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Abstract—This paper presents a method to learn speaker em-
beddings for text-independent speaker verification. The proposed
method aims to optimize embeddings for unseen enrollment/test
speakers by training a network with a meta-training set. The
main procedure consists of two steps. The first step generates a
meta-training set, a set of episodes each with a pair of intra-
episode training and testing sets. The second step optimizes
network parameters so that the average verification performance
over the generated episodes is maximized. An advantage of
our approach lies in its complementarity to studies focusing
on network structure and we demonstrate its effectiveness with
recent ResNet-based models in experiments on the VoxCeleb
dataset.
Index Terms: Text-Independent Speaker Verification, Speaker
Embedding, Neural Networks

I. INTRODUCTION

Text-independent speaker verification is an important re-
search topic in the field of audio and speech processing with
a wide-range of applications such as biometric authentication
in web services. It is also known to be a challenging task due
to speaker and noise variabilities.

Recently it has been common to approach this task using a
statistical methodology aiming to learn speaker embeddings
from a large-scale dataset. For example, neural networks
trained on the VoxCeleb dataset [1] with more than 1 million
utterances can often extract reasonable embeddings for speaker
verification at some hidden layers. With this approach, many
studies have focused on network structure, and have proven
that deep networks including time-delay neural networks (T-
DNNs) [2] and residual convolutional networks (ResNets)
[3], [4] outperform shallow models including i-vectors with
a Gaussian mixture model.

To optimize network parameters, softmax loss or an exten-
sion thereof such as AM/AAM softmax loss [5], [6] is widely
utilized. This means that, in the training phase, networks
are optimized to solve a speaker classification (identification)
problem on a given set of utterances with their labels of
speaker IDs. This training framework is empirically effective
for text-independent speaker verification. However, optimizing
embeddings for speaker verification is still recognized as a dif-
ficult problem because enrollment/test utterances are assumed
to be from new speakers. This is in contrast to the standard
classification setting where samples from new categories are
out of focus, and also implies that it should be possible to
improve the process of training.

On the other hand, some new learning frameworks such as
meta-learning [7], [8] and zero-shot learning [9] have focused
on effective training for new categories. For example, meta-
learning is effective for recognizing new object categories
from images [7]. These methods are not always applicable to
large-scale speaker verification, because their main application
is often to low-resource learning and they are more compu-
tationally demanding than the standard learning framework.
However, the basic idea to optimize models for new categories
by introducing a meta-training set having episodes may be
effective for optimizing embeddings for unseen speakers for
enrollment and testing in speaker verification.

In what follows, we propose a method to optimize speaker
embeddings using a meta-training set. Here, a meta-training
set is a set of episodes, each of which consists of a pair of
intra-episode training and testing sets. More specifically, the
proposed method consists of two steps. First, it generates a
meta-training set by constructing subsets of utterances from
a given training set. Second, it optimizes network param-
eters so that the average verification performance over the
generated episodes is maximized. Note that an advantage of
our approach is its complementarity to studies focusing on
network structure. In our experiments, we demonstrate the
effectiveness of our method using recent ResNet-based models
on the VoxCeleb dataset.

The remainder of the paper is organized as follows. Sec. 2
reviews related work on speaker verification. Sec. 3 presents
our method with a definition of the meta-training set. Sec. 4
shows experimental results with some discussion. Finally,
conclusions are offered in Sec. 5.

II. RELATED WORK

Speaker verification is a task to determine whether enroll-
ment and test utterances are from the same speaker. Since
our focus is on the text-independent condition, this section
reviews models, optimization techniques, and datasets for that
condition.

A. Models for Text-Independent Speaker Verification

Over the last ten years, data-driven approaches with prob-
abilistic models have led to great success in text-independent
speaker verification. For example, i-vectors [10] extracted
from a Gaussian mixture model effectively embed speaker
characteristics into fixed-length vectors. This model is based
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on factor analysis. To further improve the verification perfor-
mance with i-vectors, probabilistic linear discriminant analysis
[11] is often applied.

Various types of neural networks are also proposed to
extract speaker embeddings. Snyder et al. [2] report that time
delay neural networks (T-DNN) with shift-invariant structures
outperform i-vector based systems. Convolutional networks
with residual connections, so-called ResNets, have recently
been found to be effective with some modifications, e.g.,
quantization-based aggregation in the VGG model [3], r-
vectors extracted from ResNets without max pooling [4],
Squeeze-and-Excitation ResNets [12], and a shortcut con-
nected structure for ResNet (SC-ResNet) [13].

B. Optimization Techniques

To extract speaker embeddings from the models described
above, model parameters need to be tuned before enrollment
utterances proceed to verification systems. Since the number of
model parameters is often large, e.g., more than a million for
recent networks, statistical learning approaches using a large-
scale dataset are effective for estimating parameters.

Assuming that a training dataset consists of utterances
with their speaker ID labels, model parameters are typically
optimized by solving a speaker identification problem. For
the objective function, the softmax (cross-entropy) loss is a
standard stable choice to train a network from scratch. A
number of studies report angle-based modifications of the
softmax loss, for example AM softmax [5], AAM softmax
[14], large margin loss [15], and HME/Ring loss [6] are
effective for measuring the similarity between two utterances
via the cosine similarity of extracted embeddings.

Some recent studies focus on different types of learning
frameworks. To improve the robustness against noise, super-
vised learning with data augmentation is effective. Examples
in this respect include augmentation with additional noise
datasets [2], augmentation by VAE [16], and mixup learning
strategies [17]. To improve cost efficiency, self-supervised
learning utilizes unlabeled utterances [18], and multi-task
learning shares different tasks [19]. Further, score normal-
ization techniques, such as z-/t-norm [20], adaptive s-norm
[21], and cohort score normalization[22] are advantageous for
adapting trained models to testing conditions.

C. Datasets

To evaluate verification systems, publicly available datasets
are often used. McLaren et al. [23] provided the SITW dataset
covering recordings of 299 speakers. Nagrani et al. [1] created
the VoxCeleb dataset, which consists of more than 1 million
utterances for 5,000+ speakers and is one of the largest datasets
for speaker verification and identification. The NIST SRE
datasets [24] are leading benchmarks with their workshop
series. Since model parameter optimization requires a large
number of utterances, VoxCeleb or NIST SRE-08/10 is used
for training in practice, and the other small datasets are used
for testing.

Fig. 1. Generating a meta-training set by sampling episodes.

Fig. 2. Meta-network architecture.

III. PROPOSED METHOD

Let Dtrain = {(ui, yi)}Ni=1 be a training set consist-
ing of pairs of an utterance ui and its speaker label yi.
Our goal is to learn embedding function ϕ(u) from Dtrain

for text-independent speaker verification. Here, a testing set
consists of triplets of an enrollment utterance uen, a test
utterance uts, and their identity ground-truth label g, i.e.,
Dtest = {(uen,j , uts,j , gj)}Mj=1 where gj is 1 if the speakers of
uen,j and uts,j are the same, and otherwise 0. The equal error
rate (EER) on Dtest is a popular measure for evaluation.

To obtain embedding function ϕ(u), a recent trend has
involved training a neural network Nθ, and then extracting
features from one of its hidden layers. The network parameter
θ is typically optimized by solving a speaker classification
problem on Dtrain. However, learning embeddings for speaker
verification is still difficult because sets of speakers for training
and testing are assumed to be disjoint.

To tackle this difficulty, our proposed method utilizes a
meta-training set to optimize embeddings. In the following
subsections, we describe 1) the definition of a meta-training
set, 2) meta-network architecture, and 3) optimization.

A. Definition of a Meta-Training Set

A meta-training set is defined as a set of episodes, each
of which simulates a training-testing procedure of speaker
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verification. Specifically, a meta-training set M is defined by

M = {Tk}Kk=1, (1)

where each episode Tk is a pair of intra-episode training and
testing sets given by Tk = (D(k)

train,D
(k)
test ). All episodes are

generated from an episode generator q, which divides the
original training set Dtrain into two subsets for intra-episode
training and testing (Figure 1).

Given a meta-training set, our framework seeks a network
parameter θ that maximizes the average performance over
D(k)

test . For example, with EER as an evaluation measure, we
choose

θ = argmin
θ∈Θ

K∑
k=1

EER(D(k)
test ) (2)

from a candidate set of parameters Θ (details about how
to obtain Θ are given in Sec. III-C). Notably, this frame-
work enables minimization of the expected EER, i.e.,
ET ∼q [EER(Dtest)] as K increases. This means that designing
q close to the original training-testing condition helps improve
the performance on the original testing set. Thus, we use a two-
step episode generator q, which first randomly splits speakers
in Dtrain into two subsets, and then intra-episode training
and testing sets are constructed from their corresponding
utterances.

B. Meta-Network Architecture

Our framework utilizes a neural network Nθ, from which K
subnetworks N (k)(k = 1, 2, · · · ,K) are definable. Here, the
input-output size of all subnetworks is the same as Nθ, and
each subnetwork corresponds to an episode in a meta-training
set in the optimization step.

For simplicity, we use a network architecture with K
paths as shown in Figure 2. This architecture consists of
two blocks: a shared block and a K-path block. The shared
block has a parameter η. This block includes pre-processing
and may include low-level feature extraction layers. The K-
path block has K independent parameters θ(1), · · · , θ(K). The
embedding layer is put on top of this block. In summary, the
network parameter is given by θ = (η, θ(1), · · · , θ(K)), and a
subnetwork N (k) is a network having a parameter (η, θ(k)).

Note that this architecture is meta-architecture, and thus
recent network structures such as ResNets [3], [4] and SCRes-
Nets [13] can be introduced to it. As such, our work is
complementary to studies on these network structures.

C. Optimization

The optimization algorithm consists of four steps. First, a
network is pre-trained on the entire training set Dtrain. This
step is used only for fixing shared parameter η for extracting
low-level features. Softmax loss for speaker classification is
used in practice. Second, a meta-training set is generated
by using the episode distribution q, i.e., generate episodes
Tk ∼ q for k = 1, 2, · · · ,K, where K is a hyper-parameter
of the algorithm. Third, on each intra-episode training set,
the corresponding subnetwork Nk is optimized. Here, θ(k)

Algorithm 1
Input: Training set Dtrain

Output: Embedding ϕ(·)
Pre-train η on Dtrain

for k = 1, 2, · · · ,K do
Sample an episode Tk = (D(k)

train,D
(k)
test ) ∼ q(T ;Dtrain)

Θ(k) ← History
[
minimize

θ(k)
Loss(θ(k);D(k)

train,N (k))

]
end for
Θ← {(η, θ(1), · · · , θ(K)) : θ(k) ∈ Θ(k)}
θ ← argmin

θ∈Θ

∑K
k=1 EER(D(k)

test , N̄θ)

return ϕ(u) := N̄θ(u)

is optimized from scratch, and its update history is retained
in Θ(k) at every n iteration. Finally, the parameter θ which
minimizes the average EER over intra-episode testing sets is
chosen from a candidate set constructed from the histories
of parameter updates in the previous step. This optimization
process is summarized in Algorithm 1.

IV. EXPERIMENTS

Experiments were conducted to explore the effectiveness of
the proposed method. We describe the datasets and evaluation
settings before moving onto the results.

A. Datasets and Evaluation Settings

The VoxCeleb 1 and 2 datasets [1] are used in all experi-
ments. Following the evaluation protocol, the development set
of VoxCeleb 2 consisting of 1,092,009 utterances from 5,994
speakers is used for training and VoxCeleb 1 is used for testing.
The testing set has three conditions: O (the original subset with
40 speakers), H (the hard set with 1,190 speakers), and E (the
entire set with 1,251 speakers). There are 37,611, 550,894,
and 579,818 enrollment-test pairs for conditions O, H, and
E, respectively. Two evaluation measures are used: EER and
the minimum detection cost (minDCF) from SRE-08/10 with
ptarget = 0.01 and 0.001.

Further, two types of network structure are subjected to
evaluation: ResNet-18/34 and SCResNet-18/34. The former
network structure is the same as the ResNets for r-vectors
[4]. To purely evaluate the effectiveness of meta-traning sets,
we did not apply additional techniques (two-step fine-tuning,
augmentation with additional datasets, and score normaliza-
tion) that require hyper-parameter tuning. The latter network
structure adds a shortcut connection to the embedding layer
as proposed in [13]. The pre-processing layer to extract 40-
dim mel-filter bank features with VAD is shared, and one of
the aforementioned ResNet-based structures is implemented
on each path of the proposed architecture. Each episode uses
randomly sampled 200 speakers for testing and the remaining
speakers for training. We used Kaldi and TensorFlow to
optimize parameters with the momentum SGD optimizer.
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TABLE I
PERFORMANCE COMPARISON ON VOXCELEB TEST SETS. THE NETWORK STRUCTURE FOR RESNET18/34 IS FROM [4]. SCRESNET18/34 ADDS THE
SHORTCUT CONNECTION PROPOSED IN [13] TO THE EMBEDDING LAYER. MT- DENOTES OUR METHOD USING A META-TRAINING SET WITH K = 8.
EVALUATION MEASURES ARE THE EQUAL ERROR RATE (EER) AND THE MINIMUM DECISION COST FUNCTION (MINDCF) WITH THE PRIOR TARGET

PROBABILITIES p1 = 0.01 AND p2 = 0.001.

Voxceleb1 Test-O Voxceleb1 Test-H Voxceleb1 Test-E
Method EER mDCFp1 mDCFp2 EER mDCFp1 mDCFp2 EER mDCFp1 mDCFp2
ResNet18 1.86 0.109 0.290 3.60 0.179 0.554 2.00 0.109 0.412
MT-ResNet18 1.50 0.090 0.245 3.11 0.154 0.488 1.72 0.093 0.351
ResNet34 1.73 0.100 0.270 3.44 0.170 0.525 1.89 0.102 0.395
MT-ResNet34 1.44 0.084 0.175 2.97 0.145 0.464 1.64 0.087 0.341
SCResNet18 1.76 0.104 0.313 3.52 0.175 0.546 1.91 0.105 0.401
MT-SCResNet18 1.54 0.096 0.242 3.18 0.158 0.500 1.73 0.093 0.359
SCResNet34 1.60 0.093 0.266 3.30 0.164 0.520 1.77 0.097 0.382
MT-SCResNet34 1.42 0.082 0.185 2.97 0.146 0.479 1.60 0.086 0.343

Fig. 3. Detection error tradeoff (DET) curves for ResNet18/34 and MT-
ResNet18/34 (proposed method) on VoxCeleb-O.

B. Experimental Results

Table I reports experimental results with and without the
proposed method (MT- indicates our method). It can be
discerned that the verification performance of all testing con-
ditions is improved with a 9.7%−20% relative reduction in
EER and 7.7%−34% reduction in minDCF. The results also
confirm that our work is complementary to studies on network
structure because performance improvements were observed
across all network structures.

For more detailed evaluation, Figure 3 shows detection error
tradeoff (DET) curves for ResNet18/34 and MT-ResNet18/34
on the VoxCeleb-O set. As can be seen, the proposed method
uniformly improves performance. This means that the pro-
posed method does not overfit to a specific evaluation measure
such as EER. We also notice that networks with 34 layers
outperform those with 18 layers.

However, a limitation of the proposed method lies in its
computational cost. To extract embeddings via K paths in the
proposed meta-architecture, a roughly K times greater cost is
required because the model size linearly increases. Therefore,
we investigate the tradeoff between verification performance
and model size in Figure 4. If we compare ResNet-34 and
MT-ResNet18 with K = 2, having almost the same number of

Fig. 4. Tradeoff between verification performance and model size. Two
strategies are compared: 1) adding layers to ResNet, 2) adding paths to MT-
ResNet18. The equal error rate (%) on VoxCeleb-O is reported. Relative model
size is with respect to the size of ResNet18.

parameters, MT-ResNet18 performs better. This shows that our
method using a meta-training set provides a different way to
efficiently improve performance, rather than just adding layers.

V. CONCLUSIONS

This paper presented a method to optimize speaker embed-
dings using a meta-training set for text-independent speaker
verification. In experiments, we demonstrated the effective-
ness of the proposed method by implementing it on high-
performance baselines using ResNets and SCResNets on the
VoxCeleb dataset. We also showed that adding paths to the
proposed meta-architecture is an efficient way to improve
verification performance compared with adding layers to
ResNet18.

A useful line of inquiry for future work would be to focus
on data-efficient learning frameworks such as semi-supervised
and weakly supervised learning as well as data augmentation
for low-resource speaker verification.
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