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Abstract—Electrolaryngeal (EL) speech has robotic quality
owing to constant fundamental frequency (F0) patterns. In
existing F0 pattern prediction frameworks, acoustic models are
trained on spectral features of a large corpus of healthy speech.
However, EL speech does not embed any useful information
about F0 into spectrogram. Moreover, creating datasets with
reasonably large number of EL utterances for training neural
networks is very time-consuming. Hence, F0 prediction based on
other features with sharing capability between EL and normal
speech must be investigated. In this study, we investigate F0

prediction based on clustering of the phoneme embeddings. For
a dataset consisting of utterances of both speech types, phoneme
labels are extracted. These phoneme labels are then used to
learn phoneme embeddings in a common 2-D space. Through
clustering of the learned phoneme embeddings, new onehot
features are created for F0 prediction. Experimental results show
that when considering training sets consisting mixed utterances
of EL and normal speech, by using new features, improvements
in F0 prediction accuracy can be achieved. Moreover, accurate
F0 patterns can be predicted even based on lower-dimensional
features corresponding to small values for the number of clusters.
This could simplify the structure of the recognition system
required to extract phoneme labels from EL speech.

I. INTRODUCTION

Removal of the vocal folds from an anatomically func-
tional larynx is called total laryngectomy (TL). This surgical
procedure is usually performed when patients are diagnosed
with larynx cancer. Given that the phonetic system of most
languages are notably consisted of voiced consonants and
vowels, the absence of vocal folds vibrations leads to marked
voice abnormalities and speech with decreased intelligibility.

Over the past decades, many voice restoration methods
have been proposed to fill the gap of vibrating apparatus and
reproduce speech with enhanced intelligibility and naturalness.
In [1], three main methods of voice restoration have been
addressed as electrolaryngeal (EL) speech, esophageal (ES)
speech, and tracheoesophageal speech through a tracheoe-
sophageal puncture (TEP), with TEP speech as the current
gold standard. In [2], an alternative method has been intro-
duced in which nonaudio bio-signals can be directly converted
to speech. Amongst these different available methods, EL
speech has been considered as the most widely used method
by laryngectomees. In this method, a battery operated vibrator,

called an electrolarynx, is placed against the neck and single-
tone excitation signals are mechanically generated from out-
side. These tone signals are articulated by the tongue, lips and
teeth, and form a relatively intelligible speech.

Even though patients’ oral cavity and articulatory abilities
are preserved while producing EL speech, the produced F0

patterns of EL speech do not resemble natural patterns. In
fact, monotonicity of the excitation signals results in constant
F0 patterns free from any paralinguistic information such as
intonation. Traditionally, statistical F0 modeling and predic-
tion [3], [4], [5], [6] and, recently, F0 prediction based on
deep neural networks (DNNs) [7], [8], [9] have been used to
predict natural F0 patterns for EL speech. Though by using
these techniques the overall perceived naturalness has been
improved, the predicted F0 patterns are still suffering from
fairly limited accuracies and linguistically incorrect intona-
tions. In this regard, two particular reasons can be highlighted:
(i) extracting valuable information from EL speech spectral
features for predicting F0 patterns is relatively hard; and
(ii) since creating EL speech datasets with large number of
training utterances is very costly, modeling of F0 prediction
with small datasets could be inaccurate. Therefore, in order
to achieve F0 patterns with satisfactory accuracies, we need
to introduce some sort of shared features between normal and
EL speech. By having shared features, we would be able to
benefit from easily available normal speech datasets in favor
of developing a system for precise F0 pattern prediction for
EL speech.

Recent advancements in text-to-speech (TTS) [10], [11],
[12] and nonparallel voice conversion systems based on pho-
netic posteriorgrams (PPGs) [13] have shown the feasibility
of producing human-like speech using text-related features.
Motivated by these works, in our previous study [14], we
investigated F0 pattern prediction based on phoneme labels.
Considering a full set of phoneme labels, we found that onehot
encoded phoneme labels could be used to predict F0 patterns
with relatively high correlation coefficients. More interestingly,
we observed that even a reduced set of phoneme labels (e.g.
when only using the vowels set) could result in comparable
prediction accuracies to those one can achieve when using EL
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speech spectral features. Being able to reduce the dimension-
ality of phoneme set could be very beneficial for practical
applications because it simplifies the structure of the required
recognition system. In other words, for precisely extracting
the set of all phoneme labels, a highly accurate recognition
system that has sensitivity to all vowel and consonant labels
must be developed, whereas for a subset of these labels we no
longer need to use a complex recognition system.

In this work, we aim to explicitly investigate how we
can extract lower-dimensional input features, yet based on
phoneme labels, for predicting natural F0 patterns. To this
end, we consider learning phoneme embedding in a continuous
vector space from nominal phoneme labels. For a dataset
consisting of mixed utterances of normal and EL speech,
forced-aligned phoneme labels are extracted frame-by-frame in
advance. By considering the dictionary of all phoneme labels,
these labels are onehot encoded and used as input linguistic
features. We then use an embedding network on the front end
of F0 prediction network and train the resulting structure so
that it learns how to map input features into desired target
F0 patterns through transition from the embedding network.
Upon training, the embedding network is used to extract
phoneme embeddings for existing utterances in our dataset.
These phoneme embeddings are then clustered into predefined
number of classes. Depending on how many classes have
been defined, the clustered embeddings are onehot encoded
to generate new categorical input features for F0 prediction.
Ultimately, the embedding network is detached and distinct
prediction networks are trained from scratch.

The advantages of using this structure are twofold: firstly,
by clustering phoneme embeddings in a common 2-D space,
we can define a unique onehot encoding scheme for phoneme
embeddings of both speech types; secondly, by comparing
prediction accuracies versus the number of classes, a suitable
value as the dimension for the reduced set of phoneme labels
can be determined.

II. RELATED WORKS

Commercial electrolarynx devices lack a unit for pitch
controlling and voice onset and offset timing. Considering the
source-filter model of speech production, after total laryngec-
tomy, the excitation source is removed, while the oral cavity
and the articulatory abilities are preserved. Hence, dedicated
research on EL speech naturalness enhancement focuses on
how to compensate this deficit on excitation source in order
to add pitch prediction and controllability to EL speech.

A. F0 prediction based on spectral features

Statistical F0 prediction and modeling based on Gaussian
mixture models (GMMs) [4], [5], [6], [15], and F0 prediction
based on DNNs [7], [8] are two common approaches on EL
speech naturalness enhancement using spectral features. In sta-
tistical F0 prediction, a parallel dataset consisting of utterance
pairs of EL and normal speech is developed in advance and a
two-step training-prediction procedure is performed to predict
natural F0 patterns from segmental spectral features. In the

training step, the joint probability density function for acoustic
features of EL and normal speech is modeled with a GMM. In
the prediction step, segmental spectral features of EL speech
are mapped into the most likely natural F0 pattern based on the
maximum likelihood parameter generation (MLPG) technique.

Constructed upon similar principles, DNNs can be consid-
ered as powerful tools for F0 prediction due to their distinct
capability to learn higher-level features from provided input
features. With feature learning, more subtle links between
predictor and response variables can be learned by the net-
work. However, the performance of neural network is tightly
bound to the available amount of training data. The more
training data we provide the network with, the more accurate
F0 patterns we can expect to be predicted by the network.
Unfortunately, creating EL speech dataset is considered as
time-consuming and expensive. Therefore, there are only a
handful of freely available EL speech datasets with limited
number of utterances. This turns the F0 prediction into a
challenging problem and could result in learning less accurate
mappings between EL speech spectral features and target F0

patterns by the prediction networks.

B. F0 prediction based on nominal phoneme labels

Rather than predicting F0 patterns by DNNs based on
conventional features, prediction by considering phoneme la-
bels has been investigated in [14]. Here, phoneme labels for
individual speech frames are extracted and onehot encoded as
input features. Even though spectral features of EL and normal
speech are completely different, the set of phoneme labels
used to generate various utterances could be similar between
them. Hence, less discrepant input features for F0 prediction
could be made out of phoneme labels. However, in order to
accurately extract the set of all phoneme labels, a high-quality
recognition system must be developed that could be costly for
generic applications. This could be considered as a drawback
for predicting F0 patterns based on the full set of phoneme
labels.

III. PHONEME EMBEDDINGS ON CREATING FEATURES

FOR F0 PATTERN PREDICTION

A. Phoneme embeddings

Allocating onehot codes to nominal phoneme labels has
three main downsides:

1) Onehot codes are unlearned representations obtained
without any supervision. Hence, the relationships be-
tween similar phonemes classes are completely ignored.

2) For onehot codes no distance metrics can be defined.
Hence, it is impossible to measure similarity between
adjacent phoneme classes.

3) Naive allocation of onehot codes to all phoneme labels
does not provide us with any information on how to re-
duce the dimensionality of phoneme set. Having lower-
dimensional phoneme sets could decrease the costs on
developing recognition systems for extracting phoneme
labels.
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Fig. 1. Learning and clustering of phoneme embeddings for F0 pattern
prediction.

To address these issues, it is essential to convert onehot
codes into real-valued vectors. By doing so, we would be
able to project nominal phoneme labels into a continuous
vector space, for which various distance metrics could be
defined. Thus, we would be able to cluster data points with
similar characteristics and compress down the dimensionality
of phoneme sets.

B. Learning phoneme embeddings and F0 pattern prediction

Fig. 1 illustrates the block diagram of the system in which
F0 patterns are predicted based on clustering of phoneme
embeddings. This system comprises of three blocks. These
are: (i) learning phoneme embeddings, (ii) clustering of the
phoneme embeddings, and (iii) F0 pattern prediction based
on the clustered phoneme embeddings.

Initially, for a dataset consisting of mixed utterances of
normal and EL speech, forced-aligned phoneme labels are ex-
tracted frame-by-frame. By considering the set of all phoneme
labels, these labels are onehot encoded and used as input lin-
guistic features. A recurrent neural network with an embedding
network on the front end is then trained to map onehot encoded
phoneme labels into natural F0 patterns. Once training is
done, the trained embedding network is used to transform
phoneme labels into real-valued embedding vectors in a frame-
by-frame manner. This is done for the entire utterances in the
datasets, both for normal and EL speech. Next, considering
both speech types, the obtained phoneme embeddings over all
frames for individual utterances are concatenated together. At
this stage, a k-means classifier is trained to cluster phoneme
embeddings into specified number of classes. Upon clustering,
embeddings in individual clusters are converted into onehot
codes considering the overall number of clusters in the space.
Lastly, the embedding network is excluded from the network
architecture and the remaining prediction network is trained
from scratch for new onehot features.

IV. EXPERIMENTAL EVALUATION

A. Experimental conditions

Dataset: The ATR speech dataset [16] was used for our exper-
iments. This dataset consists of 503 Japanese sentences uttered
with and without an electrolarynx by a Japanese male speaker.
The utterances in this dataset have been grouped in 10 sets
each with 50 utterances, except for the 10th set that contains
53 utterances. Forced-aligned phoneme labels and required
acoustic features were extracted using the open-source Julius
speech recognition system [17] and the STRAIGHT vocoder
[18], respectively. Low-pass filtered continuous F0 contours of
normal speech were used as target F0 patterns. These contours
were standardized to zero mean and unit variance using the
statistics of training sets.
Network architecture: Two stacks of bi-directional long
short-term memory (BiLSTM [19], [20]) layers followed by a
single dense layer formed the architecture of our F0 prediction
network. For recurrent layers, the hyperbolic tangent (tanh)
activation function was used, and the number of hidden units
was set to 64. For the dense layer, a linear activation function
was utilized, and by defining the loss function as the root mean
square error (RMSE) between predicted and target F0 patterns,
the network parameters were optimized using Adam optimizer
[21] for utterance batches of size 32. The learning rate α,
β1 and β2 were set to 0.0004, 0.9 and 0.999, respectively.
As embedding network, an embedding layer on the front-end,
right before the recurrent layers, with output dimension of 2
(odim = 2) was utilized.
Experiments: Accuracy of F0 prediction with respect to
training data was investigated in four scenarios. In the first
scenario, for every speech type, distinct prediction networks
were trained on 32 utterances selected from the corresponding
set A to that speech type (baseline system). In the second
scenario, a training set consisting of 64 utterances was made
by unifying the two sets used in the first scenario. This
represented the case where we had parallel dataset for training.
In the third scenario, the usage of EL speech in training was
ignored and only normal utterances were considered. Our goal
was to specify the upper bounds on prediction accuracies for
increasing number of training utterances. Created training sets
for this scenario have been summarized in Table I. In the
fourth scenario, the training sets in the third scenario were
further augmented with 32 EL utterances from set A. These
represented training sets comprising of both speech types with
fixed small portion of EL speech, but varying large portions
of normal speech.

TABLE I
TRAINING DATASETS USED IN THE THIRD SCENARIO TO SPECIFY UPPER

BOUNDS ON PREDICTION ACCURACIES.

Speech type Used sets #Utterances

Normal

A 32
A,BCD 32 + 150 = 182

A,BCDEFG 32 + 300 + 332
A,BCDEFGHIJ 32 + 453 = 485
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In all experiments, once the embedding network was trained,
phoneme embeddings were extracted and clustered into 8, 15,
23, 30 and 38 clusters, with 38 corresponding to the total
number of phoneme labels for our dataset. Except for the
scenarios in which the network had to be trained on only
normal utterances, 8 EL utterances from set A were always
fixed as validation set for parameter tuning and best model
selection. Finally, 4-fold cross validation test on 40 EL speech
utterances from set A was conducted to evaluate the prediction
accuracies.

B. Experimental evaluations

Predicted F0 patterns were objectively evaluated for only
voiced frames using the Pearson’s product-moment correlation
coefficient r given by [22]:

rxy =

∑n
i=1 (xi − x) (yi − y)√∑n

i=1 (xi − x)
2
√∑n

i=1 (yi − y)
2
, (1)

where xi and yi are the ith values in predicted and target
F0 patterns, respectively. x̄ and ȳ are the respective mean
values, and n is the total length when only voiced frames
are considered.

Obtained correlation coefficients for the first and second
scenarios have been presented in Fig. 2. This figure shows that
F0 patterns predicted for normal speech are more accurate that
those predicted for EL speech. This could be explained by the
fact that EL speech utterances are generally much longer than
normal speech utterances. Unfortunately, it is hard for recur-
rent networks to keep track of long-term dependencies when
input sequences are too long. Hence, the network misses some
structural information on input features which could result in
decreased accuracies. Now, if we consider the second scenario,
we can observe that by learning phoneme embeddings from
both speech types and clustering of these embeddings, the
prediction accuracies have been improved. This indicates that
learning real-valued phoneme embeddings from both speech
types in a common 2-D space with subsequent clustering
and onehot encoding has resulted in features that could be
used for predicting more accurate F0 patterns. In other words,
the networks has seen more input features with consistent
onehot encoding scheme and was able to improve its prediction
performance.

The upper bounds on network performance in case of
using only normal speech have been depicted in Fig. 3. It
is evident that by increasing the number of training samples
with homogeneous structures, the network has learned more
subtle features and achieved higher correlation coefficients.
Furthermore, we can see that for varying number of clusters,
the network has successfully predicted accurate F0 patterns.
Since the number of clusters is equivalent to the dimension of
input features, this can be interpreted as the possibility of using
a reduced set of phoneme labels for F0 pattern prediction.
Hence, instead of developing a complex recognition system
for extracting all of the phoneme labels, we could develop a

Fig. 2. Obtained correlation coefficients for EL speech in baseline system
(dashed red line) vs. those obtained for parallel training set in the second
scenario (solid blue line).

much simpler one that outputs a reduced set of phoneme labels
and obtain relatively similar correlation coefficients.

Obtained F0 prediction accuracies for the fourth scenario
have been also illustrated in Fig. 3. By considering the respec-
tive values, we can see that the overall network performance
on predicting F0 patterns for EL speech has been enhanced.
Nonetheless, as opposed to the case for normal speech, two
types of irregularities can be observed. Irregularities in terms
of obtained accuracies versus the number of clusters, and irreg-
ularities in terms of obtained accuracies versus the augmented
portion of normal utterances to the training sets. These could
have happened due to two main reasons. (i) Discrepancies in
the set of phoneme labels between normal and EL speech: in
our dataset, EL speech had more phoneme labels than normal
speech, and (ii) existing mismatches in the count and position
of short pauses between normal and EL speech: EL speech
has many short pauses that can strongly affect the shape of
target F0 patterns. To alleviate this issue, it is recommended
to record normal utterances in the evaluation set, out of which
ground truth F0 contours are extracted, with as many short
pauses as the ones exist in their corresponding EL utterances
used for evaluation. Samples from predicted F0 patterns in
third and fourth scenarios for 8, 23 and 38 clusters have been
presented in Fig. 4.

Finally, it is worth mentioning why in this work we ex-
clusively considered phoneme labels and tried to learn 2-
D embedding vectors for them. There are plenty of other
linguistic features that are typically used in the state-of-the-
art TTS systems for synthesizing natural and expressive speech
waveforms. Phoneme duration, accent type, position of the rise
and downfall of the F0 contours within an accentual phrase,
syllable position, etc., are examples of these linguistic features.
No matter they are used directly with their original numerical
values, or as the ones for which new embeddings should be
learned, in order to incorporate these into the vector of input
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Fig. 3. Comparison between resulted correlation coefficients for normal and
EL speech in third and fourth scenarios.

features, significant domain knowledge on how to estimate and
process such features is required. Therefore, for the purpose
of filtering out the possible estimation errors and reducing the
system complexity, only phoneme labels were investigated.

As for output dimension of the embedding layer (odim) and
hence the dimension of the resulting phoneme embeddings,
any value greater than or equal to two could be used. However,
higher-dimensional (odim > 2) embeddings are often difficult
to interpret and visualize. Thus, it is essential to reduce the
dimensionality of such features in order to increase inter-
pretability, while at the same time minimizing the information
loss. Consequently, in practice, principal component analysis
(PCA) or other dimensionality reduction techniques could be
applied before k-means clustering to eliminate low-variance
dimensions. For the sake of simplicity, odim = 2 was used in
this work.

V. CONCLUSIONS

Predicting natural F0 patterns for EL speech was addressed
in this study. EL speech spectral features do not contain
useful information on F0 or paralinguistic features. Moreover,
creating EL speech datasets with large number of training
utterances is costly and very time-consuming. These two
main factors make it hard to predict accurate F0 patterns for
EL speech based on conventional features used in existing
frameworks. In order to find a work around for these issues, we
investigated the accuracy of F0 prediction based on clustering
of the phoneme embeddings. For training sets consisting of
both EL and normal utterances (with larger portions for normal
speech), phoneme embeddings were learned and clustered in
a common 2-D space as input features for F0 prediction.
Obtained results revealed that F0 patterns predicted based on
these features could achieve higher correlation coefficients.
Moreover, by considering a small number of clusters and cre-
ating lower-dimensional features, we were still able to predict

Fig. 4. Samples from predicted F0 patterns. a)∼ c) represent obtained patterns
for normal speech in the third scenario for 8, 23 and 38 clusters, respectively.
d) ∼ f) the corresponding ones for EL speech in the fourth scenario.

F0 patterns for EL speech, though with smaller correlation
coefficients. This could provide us with a trade-off between
resulting accuracies for F0 patterns versus the price we need
to pay for developing a recognition system to extract phoneme
labels for practical applications. Evaluating the accuracy of
ASR system while extracting phoneme labels from EL speech,
and its impact on the overall performance will be investigated
in our future work.
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