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Abstract—With the development of speech synthesis and voice
conversion techniques, the anti-spoofing task that detects artificial
speech signals has received more and more research attentions
recently. State-of-the-art spoofing detectors can distinguish the
utterances generated by voice conversion from natural ones with
high accuracy. This paper proposes a method that improves the
ability of voice conversion models against spoofing detection by
post-processing the converted speech using a neural network. The
network is built using long short-term memories (LSTM) and
trained by reducing the distance between the linear frequency
cepstrum coefficients (LFCC) of converted utterances and natural
references. In our experiments, the SAS dataset was adopted
to construct the anti-spoofing system, and the VCTK dataset
was used to build voice conversion models. Experimental results
show that our proposed method can reduce the detection rate
of the anti-spoofing system significantly without losing subjective
performance of converted speech.

Index Terms—adversarial examples, voice conversion, anti-
spoofing, post-processing, LFCC

I. INTRODUCTION

Voice conversion (VC) is a technique that converts a
speaker’s voice to another speaker while linguistic information
remains. Statistical modeling is an effective approach to
convert the acoustic features from the source speaker towards
target ones. Since 1990’s, the methods based on Gaussian
mixture models (GMM) [1, 2] have been proposed. In these
methods, the waveforms were reconstructed from converted
acoustic features by vocoders, such as Griffin-Lim [3] and
STRAIGHT [4]. In recent years, with the development of
deep learning, neural networks show strong ability of fitting
complex distributions. The voice conversion methods based
on deep neural networks (DNN) [5, 6], recurrent neural
networks (RNN) [7], and sequence-to-sequence networks [8]
have been proposed to describe the mapping relationship
between the acoustic features of two speakers and to improve
the accuracy of acoustic feature transformation. Meanwhile,
neural vocoders, such as WaveNet [9], have also been applied
to voice conversion. With the help of these progresses, the
quality of converted speech have been improved significantly.
For example, the top system in Voice Conversion Challenge
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2018 [10] achieved a naturalness mean opinion score (MOS)
over 4.0 and a similarity percentage over 80%.

On the other hand, speaker verification [11] is one of
the most important biometric authentication means nowadays.
With the improvement of speech synthesis and voice conver-
sion techniques, detecting the spoofed audio becomes crucial
to speaker verification systems. In previous studies on spoofing
detection, various acoustic features have been used. Some
methods adopted high time-frequency resolution features,
such as linear frequency cepstrum coefficients (LFCC) [12]
and constant-Q cepstrum coefficients (CQCC) [13], to build
countermeasures. Some methods learned the countermeasures
from raw spectral features by deep learning [14]. Then,
classifiers are built based on the extracted features. It is
conventional to train two GMMs and utilize the log likelihood
ratio (LLR) between them for classification. In recent years,
convolutional neural networks (CNN) and other deep learning
models [15, 16] have been employed and achieved better
classification performance than GMMs. With the development
of techniques and data resources, the performance of anti-
spoofing methods improves rapidly. In ASVspoof2019 [17],
the best system obtained an equal error rate (EER) of 0.22%
on the logical access task, which means it can effectively
distinguish synthetic and converted waveforms from natural
ones.

Inspired by recent advances on adversarial example gen-
eration [18], we propose a method to improve the ability
of voice conversion models against anti-spoofing systems
by post-processing the converted speech waveforms using
an LSTM-based neural network. In this paper, the baseline
countermeasure used by ASVspoof2019 is adopted to build
the anti-spoofing system, which utilizes LFCCs as acoustic
features together with a GMM classifier. Our previous voice
conversion method developed for Voice Conversion Challenge
2018 [19] is employed to build the baseline voice conver-
sion model. In the existing studies on adversarial example
generation, both white-box (i.e., the adversary has complete
knowledge of the classifier) and black-box (i.e, the adversary
has only access to the inputs and outputs of the classifier)
settings have been proposed [18, 20]. This paper adopts a
semi-white-box setting, which means that the post-processing
network is aware that LFCCs are used as classification features
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TABLE I
DISTRIBUTION OF THE DATA USED TO BUILD OUR ANTI-SPOOFING

SYSTEM.

Subset Speakers Utterances
Male Female Genuine Spoofed

Training 10 15 3750 12625
Development 15 20 3481 131385

Evaluation 20 26 9200 707817

in the spoofing detector, but don’t know its model structures
and specific parameters. Thus, the post-processing network is
trained to reduce the distance between the LFCCs of converted
utterances and natural references. Experimental results show
that our proposed method can reduce the detection rate of
the anti-spoofing system significantly without degrading the
subjective performance of converted speech.

The aim of this study is to demonstrate that it is possible to
generate adversarial speech against a spoofing detector once
the adversary knows what kind of acoustic features are used
by the countermeasure. To generalize this adversarial process
to the countermeasures with unseen acoustic features and other
detection models will be the task of our future work.

This paper is organized as follows. Section II describes the
anti-spoofing system adopted in the paper. Section III intro-
duces the details of the proposed method and the experimental
results are described in Section IV. Finally, Section V gives
the conclusion.

II. ANTI-SPOOFING SYSTEM

An anti-spoofing system was built as the adversarial target
of our proposed method. The dataset used to train the anti-
spoofing model was the SAS dataset [21] which was an
expansion of the ASVspoof2015 dataset. It consisted of both
natural speech and spoofed speech. A totally number of
38940 utterances of natural speech were selected from the
VCTK dataset [22]. 14 different text-to-speech (TTS) and VC
methods were used to produce artificial speech as spoofing
attacks. The distribution of the data used to develop the anti-
spoofing system is shown in Table I. The training set consisted
of 25 people, using two TTS and three VC methods as
spoofing attacks. The development set consisted of 35 people,
using the same spoofing methods as the training set. The
evaluation set consisted of 46 people and all TTS and VC
methods were applied as spoofing attacks.

Following the baseline countermeasure in ASVspoof2019,
a GMM back-end classifier with LFCC features [17] was
adopted for anti-spoofing. For calculating LFCCs, the speech
waveforms were first pre-emphasized, and then spectra were
calculated with a window length of 20ms and a frame shift of
10ms by 512-point FFT. The order of LFCCs was set to 20.
Their dynamic coefficients, i.e. deltas and accelerations, were
also calculated. When training the classifier, two GMMs with
512 components were trained using the LFCCs extracted from
the natural speech and the spoofed speech in the training set
respectively. At the detection stage, the LLRs calculated using
these two GMMs were compared with a threshold value for

TABLE II
PERFORMANCE OF DIFFERENT WINDOW LENGTHS IN THE ANTI-SPOOFING

SYSTEM.

Window length Evaluation set Detection rate of
(ms) EER(%) spoofed speech (%)
20 3.06 96.51
50 3.28 96.26

classification. The threshold value was set to obtain the EER
point on the development set. The performance of the built
anti-spoofing system can be found in the first row of Table II.
An EER of 3.06% was obtained on the evaluation set and the
detection rate of spoofed speech was 96.51%, which means
that 96.51% of the spoofed speech in the evaluation set can
be detected successfully.

We also tried to set the window length for calculating
LFCCs in the anti-spoofing system as 50ms to make it
consistent with the window length of the short-time Fourier
transform (STFT) in our proposed post-processing method,
which will be introduced in next section. The frame shift was
still 10ms and the FFT point was set as 1024. As shown in
the second row of Table II, The anti-spoofing system with
a window length of 50ms obtained an EER of 3.28% on
the evaluation set and the detection rate of spoofed speech
was 96.26%. Since its performance was slightly worse on
both EER and detection rate than the original configuration
of 20ms, we still adopted the anti-spoofing system with 20ms
window length in following experiments.

III. PROPOSED METHOD

The overall framework of our proposed method is shown
in Fig. 1. Our previous voice conversion method developed
for Voice Conversion Challenge 2018 [19] is employed to
build the baseline VC system. In this system, 512-dimensional
bottleneck features are first extracted from input speech every
40ms by an automatic speech recognition (ASR) model trained
using hundreds of hours of speech data with aligned phonetic
transcriptions. Then, an LSTM-RNN conversion network is
built to predict mel-cepstral coefficients (MCCs) and excitation
features from the bottleneck features for each target speaker.
Different from previous work [19] which employed a WaveNet
vocoder to reconstruct speech waveforms, the conventional
STRAIGHT vocoder is adopted in this paper to generate
the converted waveforms from the predicted F0 and spectral
features in order to improve the efficiency of conducting
experiments.

The features used in the anti-spoofing system introduced
in Section II are LFCCs, and the spectral features predicted
by our voice conversion model are MCCs. Here, the MCC
features are calculated from the spectral envelopes analyzed by
STRAIGHT, which removes the harmonic structures in STFT
spectra by adaptive interpolation. Thus, it is difficult to recover
STFT spectra from MCCs and to conduct a differentiable
transformation between MCCs and LFCCs. This means that
we are not able to set up an adversarial objective function
against the spoofing detector to optimize the conversion model
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Fig. 1. The framework of our proposed method, where the dotted lines
represent the procedures of calculating the loss function for training LFCC-
PostNet (LPN) and the solid lines represent the conversion and post-processing

procedures.

directly. Therefore, a post-processing method is proposed in
this paper which trains an LFCC PostNet (LPN) to post-
process the converted waveforms against the spoofing detector.

As shown in Fig. 1, the LPN model adopts the log amplitude
spectra calculated from the converted speech by STFT and
the bottleneck features used by the conversion model as input.
The model structure is composed of an input fully-connected
(FC) layer, two LSTM layers, and an output FC layer. The
output spectra are used as residuals and added to the input log
amplitude spectra to obtain the post-processed log amplitude
spectra.

At the training stage, an LPN model is estimated for each
target speaker. The bottleneck features extracted from the
training utterances of each target speaker are sent into the
conversion model to generate speech waveforms. Then, log
amplitude spectra are extracted from the converted waveforms
by STFT for training the LPN model. The loss function is

L = LRes + α ∗ LLFCC . (1)

Here, LRes means the mean square error (MSE) between
the predicted residual spectra and a zero vector. This term
constrains that the post-processing on spectra should be as
slight as possible in order to avoid the degradation of natural-
ness and similarity after post-processing. LLFCC means the
MSE between the LFCCs calculated from the post-processed
spectra and the natural ones. As introduced in Section I, this
paper adopts a semi-white-box setting for adversarial example
generation, which assumes that the LPN model knows that
LFCCs are used as classification features in the spoofing
detector. Thus, LLFCC is expected to improve the ability of
converted speech against the anti-spoofing system by reducing
the distance between the LFCCs of natural and spoofed
speech. α is the weight between these two loss terms which
will be investigated in our experiments.

At the conversion stage, the bottleneck features extracted
from input source speech are sent into the conversion mod-
el and converted waveforms are produced by STRAIGHT
vocoder. Then, the bottleneck features and the log amplitude

TABLE III
INFORMATION OF THE SPEAKERS USED IN OUR EXPERIMENTS.

Speaker No. Age Gender Accents Region
p275 23 M Scottish Midlothian
p284 20 M Scottish Fife
p283 24 F Irish Cork
p288 22 F Irish Dublin

TABLE IV
THE ARCHITECTURE OF THE LPN MODEL IN OUR EXPERIMENTS.

Layer Unit Number
FC1 512

LSTM1 512
Projection 256
LSTM2 512

Projection 256
FC2 513

spectra of converted speech are input into LPN. The final
speech waveforms are reconstructed from the post-processed
amplitude spectra by Griffin-Lim algorithm. In order to make
fair comparison between the speech converted by the base-
line VC system and the post-processed one, the waveforms
produced by the baseline VC system also pass through the
Griffin-Lim vocoder in our experiments. A better choice is
to employ the same neural vocoder for both the baseline VC
system and the post-processed one. This will be a task of our
future work.

IV. EXPERIMENTS

A. Experimental conditions

As shown in Table III, four speakers in the VCTK dataset
[22] were used to build the VC systems in our experiments.
Among them, p275 (M1) and p283 (F1) were set as target
speakers, and p284 (M2) and p288 (F2) were set as source
speakers, which generated four conversion pairs in total. These
speakers were also in the evaluation set of the anti-spoofing
system, which means they were unseen speakers to the anti-
spoofing system. There were about 400 utterances for each
speaker, and the waveforms were in 16 kHz sampling rate and
16 bit quantization. 80 percent of the data for each speaker
was used as the training set for the voice conversion model
and the LPN model, 10 percent of the data was used as
the development set, and the data remained was used as the
evaluation set. The Librosa toolkit in Python [23] was applied
to extract the STFT spectra from natural and converted speech.
The frame shift was set to 10ms, and the window length was
set to 50ms. The point of FFT was 1024 and the spectrum
dimension was 513. The order of LFCCs for training the LPN
model was set as 20, and their dynamic coefficients were also
calculated.

As mentioned above, the LPN model consisted of two
FC layers and two LSTM layers. Its input features were
1025-dimensional vectors composed of 513-dimensional log
amplitude spectra and 512-dimensional bottleneck features. As
shown in Table IV, the unit number of the input FC layer
was 512 and the unit number of each LSTM layer was 512.
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TABLE V
MCD (dB), F0 RMSE (HZ) AND DETECTION RATE (DR) (%) OF USING
DIFFERENT α IN LPN TRAINING, WHERE VC STANDS FOR THE RESULTS

WITHOUT POST-PROCESSING.

VC 0.05 0.1 0.2 0.5

M1
MCD 2.73 2.71 2.70 2.70 2.72
F0RMSE 22.21 27.74 24.59 27.40 32.22
DR 86.49 75.68 64.86 43.24 21.62

F1
MCD 2.87 2.85 2.81 2.72 2.67
F0RMSE 21.42 20.96 18.39 19.94 25.07
DR 61.90 47.62 42.86 26.19 9.52

Peepholes and projection layer were applied to LSTM and
the number of projection units was 256. The unit number
of the output FC layer was 513, i.e., the dimension of log
amplitude spectra. In our experiments, bottleneck features
were normalized to zero mean and unit variance, while spectra
and LFCCs were not normalized. Dropout was not applied and
the learning rate was set to 0.001 with exponential decay.

B. Effects of weight α in loss function

As mentioned in Section III, the weight α is a hyper-
parameter in the loss function of LPN and needs to be
determined by experiments. In this experiment, four different
weights from 0.05 to 0.5 were used to train the LPN models
for the two target speakers and their objective performances
were compared with the baseline VC models without post-
processing. Since VCTK is a non-parallel corpus, in order
to calculate the prediction errors of acoustic features, the
utterances used for testing in this experiment were generated
by the bottleneck features of each target speaker’s own
evaluation set. Three evaluation metrics were applied. The first
one was the detection rate of the converted speech using the
anti-spoofing system. Lower rate indicates stronger ability of
the VC system against the spoofing detector. The other two
metrics were mel-cepstral distortion (MCD) and F0 RMSE of
converted speech.

The evaluation results are shown in Table V. From this table,
we can see that as the weight increased, the detection rate
gradually decreased. This is reasonable since the LLFCC loss
in (1) is expected to improve the ability of converted speech
against spoofing detectors. As the weight became large, the
MCDs of the two target speakers didn’t increase, while the
accuracy of F0 prediction decreased especially when α > 0.2.

The spectrograms of an example utterance generated by
different configurations in Table V are illustrated in Fig. 2.
From this figure, we can see that the overall formant structures
of VC speech were maintained well after post-processing.
When α = 0.5, some excessive spectral modifications and
artificial spectral components can be observed as shown by
the red boxes in Fig. 2.(f), which caused the degradation of
subjective performance. Therefore, α was finally set as 0.2 in
following experiments.

C. Performance of our proposed method

In this experiment, the converted utterances for evaluation
were generated using the bottleneck features from the evalu-

(a) natural target speech (b) VC speech

(c) α=0.05 (d) α=0.1

(e) α=0.2 (f) α=0.5

Fig. 2. The spectrograms of an example utterance “It may be” generated by
different configurations in Table V.

TABLE VI
THE DETECTION RATES (%) OF CONVERTED SPEECH BEFORE AND AFTER

POST-PROCESSING.

Speaker pair M2 M1 M2 F1 F2 M1 F2 F1
Before 84.62 58.97 94.74 65.79
After 30.77 10.26 68.42 23.68

ation set of M2 and F2 and the conversion model of M1 and
F1. Then, these utterances were post-processed using the LPN
models of M1 and F1 respectively1.

First, the detection rates of the converted speech before and
after post-processing were evaluated and the results are shown
in Table VI. From the table, we can see that the detection
rates of all four conversion pairs were largely reduced after
post-processing, indicating that our proposed method can
successfully improve the ability of the VC system against the
spoofing detector under a semi-white-box setting.

Then, ABX preference tests were conducted to compare the
subjective performance of the converted speech before and
after post-processing for the four speaker pairs. In each test,
about 30 pairs of test utterances were randomly selected. Each
pair of utterances were presented to listeners randomly, who
were asked to give their preferences in term of both similarity

1Audio demos are available at https://yiyangding.github.io/LFCCPostNet/.
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TABLE VII
PREFERENCE TEST RESULTS (%) ON NATURALNESS (NAT.) AND

SIMILARITY (SIM.) BETWEEN THE CONVERTED SPEECH BEFORE AND
AFTER POST-PROCESSING FOR DIFFERENT SPEAKER PAIRS, WHERE N/P

DENOTES “NO PREFERENCE” AND p MEANS THE p-VALUE OF t-TEST
BETWEEN TWO SYSTEMS.

Before After N/P p

M2 M1 Nat. 30.21 28.40 41.39 0.54
Sim. 30.06 26.59 43.35 0.24

M2 F1 Nat. 19.67 33.93 46.40 <0.01
Sim. 16.54 30.98 52.48 <0.01

F2 M1 Nat. 24.11 23.71 52.19 0.87
Sim. 22.15 23.74 54.11 0.52

F2 F1 Nat. 16.70 26.57 56.73 <0.01
Sim. 16.73 23.20 60.07 0.02

and naturalness. The evaluations were performed on Amazon
Mechanical Turk. 20 English native listeners participated in
each test and they were asked to use headphones. The results
are shown in Table VII. From the table, we can see that for two
speaker pairs (M2 M1 and F2 M1), there was no significant
preference between the convert speech before and after post-
processing in terms of both naturalness and similarity. For the
other two speaker pairs (M2 F1 and F2 F1), the converted
speech after post-processing got more preference, indicating
that the subjective quality of converted speech was improved
after post-processing. One possible reason is that LFCC is also
a kind of spectral representation and the subjective quality of
converted speech may benefit from the reduction of LFCC
distortion using the LPN model.

V. CONCLUSIONS

This paper has proposed a method to improve the ability
of voice conversion against spoofing detection. An LFCC-
PostNet (LPN) is built to post-process the converted speech
and its model parameters are estimated to reduce the distortion
of LFCC features caused by the conversion model. Experi-
mental results show that our proposed method can effectively
improve the ability of converted speech against anti-spoofing
systems without decreasing or even slightly improving the
subjective quality of converted speech. This paper adopts a
semi-white-box setting. To extend our proposed method to
black-box settings, such as spoofing detectors with unseen
acoustic features and classifiers, is worth further investigation.
To experiment with more advanced voice conversion methods
and spoofing detection models will also be the tasks of our
future work.
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