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Abstract—Multi-pitch estimation (MPE) is a fundamental yet
challenging task in audio processing. Recent MPE techniques
based on deep learning have shown improved performance but
are computation-hungry and relatively sensitive to the variation
of data such as noise contamination, cross-domain data, etc. In
this paper, we present the harmonic preserving neural network
(HPNN), a model that incorporates deep learning and domain
knowledge in signal processing to improve the efficiency and
robustness of MPE. The proposed method starts from the multi-
layered cepstrum (MLC), a feature representation that utilizes
repeated Fourier transform and nonlinear scaling to suppress
the non-periodic components in signals. Following the combined
frequency and periodicity (CFP) principle, the last two layers of
the MLC are integrated to suppress the harmonics of pitches in
the spectrum and enhance the components of true fundamental
frequencies. A convolutional neural network (CNN) is then placed
to further optimize the pitch activation. The whole system is
constructed as an end-to-end learning scheme. Improved time
efficiency and performance robustness to noise and cross-domain
data are demonstrated with experiments on polyphonic music in
various noise levels and multi-talker speech.

I. INTRODUCTION

Multi-pitch estimation (MPE), the task to detect the con-
current and time-varying pitch values in audio signals, is one
of the most fundamental task in automatic music transcription
(AMT) [1] and speech recognition [2]. The MPE task has been
considered as a challenging task mainly because the features
of individual pitches in a sound mixture are highly overlapped
with each other [3]. Such a phenomenon usually confronts
the hope to set a generalized rule in designing the audio
features for MPE. Over the past years, we have witnessed a
paradigm shift in the MPE technology development, as data-
driven MPE with modern deep learning methods have taken
over from most of the traditional rule-based and feature-based
pitch detection methods, with strongly improved performance
on various genres of music or speech data. In the deep learning
approach, neural networks with a huge number of parameters
are trained on the highly-augmented, large-scale labeled data
to fit all the possible characteristics of signals [4], [5], [6].
Computing cost in both the training and inference stages then
appears as a central concern for the applications which need
portable, speed-up, and robust MPE solutions, for example, a
music practicing tool which requires MPE on mobile device
and under noisy environments [7], [8].

It has been noticed that the traditional rule- and feature-
based pitch detection methods play an important role in
designing an efficient and robust neural network for MPE.

Among these approaches, domain knowledge of music theory
and signal processing are integrated into the design process
to simplify the problem. For example, the FifthNet chroma
extractor utilizes known structures of music intervals in the
spectral features to compress a neural work for chord recogni-
tion [9], and the harmonic CQT (HCQT) adopts multi-channel
data representations to enhance the saliency of fundamental
frequencies against harmonics [10]. Also related to the explo-
ration of harmonic structure in multi-pitch signals, a recently
proposed method called multi-layered cepstrum (MLC) shows
that, inspired from the multi-layer operation of deep neural
networks, multi-pitch saliency can also be computed by re-
peated operations of generalized cepstrum, which is a discrete
Fourier transform (DFT) followed by a power-scaled nonlinear
activation function [11]. MLC also follows the combined
frequency and periodicity (CFP) principle [12], [13], [14],
which states that pitch saliency is the consensus of spectral
and cepstral features, as the cepstral feature can well suppress
the harmonics in the spectral feature; this principle is by far
one of the most general and representative rules considered in
the traditional rule-based and feature-based MPE methods.

In this paper, we integrate the ideas of CFP and MLC with
deep learning, and propose the harmonic preserving neural
network (HPNN), which allows the parameters of the power-
scaled activation functions in MLC to be trainable and appends
a small-size neural network at the output of MLC in order
to better predict the pitch values at each frame. Since the
DFT operation is fixed in the network, the HPNN is guided to
learn pitch information from the harmonic/ periodic structures
underlying in audio features, and is therefore robust to noise
interference and cross-dataset inferences. Also, the number
of trainable parameters in HPNN is much smaller than other
MPE networks, and this can reduce the time in the training
stage. Due to the smaller model size and the fast operation of
discrete Fourier transform (DFT), the testing time can also be
reduced. These characteristics of HPNN are verified through
experiments on a wide variety of signals, including polyphonic
music signal in clean and noisy conditions and multi-talker
speech signals, by comparing to state-of-the-art multi-pitch
estimation methods of both music and speech.

II. METHODS

The proposed HPNN model incorporates the MLC-CFP-
CNN process altogether thanks to the flexibility of deep
learning neural networks. Fig. 1 illustrates its architecture. In
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a nutshell, it performs MLC with the trainable power-scale
nonlinear function, and next it employs CFP to transform
the last two MLC time-domain and frequency-domain outputs
into unified time-frequency representations. The stacked audio
features are then fed into a convolutional neural network
(CNN) for further identifying the fundamental frequencies.

The MLC repeatedly operates DFT, filtering, and nonliner
activation by N times. Since the input is the raw audio, the
DFT operation is essentially the short-time Fourier transform
(STFT): given a frame of input signal x ∈ RM , the M -point
DFT matrix F ∈ CM×M , the high-pass filter W ∈ RM×M ,
and the nonlinear activation function σ, 1 < n ≤ N , the n-th-
layer output of MLC is

z(1) = σ(1)
(
W(1)|Fx|

)
,

z(n) = σ(n)
(
W(n)Fz(n−1)

)
.

It is noted that z(n) is in the frequency domain when n is
odd and cepstral (i.e. time) domain when n is even. The high-
pass filter W(n) aims to remove the slow-varying portion,
that is, the low-frequency or low-quefrency components, on
the assumption that they are irrelevant to the fundamental
frequency. Then the nonlinear function:

σ(x) := ReLU(x)γ , (1)

is an element-wise root-power operation to fit humans’ per-
ception scale [15], and ReLU represents the rectified linear
unit function. Empirically, n ≥ 2 and 0 < γ < 2 encompasses
a majority of signal representations for pitch estimation [16].
As an extension, [11] has demonstrated that MLC is able to
refine the salience layer by layer, and it resembles the multi-
layered perceptron as DFT acts like the fully-connected layer
and σ(n) is analogue to the activation function. In this work,
to model Equation (1), we further design a gamma layer (see
Fig. 1) to learn this power-scaled mapping.

The CFP approach states that both time-domain and
frequency-domain information is equally important and thus
describes a pitch object as a composite of frequency, peri-
odicity, and harmonicity [13], [14]. To leverage the strength
of CFP, we pass the last two outputs from MLC as input
for later deep learning networks. More specifically, the last
two outputs, one spectral feature and one cepstral feature, are
concatenated into a 2-channel feature map for the next stage.
The deep learning network is a CNN with three convolution
layers. Different from the previous layers in MLC and CFP, all
the convolutional kernels are learnable. The first convolution
layer is designed to extract the harmonic information along the
frequency-axis, and the second convolution layer is performing
temporal smoothing along the time-axis, while the last one is
set to filter again and adjust the output shape. The output of
the CNN is a multi-hot vector representing the pitch activation
for each frame. The pitch range of the output is from A0
to C8, totaling 88 semitones wide. The length of the output
vector is 88r, where r is a factor to control the resolution: for
example, in the fine-resolution mode of our system, we have

Fig. 1. A model architecture of the proposed harmonic preserving neural
network (HPNN) for multipitch estimation.

pitch resolution set to a quarter of semitone, i.e., r = 4. See
Section III-B for more detailed discussions.

III. EXPERIMENT SETTINGS

A. Data

We use the MusicNet [6] and the MAPS [17] datasets to
develop the proposed method. For cross-domain evaluation
on speech data, we use the PTDB-TUG [18] to test the
performance of models that are purely trained on music data.

The MusicNet dataset consists of 330 pieces of solo or
multi-instrumental chamber music recordings, covering 11
kinds of instruments. The MAPS dataset contains 270 pieces
of piano solo in nine different recording setups; seven kinds
of audio tracks are obtained from piano synthesizers, and the
remaining two kinds are real-world recordings.

For MusicNet, following the setting in [19], we use 314
pieces for training, 6 pieces for validation, and 3 pieces (id
2303, 1819, and 2382) for testing. As to MAPS, we adopt the
Configuration II [20] to split the dataset. The model is trained
on 210 tracks that are created with synthesized pianos, 180
pieces for training and 30 pieces for validation. For evaluation,
the model is tested on the 60 tracks generated from authentic
piano recordings, the ENSTDkAm and ENSTDkCl subsets.

The PTDB-TUG dataset collects recordings from ten male
and ten female English native speakers from different home
countries, reading 2,342 phonetically rich sentences taken
from the TIMIT corpus [21]. For the ground-truth, we adopt
the pitch trajectories extracted with Praat [22] provided in [23],
rather than the reference provided along with the speech
recordings.
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TABLE I
DETAILS OF THE PROPOSED HPNN.

Layer name Layer size Output size Trainable

MLC
x N

STFT 1, (8192, 8192) 1, (17, 8192) False
High-pass filter 1, (8192, 8192) 1, (17, 8192) False
Gamma layer – 1, (17, 8192) True

CFP Filterbank 1, (8192, 454) 1, (17, 454) False
Concatenate – 2, (17, 454) False

CNN

Conv2D 24, (1, 101) 24, (17, 354) True
Conv2D 48, (17, 1) 48, (1, 354) True

Conv2D 1, (1, 4) 1, (1, 88) Truestride=(1, 4)

B. Implementation

In this work, the DFT layer is implemented with Hann
window as follows: we choose a frame size of 16,384 samples,
and a hopsize of 512 inspired by [19]. Along with a window
size of M = 8,192, it results in 17 = 1+(16384−8192)/512
number of regions per frame. That means, each training
instance is a single-channel time-frequency image with size
(17, 8192). For the high-pass filters, the cutoff frequency for
spectrum is set to 27.5 Hz, the frequency of A0, and the cutoff
quefrency for cepstrum is set to 0.24 ms, the period of C8. For
CFP we employ the filterbank with a scalable pitch resolution
and a range corresponding to the 88 piano keys plus 25 more
semitones to cover the first four harmonics and sub-harmonics
for each pitch. To divide a semitone by a factor of r, the
number of triangular filters is (88 + 25)r + 2. The outputs
of MLC-CFP are then successively convolved with kernels
of shape (1, (25r + 1)), (17, 1), and (1, r). In the following
experiments, the filterbank for CFP is implemented in two
levels of resolutions: coarse and fine. The coarse one has
r = 1, delivering a pitch resolution equal to one semitone,
while the fine one has a r = 4, rendering an interval of 48
pitch bands per octave. And if hoping to down-sample the
resolution back to one semitone, stride (1, r) is applied to the
last convolution layer.

For the CNN, the three types of kernels in the three
convolution layers are designed to match the time-frequency
patterns efficiently: the first is to learn the harmonic patterns in
the frequency domain, the second is for temporal smoothing,
and the third one directly applies stride convolution to merge
the feature map to piano roll. The output vectors of the CNN
is designed to have 88 and 352 pitch classes for inference
on music and speech data, respectively. Model details in the
fine-resolution mode are provided in Table I.

We also augment the training data by modulation and
jitter following [19]. By random modulation, a pitch-shifting
within ±5 semitones, we enlarge the dataset by an order
of magnitude while the modified audio is still perceptually
natural. In addition, a continuous pitch-jitter is applied in
a much smaller range of ±0.1 semitone, which enables the
model to be more robust to tuning variations.

These neural network models are implemented in PyTorch
1.0.1. The operation of DFT is directly implemented with the
built-in function torch.stft in PyTorch. For the gamma
layer, the power value γ needs to be set as a trainable

parameter, which is implemented by setting γ as Parameter
and its attribute requires_grad as trainable. For the
convolution layers, the activation function is ReLU, and the
model is optimized by minimizing the binary cross entropy.
We train the CNN with the Adam optimizer with learning
rate 0.001. All the models are trained on two NVIDIA GTX
1080Ti GPUs. The OS is Ubuntu 16.04 LTS with Xeon E5-
2620 2.1GHz CPU, and the RAM is 64 GB in total. The source
codes1 are provided for reproducibility.

C. Baseline Methods

Two MPE algorithms, one for music and the other for
speech, are considered as the baseline methods. For music
MPE, the state-of-the-art music transcription method based on
an end-to-end translation-invariant network is included [19].
The network is designed to learn patterns that are invariant to
translations in the frequency domain from raw audio signals.
For speech MPE, there are still few studies using deep learning
techniques, so we consider the spectral modeling method
based on maximal likelihood (ML) and constrained clustering,
proposed by Duan et al. [24]. The method is open-sourced and
has the highest average accuracy among the three state-of-the-
art methods for MPE in the two-talker scenario in [23].

D. Evaluation Metrics

We report the precision (P), recall (R), and F1-score (F) with
a common pitch tolerance of 0.5 semitone: a detection is true
if it is deviated within ±0.5 semitones from the ground truth.
The P, R, and F are defined as TP/(TP + FP ), TP/(TP +
FN), and 2PR/(P + R), where TP is true positive, FP is
false positive, and FN is false negative. When evaluating on
music datasets (i.e., MAPS and MusicNet), the inferred pitch
estimation results across the entire test data are evaluated with
mir eval [25], while for speech data (i.e., PTDB-TUG), these
frame-level scores are computed clip by clip with the mpa eval
toolbox2 and get averaged.

IV. RESULTS

Four sets of experiments and results are presented in this
section. First, the proposed model out of different training
settings are evaluated and discussed on the polyphonic music
data, MusicNet and MAPS. Second, to verify the robustness
of the model to noise interference, we further evaluate the
performance of MusicNet test set under noise contamination
with various levels of signal-to-noise ratio (SNR). Third,
to understand more about the behaviors of the HPNN, a
parametric study is performed on how the number of the
DFT layers (i.e. N ) affects the resulting MPE performance.
Lastly, to verify the robustness to cross-domain evaluation, we
perform a cross-domain test that uses our model trained on a
polyphonic music data (i.e. MusicNet train set) to test on the
MPE of multi-talker speech data.

1https://github.com/brontosaurusJH/HPNN-multipitch-estimation
2http://www2.ece.rochester.edu/projects/air/resource.html
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TABLE II
MULTI-PITCH ESTIMATION PERFORMANCE ON MUSIC DATASETS (IN %).

Methods Testing data

Model Training data Data augmentation MusicNet MAPS
P R F P R F

HPNN-coarse MusicNet n/a 55.52 74.65 63.68 69.27 75.59 72.29

HPNN-fine
MusicNet n/a 59.33 72.98 65.45 72.37 71.31 71.84
MAPS n/a 47.94 62.78 54.36 69.95 74.40 72.11
MusicNet Pitch-shift and jitter 60.61 72.47 66.01 72.48 72.32 72.40

Trans-inv [19] MusicNet Pitch-shift and jitter 68.06 76.25 71.92 79.94 74.09 76.91

A. MPE on Polyphonic Music

We evaluate four variations of the proposed model and
the translation-invariant neural network (denoted as Trans-
inv) [19] on the MusicNet and MAPS test sets. For the
proposed models, the four variants of setup differ in pitch
resolutions–coarse or fine, and training data–MAPS, Music-
Net, or MusicNet with data augmentation. The cases of cross-
dataset evaluation are presented in Table II, that is, the HPNN
trained on MusicNet is evaluated on MAPS, and vice versa.

In this cross-dataset evaluation, each model achieves better
results in MAPS no matter it is trained on MAPS or MusicNet.
It results from that MusicNet is composed of multi-instrument
recordings therefore more complicated, which also leads to
that the model trained on MAPS has the lowest evaluation
results on MusicNet. For models trained on MusicNet, higher
pitch resolution raises the performances when evaluated on
MusicNet, but not on MAPS. The MAPS dataset is composed
of piano solos so to split an octave into 48 semitones is
superfluous and hence increases the odds of making mistakes.
In general, the HPNN trained on MusicNet has more robust
performances when evaluated on both music datasets, and
when evaluated on MAPS, it even outperforms the model
trained on MAPS if the data augmentation is applied during the
training process. On top of fine resolution, data augmentation
further improves the performance.

As for the comparison to the baseline models, Table II
shows that the F-score of the Trans-inv is 4.5–6% higher
than our best model. However, the Trans-inv model is less
efficient than the proposed one, as shown in Table III. More
specifically, Table III summarizes the number of trainable
parameters, the time consumed to finish the training process
on the MusicNet training set, and the testing time. The training
time is measured in seconds, while the testing time is measured
with the proportion to the length of the input signals (e.g. 0.25x
real time means the algorithm takes 15 seconds to estimate
the pitch values for an input of one minute long). The number
of trainable parameters of our model is at the order of 105

while the Trans-inv is 109 and therefore the clear contrast to
computing power demands. For the training time, the Trans-
inv model takes more than eight times longer to finish the
training process. Though the two models might take different
number of epochs to converge to the same criterion, a more
detailed look at the training process shows that we train our
model with 16k steps and it takes less than one hour. With the
same computation power and learning rate, Trans-inv takes one

TABLE III
COMPARISON OF MODEL EFFICIENCY.

HPNN-Fine Trans-inv [19] Ratio
Number of trainable parameters 14,743 114,311,168 7,754
Training time (seconds) 3,251 26,782 8.24
Testing time (prop. real time) 0.134x 0.235x 1.75

TABLE IV
RESULTS OF NOISE ROBUSTNESS TESTS IN TERMS OF F-SCORE (IN %).

Methods Clean SNR
30dB 20dB 10dB 0dB

HPNN-fine 66.01 64.38 64.1 62.68 57.24
Trans-inv [19] 71.92 65.43 53.1 38.28 24.59

more hour to finish the same amount of steps of training, and
in fact it requires around 64k steps to complete the training
process so it needs about 7.5 hours. For the testing time, we
find that when inferring on the same audio clip, our model is
by 1.75 times faster than Trans-inv on average.

B. Noise-robustness Test

To evaluate the robustness of the proposed model to noise
interference, we conduct a series of tests for the HPNN-fine
model3 and the Trans-inv model on the MusicNet test set under
noise contamination with different levels of SNR. We consider
different levels of additive pink noise, adapting the test data
under five conditions, where the SNR values are∞ dB (clean),
30 dB, 20 dB, 10 dB, and 0 dB. The simulated pink noise
is provided by the python-acoustics package4 and is
frame-wise mixed with the test signals.

The results presented in Table IV show that Trans-inv
outperforms HPNN-fine by 5.8% under clean condition, but
such a lead drops to only 1.05% (64.38% for HPNN-fine
and 65.43% for Trans-inv) when SNR = 30 dB, which is a
condition still better than many real-world environments. As
the SNR value keeps declining, the performances of Trans-
inv drop even more rapidly. From clean testing data to SNR
being 0 dB, the F-score decreases by less than 9% for the
proposed model, while Trans-inv suffers from a loss more than
45%. Such robustness to noise is mainly contributed by the
DFT layers and the nonlinear activation function; the former
guides the model to focus on modeling the harmonic/ periodic
structures which are truly relevant to pitch in the feature

3Hereafter the HPNN-fine narrows to the proposed architecture trained on
the augmented MusicNet with fine resolution.

4https://github.com/python-acoustics/python-acoustics
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Fig. 2. Performances as a function of model depth. We recommend a depth of six layers of MLC as it finds a balance between performances and computing
resources.

maps, while the latter adjusts the relative scales in the feature
maps such that the contribution of each concurrent pitch to
the feature maps is balanced. In contrast, though [19] reports
the convolution kernels in the first layer are observed to be
DFT-like, such data-dependent kernels however are sensitive
to noise. To summarize, in this audio degradation experiment,
the proposed model better survives in low SNR scenarios than
the other model that is more end-to-end. The proposed model
is not only more economic, but also more robust for it applies
Fourier basis as priors.

C. Parametric Studies on Number of Layers

Fig. 2 shows the performances of the HPNN-fine models
separately trained with a series of different numbers of MLC
depths, N , from one (N = 1) to twelve (N = 12) layers, and
then evaluated under the afore-mentioned three testing setups
(i.e. MusicNet, MAPS, and MusicNet under different levels of
pink noise contamination), as the title of each panel indicates.
The left and middle panels show the F1-score, precision, and
recall for MusicNet and MAPS, respectively. The right panel
illustrates the F-score for MusicNet contaminated with various
levels of additive pink noise as described in Section IV-B.

We find that the performances approach the optima for
N = 2 in general, though improved performances can still
be observed when the number of layers is increased. Taking
the case of 0-dB SNR pink noise (the dotted line in the right
panel at 2) as an example, the F1-score increases gradually
with growing N and achieves the maximum at N = 11.
Deeper models might yield better performances, but that more
resources lead to only marginal gains is not desirable. It can
also be noted that the distances between precision and recall
reach the smallest value at N = 6 for the MusicNet and MAPS
datasets. Consequently, we recommend choosing a depth of
six layers (N = 6) as a tradeoff between performances and
computing resources. In our experiments, for N = 6, the
learned γ values from the the augmented HPNN-fine model
trained on the MusicNet dataset are (γ1, γ2, γ3, γ4, γ5, γ6) =
(0.0960, 0.6376, 0.4864, 0.6746, 0.6428, 0.3259). The learned
values are different from what reported in previous works,
for example, (γ1, γ2, γ3) = (0.24, 0.6, 1.0) in [16] and

TABLE V
RESULTS OF CROSS-DOMAIN EVALUATION (IN %).

Methods P R F
HPNN-fine 49.38 46.89 47.67

Duan et al. [24] 67.41 53.98 59.72

(γ1, γ2, γ3, γ4, γ5, γ6) = (0.1, 0.9, 0.9, 0.7, 0.8, 0.5) in [11].
However, these values are common in that 1) γ1 is the smallest
among all, and 2) all the γ values are smaller than 1. This
suggests that the power-scale parameters learned from data
also follow the empirical rules mentioned in the literature of
signal processing [11], [15], [16], while appear as an optimal
solution that fits the training data.

Fig. 3 illustrates six examples, which are the output piano
rolls of the HPNN-fine models trained with N MLC layers,
where N = 1, 2, 3, · · · , 6. The frequency unit is in semitone.
This example demonstrates the enhancement of pitch saliency
grows with model depth N . We observe that when N = 1
(i.e. the upper-left sub-figure in Fig. 3), there are numbers
of unwanted harmonics and also sub-harmonic components
appearing on the feature map. These unwanted terms are
greatly reduced for N ≥ 2, while the salience of desired
fundamental frequencies is preserved. The output piano rolls
become more succinct as N increases till N = 6.

D. Domain-robustness Test

To further test the robustness of the proposed model on
the variation of testing data, we consider a more challenging
scenario: using the proposed MPE model trained on music
to test on multi-talker speech signals. To find out how our
proposed model that is trained on music performs on speech,
we evaluate the HPNN-fine model on the PTDB-TUG and
compare it with the model [24] proposed by Duan et al.,
which is one of the MPE models that has been evaluated on
multi-talker speech signals. To test the models in a multi-talker
scenario, following [18], we choose two female (F01, F07)
and two male (M04, M10) speakers from the PTDB-TUG.
Among the rendered six speaker pairs, we randomly mix 100
utterances by equalizing the maximum of the magnitude and
thus form a test set of 600 segments of two-talker speech
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Fig. 3. An example of inference outputs of the HPNN-fine models with MLC depths from N = 1 to N = 6, on an excerpt of around 1.5 second from W.A.
Mozart’s Serenade in E-flat Major, K. 375, a wind quintet selected from MusicNet id 1819.

mixtures. Each utterance is cut at 70ms before the first and
after the last occurrence of pitch values in the reference
annotation. Both models are ignorant of the speaker number.
To our knowledge, a cross-domain MPE task (i.e. music-to-
speech MPE) has been rarely discussed in the literature except
[23], though the work focuses more on the streaming of ideal
MPE results rather than the MPE task itself.

The results presented in Table V quantifies the general-
ization ability of cross-domain MPE: it reaches an F1-score
lower than [24] by around 12%, but can still correctly predict
around half of the pitch values. The performance gap might
stem from the consonants in speech, different behaviors of
pitch contours between music and speech, and the irregular
unvoiced intervals in speech, all of which exist in speech data
but are more irrelevant to the harmonic structures of signals
on which the HPNN model designed to focus.

V. CONCLUSIONS

We have implemented the proposed HPNN method for
multi-pitch estimation, and assessed the performance of the
network under various scenarios. The HPNN method is effi-
cient in time, robust to noise and cross-domain data, and still
exhibits competitive F1-scores in comparison to state-of-the-
art methods. The proposed method also represents a case that
incorporates domain knowledge and data-driven deep learning
techniques to tackle a problem. Since a performance gap
between the HPNN and state-of-the-art methods still exists,
the first task which needs further improvement will be to
reduce the gap. Possible future directions therefore include
the incorporation with a larger-scale CNN for optimization,
using feature maps from more than the last two DFT layers,
and considering other types of neural networks such as the
U-Net [26], [27] for an output with a wider temporal context.
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