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Abstract—In this paper, significance of the Cepstral Mean
and Variance Normalization (CMVN) is investigated for replay
Spoofed Speech Detection (SSD) task. Literature shows that ap-
plication of the CMVN produces significantly better performance
on many feature sets, which is counter-intuitive for replay SSD
task. This behaviour is analyzed by performing experiments for
environment-independent and dependent cases with % Equal
Error Rate (EER) as evaluation metric. Furthermore, analy-
sis is also performed with the help of estimated probability
density function (pdf ) of the genuine vs. spoof speech feature
representations. The experiments are performed on the publicly
available and statistically meaningful ASVspoof 2017 version-2
dataset using well-known CQCC-GMM and LFCC-GMM SSD
systems. This dataset comprised of seven acoustic environments
for replay speech. This study reveals that performance of the SSD
system is better with application of the CMVN on environment-
independent case. Whereas performance degrades drastically on
environment-dependent scenario with application of the CMVN.
For this scenario, the CMVN suppresses the transmission channel
distortion, which is in fact the discriminative cues for the genuine
vs. replay speech signal. This results in degradation of the
performance. However, for environment-independent scenario,
CMVN scale down the variability in feature space across the
different environment, which improves the performance.
Keywords: Cepstral Mean and Variance Normalization, re-
play, spoof, ASVspoof 2017.

I. INTRODUCTION

Normalization techniques have been used in various speech
applications, such as automatic speech and speaker recognition
to improve the performance of the systems [1]–[6]. The litera-
ture includes several forms of normalization techniques, which
includes normalization w.r.t. nth order expectation of random
variable X for each dimension. The first and second-order
expectations are known as mean and variance, respectively. If
normalization is applied on the cepstral feature representation
based on mean and variance, then it is known as Cepstral
Mean and Variance Normalization (CMVN). However, if we
consider only mean value for normalization, then it is called
as Cepstral Mean Normalization (CMN) or Cepstral Mean
Subtraction (CMS) [7], [8].

In particular, CMVN is the most common and computa-
tionally inexpensive approach of normalization. It reduces the
distortion due to transmission channel effects, and improve the
recognition performance of the speech and speaker recognition
systems. The use of normalization techniques in Automatic
Speech Recognition (ASR) for environmental mismatch con-
ditions is well known in the literature [2], [3], [6]. These
approaches use maximum likelihood estimates (MLE) to get
the mean and variances along the feature dimensions, and then

normalize it. In [9], authors propose the Bayesian approach
to estimate the mean and variance. In [6], segmental CMVN
is used to employ the noise-robust ASR system in real-time,
where normalization is performed over short segment of the
utterance in order to reduce the latency period.

The replay spoof speech signal is formed by convolving the
genuine version of speech sample with the impulse responses
of the recording and replay environments and devices. In
spoof speech detection (SSD) task, we need to identify this
additional channel effects present in spoof speech signal. The
application of the CMVN/CMN to the speech and speaker
recognition system supresses the channel effects. Hence, its
use in SSD task seems counter-intuitive. However, among
the many countermeasure systems developed on ASVspoof-
2017 dataset, it is observed that CMVN/CMN has been
effectively utilized for the replay Spoof Speech Detection
(SSD) task to give significant improvement in the perfor-
mance of the SSD system [10]–[18]. This contradictory re-
sults motivated us for further investigation over applicability
of the CMVN. We performed experiments for environment-
independent and environment-dependent scenario. Further-
more, probability density function (pdf ) are estimated over
several dimensions of feature representations.

II. CEPSTRAL MEAN AND VARIANCE NORMALIZATION
(CMVN)

CMN was initially proposed to eliminate the channel dis-
tortions that are introduced into the signal by convolving the
signal with the impulse response of the transmission channel.
In cepstral-domain, convolutional vector space is mapped to
the additive vector space. The CMN estimates the mean along
every dimension of the cepstral feature representation of the
speech sample and this mean value is subtracted from the
corresponding dimension to transform the feature represen-
tation to zero-mean. Whereas, the CMVN transforms each
cepstral feature representation of the speech sample to zero-
mean and unit-variance. Mean and variance can be estimated
for a segment of the utterance to reduce the latency period [6].

Let xt denote the d-dimentional feature vector at the frame
index t of the utterance, and xt(i) represent the ith component
of xt. The speech utterance is passed through frame-blocking,
denoted as X = [x1, x2, ... , xT ], where T denote the number
of speech frames. The mean and variance values are estimated
for every dimension in maximum likelihood (ML) framework
as [9]:
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Fig. 1. Scatter plot for (a) the unnormalized data, (b) with CMN normalization,
and (c) CMVN normalization. X = [x1 x2] denotes the samples drawn from
the bivariate Gaussian distribution. Ytick values of Fig. 1(b) and Fig. 1(c) are
same as that of Fig. 1(a).

µML(i) =
1

T

T∑
t=1

xt(i), 1 ≤ i ≤ d, (1)

σ2
ML(i) =

1

T − 1

T∑
t=1

(xt(i)− µML(i))
2, 1 ≤ i ≤ d. (2)

where µML and σML corresponds to mean and variance
values, estimated in ML framework. The CMVN is applied to
obtain normalized cepstrum of the frame as:

x̂t(i) =
xt(i)− µML(i)

σML(i)
, 1 ≤ t ≤ T, 1 ≤ i ≤ d. (3)

To visualize the effect of the CMN and CMVN, we generated
the data samples with the help of two random variables from
the normal distributions, N (4, 4), and N (2, 0.25). The scatter
plot of the generated data samples is shown in Fig. 1(a).
Fig.1(b) and Fig.1(c) shows the scatter plot for CMN and
CMVN normalized data samples, respectively. For CMN data
samples, it can be observed that the data samples are centered
around the origin, and variance is maintained the same as
that of the original data samples. With CMVN, the mean and
variance are normalized. The spread along both the axes is
maintained at unity variance in CMVN as shown in Fig.1(c).

Similar kind of observations regarding normalization can
be seen in Fig. 2 which shows the scatter plots for the first
two dimensions (D) of the CQCC feature set for genuine vs.
two spoof speech signals. The data samples for the genuine
speech is shown by red ’*’ symbol, whereas spoof speech
data samples for balcony and studio environments are shown
by green and blue ’*’ symbol, respectively. The CQCC feature
extraction and dataset details are discussed in Section IV. Fig.
2(a), 2(b) and 2(c) shows the scatter plots for original features
(initial 2-D), it’s CMN and CMVN normalized versions, re-
spectively. Again, feature representation with CMN is centered
around origin with original feature representation variance,
whereas feature representation with CMVN is zero-centered
with unity variance. The other intuition from this scatter plot
is discussed in Section V.

III. REPLAY SPEECH SIGNAL MODELLING AND CMVN

Using linear system theory, the speech signal, s(n) is
modelled as the convolution of the glottal airflow, g(n) with
the impulse response of the vocal tract system, v(n), i.e.,

s(n) = g(n) ∗ v(n). (4)

In many speech signal processing applications, speech
signal is represented in cepstral-domain. The cepstral rep-
resentation of the speech signal is obtained as the inverse
Fourier transform of the logarithm of the spectrum of the
speech signal. This transformation maps the convolutionally-
combined vectors to additively combined vectors [19]–[24].
Let ŝ(n), ĝ(n), and v̂(n) represents the cepstrum of the speech
signal, glottal airflow, and vocal tract system, respectively.
Cepstral representation of the speech signal in eq. (4) is given
as:

ŝ(n) = ĝ(n) + v̂(n). (5)

In SSD framework, the signal s(n) is treated as genuine
speech signal. The effect of the distortion due to replay
mechanism on genuine speech signal, can be modelled by
linear filtering. In replay mechanism, the genuine signal is
recorded, and again replayed back. In this process, genuine
signal is distorted by the impulse responses of the recording
environment, a(n), recording device, b(n), playback device,
c(n), and playback environment, d(n), respectively. By linear
filter theory, the replayed speech is referred to as convolution
of the genuine speech signal with this additional components,
i.e.,

r(n) = s(n) ∗ a(n) ∗ b(n) ∗ c(n) ∗ d(n). (6)

Let all these additional elements (a(n), b(n), c(n), and
d(n)) contribute to the overall impulse response of the replay
mechanism system, h(n) (i.e., h(n) = a(n)∗b(n)∗c(n)∗d(n))
which will distort the genuine speech signal. Hence, replayed
signal is modeled as:

r(n) = s(n) ∗ h(n). (7)

In cepstral-domain, eq. (7) is written as:

r̂(n) = ŝ(n) + ĥ(n). (8)

If an utterance consists of T number of speech frames, then
the cepstrum for each frame can be written as:

r̂1(n) = ŝ1(n) + ĥ(n),

r̂2(n) = ŝ2(n) + ĥ(n),

...

r̂T (n) = ŝT (n) + ĥ(n).

(9)

Taking average over the T frames, we get,
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Fig. 2. Scatter plot for (a) the unnormalized data, (b) with CMN normalization,
and (c) CMVN normalization. X = [x1 x2] denotes the first and second
dimension of CQCC feature vector. Legends of Fig. 2(b) and 2(c) are same
as that of Fig. 2(a).

1

T

T∑
t=1

r̂t(n) =
1

T

T∑
t=1

ŝt(n) + ĥ(n). (10)

Here, we modeled the effect of distortion by linear filter
approach. Then, the distortion from the observed signal is
removed by the inverse filtering. The cepstrum is computed as
inverse transform of the log of the Fourier transform. Hence,
the effect of the distortion can be removed (at least supressed)
by subtracting the characteristics of the distortion filter from
the cepstrum of the observed signal. In eq. (10), the cepstrum
of the distortion filter, ĥ(n), can be subtracted to obtain the
distortion-less signal. Let us assume that the genuine speech
signal is the zero-mean process. Then,

ĥ(n) =
1

T

T∑
t=1

r̂t(n) = cµ. (11)

Then, CMN is supposed to remove or at least supresses
the effect of the distortion from the replayed speech signal.
Inevitably, the average over the cepstral coefficients include the
speech and speaker information, and the effect of the channel
distortion.

IV. EXPERIMENTAL SETUP

A. Dataset Used

In this study, ASVspoof 2017 challenge version-2 database
is used. This standard dataset is designed to develop counter-
measure system to protect the ASV systems against the replay
spoofing attacks. For the challenge, dataset is partitioned into
three subsets, namely, training, development, and evaluation
set [10]. The detailed distribution of the dataset is shown
in Table I. The dataset consists of bonafide utterances in
each subset. Spoofed utterances are created by replaying,
and recording bonafide utterances using a variety of hetero-
geneous devices, and seven acoustic environments. In this
study, we aim to investigate the application of the CMVN
for spoof detection capability over environment-independent
and environment-dependent cases.

In environment-independent case, target environment is un-
seen by the defense model. To perform the experiments on
environment-independent case, the same statistical distribution
of the speech samples as provided by the organizers is used.
The statistics of the the dataset is shown in Table I. The

TABLE I
STATISTICS OF THE ASVSPOOF 2017 DATASET FOR THE

ENVIRONMENT-INDEPENDENT CASE. AFTER [10].

Subset # Spk Utterances Environments
Genuine Spoof

Train 10 1507 1507 E3, E6
Dev 8 760 950 E3, E5, E6
Eval 24 1298 12008 E1, E2, E3,

E4, E5, E6, E7
Total 42 3565 14465

E1: Anechoic Room, E2: Analog Wire, E3: Balcony, E4: Canteen, E5:
Home, E6: Office, E7: Studio, Spk: Speaker

training subset includes balcony, and office environments.
Whereas, development subset includes the balcony, home, and
office environments. The spoofed speech samples for evalua-
tion subset are taken from all the environments. Here, spoof
speech utterances are taken from the different environments for
training set than that of the development and evaluation set.
Therefore, this data distribution provided by the organizers is
considered as environment-independent case as trained defense
model is tested against the unseen environments.

For environment-dependent case, target environment is seen
by the defense model. In this case, training and testing is
performed on each individual environment. The distribution of
the number of spoof speech utterances for each environment
is varying and shown in Table II. To develop individual
environment-dependent replay spoof speech detection (SSD)
system, half of the spoof speech utterances for corresponding
environment are chosen for training purpose, and remaining
half is used for testing the performance of the model. To train
the genuine speech signal model, equal number of genuine
utterances are selected as that of spoof speech utterances, used
for training in corresponding environment.

TABLE II
DISTRIBUTION OF SPOOF SPEECH UTTERANCES AMONG THE

ENVIRONMENTS IN ASVSPOOF 2017 DATASET.

Environment # Uttearnces
Anachoic 748

Analog Wire 543
Balcony 1184
Home 570

Canteen 3517
Office 7565
Studio 342

B. Feature Set and Classifiers

The key objective of this paper is to investigate the signif-
icance of the CMVN for the replay Spoof Speech Detection
(SSD) task. Hence, experiments are performed using CQCC
and LFCC feature sets as these feature sets are used as baseline
feature sets by the ASVspoof challenge organizers [10], [25].
The SSD systems are trained using GMM [26]–[28]. Two
individual GMMs are trained for the genuine, and spoof
speech samples of the training data. Each GMM is trained for
512 Gaussian mixtures. The Expectation Maximization (EM)
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algorithm is used to update the parameters of the GMMs [29]–
[31]. The log-likelihood (llk) score, s(X), is computed as
[32]:

s(X) = llk(X|λg)− llk(X|λs), (12)

where λg , and λs represents the GMM models trained
on genuine and spoofed speech samples, respectively. The
CQCC and LFCC, both feature sets are designed to be of 90-
dimensions (90-D) feature set, which includes static (30-D),
delta (30-D), and delta-delta (30-D) components.

V. EXPERIMENTAL RESULTS

In this Section, we present results to investigate the issue
on application of the CMVN technique for Spoof Speech
Detection (SSD) task. To that effect, Table III shows the
performance of the environment-indpendent CQCC-GMM and
LFCC-GMM SSD systems for ASVspoof 2017 challenge
datasets. Performance of the environment-dependent scenario
for CQCC and LFCC feature sets using ASVspoof 2017
dataset is displayed in Table IV. The Equal Error Rate (EER) is
used as the performance evaluation metric. It is observed that,
for environment-independent case in ASVspoof-2017 dataset,
CMVN normalization technique works significantly better.

Fig. 3 shows the estimated pdf for the few selected dimen-
sions of the CQCC feature set for genuine speech samples
and spoof speech samples for all the individual environments.
Fig. 3(a), (b), (c), (g), (h), (i), (m), (n), and (o) shows the
estimated pdfs of the CQCC feature set for 1st, 3rd, 5th,
10th, 12th, 15th, 20th, 25th, and 30th dimensions with CMVN
normalization, respectively. Whereas, Fig. 3(d), (e), (f), (j),
(k), (l), (p), (q), and (r) shows the estimated pdfs for 1st,
3rd, 5th, 10th, 12th, 15th, 20th, 25th, and 30th dimensions
for without application of the CMVN, respectively. This figure
can be used to analyze the behaviour of the feature distribution
in environment-dependent case. As observed from Fig. 3,
estimated pdf for the CMVN case, all the environments are
seems to be aligned with the pdf of the genuine speech
signal. The alignment of the pdf is produced because of
CMVN, which further leads to degradation of the results for
environment-dependent scenario as distribution of the genuine
speech data seems similar to that of the spoof speech data.
Observations are also made for other dimensions of the feature
vector other than mentioned dimensions but pdfs for few
selected dimensions is presented in Fig. 3. It is observed that,
after eleventh dimension pdfs of the spoof speech data for
the CMVN case, all other environments mostly aligned with
the genuine data and almost no difference exists in their pdfs.
This fact can be observed from Fig. 3(k), (l), (p), (q), and
(r), where all the pdfs are almost merged. Whereas, the pdfs
of genuine data is much different to that of individual spoof
speech environments in without CMVN case. Furthermore, for
without normalization scenario, the distinct difference in pdfs
can be observed for almost all the dimensions. For without
CMVN case, if GMM parameters (i.e. mean and variance
of the Gaussian mixtures) are estimated for the pdfs of the

genuine vs. any other environment for spoof speech data, then
for most of the environments, we obtained the well distinguish-
able GMM parameters. In particular, it can be observed that
GMM parameters of the genuine data vs. spoof speech data
from balcony/studio would be well distinguishable. Hence,
corresponding SSD systems are producing 0% EER. However,
with CMVN applied to feature set, all the pdfs of spoof speech
signal representations for individual environment, do not lie on
either side of the pdf of genuine signal representations. This
fact is also observed from Fig. 2(a), where the data samples
for genuine speech signal lie in the middle of the other two
spoof speech environments. Hence, cumulative distribution of
all the environments (shown in Fig. 4) for spoof speech data,
could not produce the distinguishable GMM parameters w.r.t.
genuine data.

Fig. 4(a) and (b) shows the estimated pdf of the genuine
vs. spoof speech signal over first dimension of the CQCC
feature set, obtained by application of the CMVN and without
CMVN, respectively. Here, spoof speech data is obtained
from all the possible environments. In this case, if GMM
parameters are estimated from the pdfs, then Fig. 4(a) will
have the more distinguishable GMM parameters as the GMM
parameters estimated from this pdf would be better separated
than the case of without CMVN. It is because of the fact
that, pdf maximas of this pdf are well separated For Fig.
4(b), many local maximas are observed and random variable
values corresponding to these maximas are mixing with each
other. Because of these closely-spaced GMM parameters for
genuine and spoof speech signals, classifier model may pose
ambiguity when test sample is presented to trained model for
the SSD task. This might be the reason for getting better
results for environment-independent case with application of
the CMVN compared to without CMVN case. Authors believe
that pdf corresponding to higher cepstral dimensions show
less discrimination between genuine vs. spoof due to decay of
cepstrum w.r.t. time [20], [21], [23], [23]

TABLE III
RESULTS OF CQCC-GMM AND LFCC-GMM SYSTEMS IN %EER FOR

ENVIRONMENT-INDEPENDENT CASE ON ASVSPOOF-2017 DATASET.

dev eval

CQCC without CMVN 10.31 28.02
CMVN 12.48 18.17

LFCC without CMVN 7.02 32.62
CMVN 14.79 14.83

Fig. 5(a) and Fig. 5(b) shows the detection error trade-off
(DET) curves for the system developed using the feature set
with and without application of the CMVN on ASVspoof 2017
challenge dataset, respectively [33]. These DET curves are
shown for environment-dependent scenario. Two systems are
showing 0 % EER which cannot be observed on the DET
curve. However, these plots are shown by the point at the
origin. It can be observed from the DET curves that the
performance of environment-dependent case is significantly
improved without normalization of the feature set. The false
alarm rate is below 50 % for all the environmental cases (in
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Fig. 3. Estimated pdf of genuine and environmentwise spoof speech samples over the (a) 1st, (b) 3rd, (c) 5th, (g) 10th, (h) 12th, (i) 15th, (m) 20th, (n)
25th, and (o) 30th feature dimensions with application of CMVN, whereas Fig. (d), (e), (f), (j), (k), (l), (p), (q), and (r) shows the estimated pdfs for without
CMVN case with the same sequence of dimensions as that of CMVN case. Legends of all figures are similar as given in Fig. 3(a).

Fig. 4. Estimated pdf of genuine and spoof speech samples over the first
feature dimension for (a) CMVN and (b) Without CMVN. Legends of Fig.
4(b) are similar to that of Fig. 4(a).

TABLE IV
RESULTS OF CQCC-GMM SYSTEM IN %EER FOR

ENVIRONMENT-DEPENDENT CASE ON ASVSPOOF-2017 DATASET

CQCC LFCC

CMVN Without CMVN Without
CMVN CMVN

Anechoic Room 10.02 0.26 10.60 0
Analog wire 16.99 11.42 22.09 10.89

Balcony 13.81 0 9.60 0.13
Canteen 3.43 0.93 2.73 1.33
Home 7.39 2.12 9.23 2.51
Office 14.99 5.63 17.62 7.22
Studio 7.53 0 7.21 0

environment-dependent case).

Fig. 5. DET plots for environment-dependent case using ASVspoof-2017
dataset (a) with application of the CMVN, and (b) without application of
the CMVN on feature set. Legends for Fig. 5(a) and Fig. 5(b) are the same.

VI. SUMMARY AND CONCLUSIONS

In this study, we performed the experiments for
environment-dependent, and environment-independent scenar-
ios with and without application of the channel normalization
techniques. We observed that the application of the CMVN to
the feature set do not always guarantee better results for the
classification task. However, it depends upon the variability
of the speech samples in terms of channel noise. If we train
the models for environment-independent case, then applying
CMVN might be the good choice. It reduces the large channel
noise variability among the environments in spoof speech and
brings the pdfs of the feature representations closely aligned
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with each other and hence, with their cumulative distribution.
Whereas in environment-dependent case, its better to not apply
the CMVN. In this case, SSD is performed for the single
environment only. For most of the environments, there is large
variation of the distribution is observed without application of
the CMVN for genuine vs. spoof speech. If we normalize this
setting, then variation in distribution between the genuine vs.
spoof is reduced significantly. Thus, CMVN can be considered
as a double-edged sword and hence needs to be applied
very carefully based on recording and transmission channel
conditions. This fact is also observed in original speaker
recognition literature [8,28].

The basis for the analyses presented in this paper are lin-
earity of the overall channel effect in a replay attack scenario.
However, the nonlinearities in sound wave propagation model
for the speakers, and the environmental background can be
analyzed in future study.
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