.525 0.548
x-vector16k-II 12.38 0.463 0.838

Audio x-vector8k 12.04 0.467 0.632
x-vector8k-WPE 11.42 0.462 0.638
Fusion: Audio 12.04 0.459 0.466

Visual ResNet-101 11.11 0.423 0.446
Challenge Submission

Audio-visual Fusion: AV 6.48 0.208 0.216
Post Evaluation

Visual InsightFace 5.65 0.318 0.342
Audio-visual Fusion: AV 4.63 0.130 0.157

IV. RESULTS AND ANALYSIS

In this section, we report the results and analysis of different
systems developed for 2019 NIST multimedia SRE. We used
the scoring tool package given by the organizers to report
the results in terms of equal error rate (EER), minimum
detection cost function (minDCF) and actual detection cost
function (actDCF) as per the evaluation plan [42]. It is noted
that actDCF serves as the primary metric for the challenge.
The score level fusion and calibration of various systems are
performed using the Bosaris4 toolkit [43] in this study.

Table IV shows the results for various audio and visual
systems on the development set of 2019 NIST multimedia
SRE. We note that scores belonging to the individual audio
or visual systems are not calibrated. The scores are only
calibrated for the fusion systems. It is observed that our
mixed bandwidth and WPE based systems perform better than
the baseline audio system. Further, the score level fusion of
the audio systems improves the actDCF as well as minDCF
compared to all the individual audio systems. This shows the
gain achieved by complementary nature of information by
these developed audio systems.

We then focus on the results of the visual systems. It
is observed from Table IV that the visual system performs
better than all the audio systems as well as fusion of all the
audio systems, which shows its effectiveness for recognizing
speakers. Further, we perform the fusion of all the four audio
systems and the ResNet-101 based visual system, which was
our primary submission to the audio-visual track of 2019
NIST multimedia SRE. We find the fused audio-visual system
enhances the performance by a larger margin due to the
complementary information for capturing speaker identity.

Post evaluation, we developed another visual system based
on InsightFace framework, whose results are also reported in
Table IV. This system performs even better than our baseline
ResNet-101 based visual system that was used for audio-visual
fusion during challenge submission. The gains achieved with
this post evaluation system is due to the use of the state-
of-the-art face detection as well as face recognition models.
Further, the scoring strategy described in the previous section
also helped to obtain an improved result. We then perform

4https://sites.google.com/site/bosaristoolkit/

TABLE V
PERFORMANCE OF AUDIO, VISUAL AND AUDIO-VISUAL (AV) SYSTEMS ON

THE EVALUATION SET OF 2019 NIST MULTIMEDIA SRE.

Modality System EER (%) minDCF actDCF
x-vector16k-I 7.79 0.407 0.610
x-vector16k-II 7.30 0.317 0.558

Audio x-vector8k 8.14 0.414 0.548
x-vector8k-WPE 7.02 0.306 0.529
Fusion: Audio 6.46 0.314 0.321

Visual ResNet-101 6.16 0.330 0.343
Challenge Submission

Audio-visual Fusion: AV 2.32 0.131 0.136
Post Evaluation

Visual InsightFace 1.55 0.049 0.085
Audio-visual Fusion: AV 0.88 0.024 0.026

a fusion of this system with the four audio and ResNet-101
based visual systems. The resultant fused system obtained post
evaluation significantly improves the performance of audio-
visual speaker recognition.

Table V shows the results of various systems and their
fusion on the evaluation set of 2019 NIST multimedia SRE.
We observe that the performance of all the audio and visual
systems are comparatively better than that on the development
set. This points towards the fact that the development set is
more challenging in nature. Further, the WPE based audio
system emerges as the best system among the all audio
system developed on the evaluation set. On the other hand,
the InsightFace system outperforms the baseline visual system
by a large margin. This also results in a significant gain in
the audio-visual fusion system obtained with post evaluation
study. We obtain an actDCF of 0.026 with the final audio-
visual system in comparison to actDF of 0.136 audio-visual
system submitted to the challenge. It is also noted that the
final audio-visual system thus obtained performs comparable
to the top two systems of 2019 NIST multimedia SRE.

V. CONCLUSION

This work reports the details of audio-visual systems de-
veloped by HLT-NUS for 2019 NIST multimedia SRE. The
audio systems follow x-vector based framework with the
focus on mixed bandwidth and speech enhancement. On the
contrary, the visual systems are developed using ResNet-
101 and InsightFace frameworks. A score level fusion of the
developed audio and visual systems significantly improves the
speaker recognition performance in comparison to systems
based on individual modality. The future work will focus
on associating temporal relation of audio-visual cues for
performing multimedia speaker recognition.
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