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Abstract—This paper proposes a framework for generating
adversarial utterances for speaker verification systems. Our
main idea is to formulate an optimization problem to generate
adversarial utterances that fool speaker verification models and
solve it by a second-order optimization method. We first present
our algorithm, which uses the first-order Gauss-Newton method,
and then extend it to second-order Quasi-Newton methods. Our
experiments on the VoxCeleb 1 dataset show that the proposed
method can fool a speaker verification system with a smaller
degree of perturbations than those of conventional methods. We
also show that second-order optimization methods are effective
for finding small perturbations.

I. INTRODUCTION

Speaker verification is a task to determine whether a test

utterance is from the same speaker as an enrollment utterance.

It has a wide range of applications in biometric authentication,

audio surveillance, and robotics. Recent research has proposed

highly precise verification methods based on statistical models,

such as Gaussian mixture models for i-vectors [1] and time-

delay neural networks for x-vectors [2]. Among these methods,

i-vectors are known to be computationally efficient and are

often used with lightweight devices, including smartphones

[3].

To improve the security of devices and data, verification

systems should be robust against perturbations on inputs.

However, previous studies have found that small perturbations,

so-called adversarial perturbations, can fool the systems. Ad-

versarial perturbations were first found on image recognition

systems in the field of computer vision. After that, finding the

minimum degree of adversarial perturbations for each system

has become an important research topic.

To minimize the degree of perturbations, most algorithms

use first-order gradient descent methods. Examples of these

algorithms include the fast gradient sign method (FGSM) [4],

the Carlini and Wagner (C&W) method [5], and DeepFool

[6]. They often generate very small adversarial perturbations.

It is also known that larger networks tend to have smaller

adversarial perturbations. This conversely means in general

that it is difficult to fool systems using simple statistical

models.

For speaker verification, Li et al. [7] found that even on

i-vector + probabilistic linear discriminant analysis systems,

adversarial perturbations exist. Although the reported degree

of perturbations is not very small, this shows that there is

a demand to explore adversarial perturbations on such simple

statistical models more in depth. This motivates us to propose a

new framework that aims to generate the minimum adversarial

perturbations that fool speaker verification systems.

In this paper, we present a framework to generate adversarial

perturbations on speaker verification systems. The proposed

framework formulates an optimization problem to generate

adversarial utterances and solves the problem by non-linear

optimization methods. Our experiments on the VoxCeleb 1

dataset show that the proposed method is able to fool a speaker

verification system with a smaller degree of perturbations

compared with the conventional method. We also show that

second-order optimization methods are effective for finding

small-degree perturbations.

Our contributions are summarized as the following three

points:

1) We propose a framework to generate adversarial ut-

terances on speaker verification systems and define an

optimization problem to obtain adversarial perturbations.

2) We propose two types of attacks, namely Gauss-Newton

and Quasi-Newton attacks. These attacks apply different

levels of approximation based on Taylor expansion to the

optimization problem.

3) We conduct comparable experiments on the VoxCeleb

1 dataset and show that our method fools speaker

verification models with a smaller degree of perturbation

compared with the state-of-the-art method in [7].

II. RELATED WORK

A. Adversarial Attacks

Adversarial attack is a method to generate samples intended

to be misclassified by existing neural models. The purpose of

adversarial attacks is to make a prediction fail by adding a

slight perturbation to the input. In the white-box condition, if

we know about the target model’s parameters, adversarial per-

turbation is generated by calculating the gradient to increase

classification losses.

For image recognition, Goodfellow et al. [4] proposed the

FGSM as an adversarial attack method. The FGSM generates

an adversarial perturbation in only one gradient calculation,

but Moosavi-Dezfooli et al. [6] showed that an iterative

method, named DeepFool, allows for smaller perturbations to

be misidentified. Carlini and Wagner [5] presented another

attack that introduces a unique loss function and can defeat

models defended using distillation [8]. Pin-Yu et al. [9] pro-

posed elastic-net attacks, which generate less-discriminating

samples by elastic-net regularization. Yao et al. [10] proposed

an efficient attack method that considers the trust region.
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Adversarial attacks that target speech have been studied

for speech recognition. Carlini and Wagner [11] attacked the

speech-to-text model called DeepSpeech [12]. Qin et al. [13]

extended the method of Carlini and Wagner for the real world

with reverberation.

For speaker verification, Kreuk et al. [14] attacked a text-

dependent model [15] constructed by long short-term memory

[16] and cosine similarity using the FGSM. Li et al. [7] proved

that the FGSM could fool typical models, such as Gaussian

mixture model (GMM) i-vectors [1] and x-vectors [2], but

further experiments using other methods have not been done.

In these former approaches, researchers assumed that the

entire model is locally linear, but it actually has a more

complex shape. We focused on modeling more accurately with

approximations to achieve realistic computation times.

B. Speaker Verification

Speaker verification, which is also called automatic speaker

verification, aims to verify whether test and enrollment ut-

terances are from the same speaker. We work under a text-

independent condition, without any assumptions about the

content of the speech. In general, a speaker verification system

consists of a feature extractor for obtaining speaker identity

features from an utterance and a similarity scoring function

for these features.

For text-independent speaker verification, research in recent

decades has proposed statistical methods using GMMs [17]

for feature extraction. Dehak et al. showed that the accuracy

can be improved by using i-vectors, which are vectors with

dimensions reduced from those of GMM supervectors [18].

For measuring the speaker identity of these features, distance

functions and probabilistic linear discriminant analysis [19]

are employed as a similarity scoring function.

Recently, researchers have proposed highly precise methods

based on deep neural networks, such as x-vectors. Convo-

lutional neural networks are valid not only for images [20]

but also for audio time-frequency features like spectrograms

[21]. These neural models are highly accurate, but they require

a lot of computational resources. Therefore, in recent years,

statistical models continue to be studied, as in [22], because

they are lightweight.

III. PROPOSED METHOD

This section presents the proposed adversarial attacks,

namely Quasi-Newton attacks, on speaker verification systems.

Our main idea is to formulate an optimization problem to

generate adversarial utterances, and solve it by introducing

Quasi-Newton methods. In this section, we first describe the

notation and settings, and then present the proposed method.

A. Notations and Settings

Let (xe,xt) be a paired enrollment utterance and test ut-

terance to be verified. We assume that the speaker verification

system determines whether these two utterances are from the

Algorithm 1

Input: verification system f(xe, ·), test utterance xt, label y

Output: adversarial example x̃t

x← xt

while f(xe,x)y > 0 do

x← x− J(x)∇g(xe,x)
end while

Return x̃t = x

same speaker by the sign of a discriminative function f given

by

f(xe,xt) = S(E(xe), E(xt))− θ, (1)

where E(x) ∈ R
d is the embedding of an utterance x, S is a

similarity metric between embeddings, and θ is a threshold.

The proposed adversarial attacks aim to fool the speaker

verification system by adding a slight perturbation δ to the

test utterance as

x̃t = xt + δ. (2)

Note that this setting mimics a realistic attack as described in

[7], where the enrollment utterance is first given to the system,

and then an attacker tries to fool the system by feeding it an

adversarial utterance.

Among the perturbations, our main interest is in finding the

minimum perturbation δ
∗ that fools the system. Specifically,

δ
∗ is defined by

δ
∗ = argmin

δ

‖δ‖2 subject to sign(f(xe, x̃t)) 6= y, (3)

where y ∈ {+1 (target),−1 (non-target)} is the ground truth

label, that is, y takes the value of +1 if and only if the two

utterances xe and xt are from the same speaker. Note that

the constraint sign(f(xe, x̃t)) 6= y means the decision by the

system is wrong. Our objective is to solve the problem of

Equation (3).

B. Proposed Adversarial Attacks

B-1. Algorithm Overview

In speaker verification systems, directly solving Equa-

tion (3) is difficult because function f is often assumed to

be non-linear. Thus, we introduce an alternative problem to

be solved:

x̃t = argmin
x

g(xe,x), (4)

where g(xe,x) = |f(xe,x)y+ǫ| and ǫ ≃ 0 (ǫ > 0) is a small

positive constant to overturn the decision. Note that, because

the constraint in Equation (3) is equivalent to f(xe, x̃t)y < 0,

minimizing |f(xe, x̃t)y+ ǫ| with respect to x̃t approximately

solves the original problem.

Algorithm 1 summarizes the overall procedure to obtain an

adversarial utterance based on Equation (4). In this algorithm,

the variable x is initialized by xt and is updated as

x← x− J(x)∇g(xe,x) (5)
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at each iteration with the coefficient J(x), where ∇ is applied

only to the augmented second of g.

In the following, we present the Gauss-Newton adversarial

attack based on the first-order optimization, and extend it to

Quasi-Newton adversarial attacks based on the second-order

optimization. The difference between them is in the approx-

imation order of the Taylor expansion applied to g(xe,x) to

define J(x).

B-2. Gauss-Newton Adversarial Attack

The Gauss-Newton adversarial attack applies the first-order

Taylor expansion to g for test utterance xt as follows:

g(xe,x) ≃ g(xe,xt) +∇g(xe,xt)(x− xt). (6)

With this approximation, Equation (4) has an analytical solu-

tion:

x = xt −
g(xe,xt)

‖∇g(xe,xt)‖22
∇g(xe,xt). (7)

From this solution, we define the coefficient J(x) in Algo-

rithm 1 as

J(x) =
g(xe,x)

‖∇g(xe,x)‖22
. (8)

Note that this update rule can be viewed as a simplified

Gauss-Newton method and also can be viewed as an extension

of the DeepFool image-generation algorithm [6] for speaker

verification.

B-3. Quasi-Newton Adversarial Attacks

To improve the accuracy of approximation, a straightfor-

ward method is to apply the second-order Taylor expansion:

g(xe,x) ≃ g(xe,xt) +∇g(xe,xt)(x− xt)

+
1

2
(x− xt)

TH(xt)g(xe,xt)(x− xt) (9)

where H(xt) is a Hessian matrix at xt. With this approxima-

tion, we have the following solution:

x = xt −H(xt)
−1∇g(xe,xt). (10)

This shows that the coefficient J(x) at each iteration should be

defined by J(x) = H(x)−1. However, exact computation of

the inverse of the Hessian matrix is time consuming in practice

because speaker verification models often have a large number

of parameters.

To efficiently and stably compute H(x)−1, we intro-

duced modified Quasi-Newton methods. Specifically, we use

the Davidon-Fletcher-Powell (DFP) and the Limited-memory

Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) methods with

two modifications: 1) introducing stabilization parameter λ and

2) employing a small step size to prevent large perturbations.

These modifications are effective for adversarial utterance gen-

eration because the gradient ∇g(xe,x) at each iteration often

needs to be sparse and small to find small perturbations. The

definition of g is also modified as g(xe,x) = |f(xe,x)y+ǫ|2

to accelerate convergence speed.

Algorithm 2

Input: verification system f(xe, ·), test utterance xt, label y

Output: adversarial example x̃t

x← xt

A← A0

while f(xe,x)y > 0 do

x← x− αA∇g(xe,x)
A← Ψ(A)

end while

Return x̃t = x

Algorithm 2 summarizes the overall procedure to obtain an

adversarial utterance with the modified Quasi-Newton meth-

ods. Note that the variable A is used to retain an approximation

of H(x)−1. It is first initialized by an identity matrix, A0 = I ,

and is updated at each iteration by Ψ(A). The update function

Ψ is defined by either of the following formulas.

DFP formula: The update rule of the DFP formula [23] was

proposed in 1959 as a Quasi-Newton method. It is given by

Φ(A,x,x′) =A+
uuT

vTu+ λ
−

AvvTA

vTAv + λ
, (11)

where u = x′ − x and v = ∇f(xe,x
′) − ∇f(xe,x). Note

that λ > 0 is introduced to stabilize computation, because

the absolute value of the denominator in each term of this

rule tends to be small in the optimization steps to find small

adversarial perturbations.

L-BFGS formula: The update rule of the BFGS formula

[24] was proposed in 1970. In practice, BFGS often converges

faster than DFP. It is given by

Φ(A,x,x′) =

(

I −
uvT

uTv + λ

)

A

(

I −
vuT

uTv + λ

)

+
uuT

uTv + λ
, (12)

where the definitions of u and v are the same as those in the

DFP formula. To further improve computational efficiency, we

applied L-BFGS, as proposed in [25].

In the standard Quasi-Newton methods, the step size α is

determined by applying a line search. However, this often

chooses a large α and makes perturbations large. Thus, in

our algorithm, the step size is determined in the same way as

in the Gauss-Newton attack as follows:

α =
g(xe,x)

∇g(xe,x)T (A+ λ′I)∇g(xe,x)
. (13)

Compared to Equation 8, the approximated Hessian inverse

matrix A with a stabilizing parameter λ′ is introduced.

IV. EXPERIMENTS

A. Evaluation Settings

We use the VoxCeleb 1 dataset [26] for evaluation, which

consists of 148,642 utterances for training and 37,720 trials

(enrollment-test utterance pairs) for testing. To fairly compare

our method with a state-of-the-art method, we use exactly the
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TABLE I
EER (%) OF THE SYSTEM WITH DIFFERENT PERTURBATION DEGREES ε.

Method ε = 0 0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1.0
MFCC-ivec Attack [7] 7.30 7.45 7.59 8.02 8.88 10.68 17.85 33.25 62.75 95.20 97.62

Gauss-Newton Attack 7.30 23.20 43.32 82.39 98.83 99.97 100.00 100.00 100.00 100.00 100.00

Quasi-Newton Attack (DFP) 7.30 24.19 46.12 87.08 99.63 100.00 100.00 100.00 100.00 100.00 100.00

Quasi-Newton Attack (L-BFGS) 7.30 24.24 46.16 87.13 99.63 100.00 100.00 100.00 100.00 100.00 100.00

TABLE II
AVERAGE PERTURBATIONS AND WORST-CASE PERTURBATIONS (%) ON

MFCC FEATURES. LOWER VALUES SHOW BETTER PERFORMANCE.

Method
Average Worst

ρ̄1 ρ̄2 ¯̄ρ1 ¯̄ρ2
MFCC-ivec Attack [7] 9.91 6.94 15.24 10.59

Gauss-Newton Attack 0.27 0.49 2.58 4.80

Quasi-Newton Attack (DFP) 0.24 0.43 1.83 3.18

Quasi-Newton Attack (L-BFGS) 0.24 0.43 1.85 3.18

same features and models as in [7] (2048-dim i-vectors). The

stabilizing parameters are set to λ = 1.0 in all experiments.

We use two evaluation measures: (1) Equal error rate

(EER) at a fixed perturbation degree [7] and (2) the relative

perturbation degree at EER = 1.0 [10]. The first evaluation

measure fixes the element-wise average of the perturbation

degree to ε and reports the EER. The second evaluation

measure reports the relative degree of perturbation required

to completely fool the system on all test pairs. Specifically, it

computes the relative perturbation defined by

ρp =
‖δ‖p
‖xt‖p

(14)

on each test utterance xt. The average value over the test set,

ρ̄p = Avg(ρp), and the worst-case value over the test set,
¯̄ρp = max(ρp) for p = 1 and p = 2, are reported. Note that

perturbation degree is measured on the mel-frequency cepstral

coefficient (MFCC) features to directly compare results with

[7].

B. Experimental Results

Table I reports the EER at fixed perturbation degree ε.

We see that our proposed methods significantly decrease the

degree of perturbation required to fool the verification system

in comparison with [7]. For example, to exceed EER = 0.50

(the random-output level), Quasi-Newton attacks require only

ε = 0.005. This shows the effectiveness of the proposed

algorithms for generating adversarial examples.

Table II shows the results with the second evaluation mea-

sure, the relative perturbation degree to completely fool the

verification system. We see that the Quasi-Newton attack with

L-BFGS performs the best in terms of both L1 and L2 norms.

If we compare Gauss-Newton and Quasi-Newton attacks, the

latter performs better than the former. This shows that the

second-order optimization helps to find smaller perturbations.

We also observe that the Quasi-Newton attack with DFP has

performance comparable to that with L-BFGS. Exploring more

appropriate update rules for finding adversarial utterances than

Fig. 1. Visualization of adversarial utterances. (a) Input MFCCs of three
testing utterances. (b) Adversarial utterances and perturbations generated by
[7]. (c) Adversarial utterances and perturbations generated by the proposed
method (Quasi-Newton attack).

these formulas would be interesting as a next step in future

work.

To visualize how the obtained perturbation is small, Figure 1

displays some examples of generated adversarial utterances

and perturbations. In the figure, it is difficult to visually

distinguish the difference between original utterances and

generated adversarial utterances. This confirms that the ab-

solute degree of the perturbation is small. The perturbation

visualization shows that the perturbations obtained by our

method are mainly distributed in the last five dimensions of the

MFCC. Considering the fact that the first 12 or 13 MFCCs are

often informative for recognizing characteristics of speech, this

result shows that the speaker verification system is somewhat

unstable in less informative dimensions. Exploring dimension-

wise attack/defense methods on speaker verification systems

would be interesting as future work.

V. CONCLUSION

We proposed a framework for generating adversarial utter-

ances on speaker verification systems, which involves Gauss-

Newton, Quasi-Newton attacks. Our experiments on the Vox-

Celeb 1 dataset showed that the proposed method fools a

speaker verification system with a much smaller degree of

perturbation compared with the conventional method. In future

work, we will focus on defense methods against adversarial

utterances.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

530



ACKNOWLEDGMENT

This work was partially supported by the Japan Science

and Technology Agency, ACT-X Grant JPMJAX1905, and the

Japan Society for the Promotion of Science, KAKENHI Grant

19K22865.

REFERENCES

[1] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet. Front-end
factor analysis for speaker verification. IEEE Trans. Audio Speech Lang.

Process., 19(4):788–798, 2010.

[2] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudanpur. X-
vectors: Robust DNN embeddings for speaker recognition. In 2018 IEEE

International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 5329–5333. IEEE, 2018.

[3] V. M. Patel, R. Chellappa, D. Chandra, and B. Barbello. Continuous
user authentication on mobile devices: Recent progress and remaining
challenges. IEEE Signal Process. Mag., 33(4):49–61, 2016.

[4] I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing
adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[5] N. Carlini and D. Wagner. Towards evaluating the robustness of neural
networks. In 2017 IEEE Symposium on Security and Privacy (SP), pages
39–57. IEEE, 2017.

[6] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. Deepfool: A simple
and accurate method to fool deep neural networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 2574–2582, 2016.

[7] X. Li, J. Zhong, X. Wu, J. Yu, X. Liu, and H. Meng. Adversarial attacks
on gmm i-vector based speaker verification systems. In Proceedings

of the IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pages 6579–6583. IEEE, 2020.

[8] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami. Distillation as
a defense to adversarial perturbations against deep neural networks. In
2016 IEEE Symposium on Security and Privacy (SP), pages 582–597.
IEEE, 2016.

[9] P.-Y. Chen, Y. Sharma, H. Zhang, J. Yi, and C.-J. Hsieh. Ead: Elastic-
net attacks to deep neural networks via adversarial examples. In Thirty-

second AAAI Conference on Artificial Intelligence, 2018.

[10] Z. Yao, A. Gholami, P. Xu, K. Keutzer, and M. W. Mahoney. Trust region
based adversarial attack on neural networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages
11350–11359, 2019.

[11] N. Carlini and D. Wagner. Audio adversarial examples: Targeted attacks
on speech-to-text. In 2018 IEEE Security and Privacy Workshops (SPW),
pages 1–7. IEEE, 2018.

[12] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen,
R. Prenger, S. Satheesh, S. Sengupta, A. Coates, et al. Deep
speech: Scaling up end-to-end speech recognition. arXiv preprint

arXiv:1412.5567, 2014.

[13] Y. Qin, N. Carlini, G. Cottrell, I. Goodfellow, and C. Raffel. Imper-
ceptible, robust, and targeted adversarial examples for automatic speech
recognition. In International Conference on Machine Learning, pages
5231–5240, 2019.

[14] F. Kreuk, Y. Adi, M. Cisse, and J. Keshet. Fooling end-to-end speaker
verification with adversarial examples. In 2018 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
1962–1966. IEEE, 2018.

[15] G. Heigold, I. Moreno, S. Bengio, and N. Shazeer. End-to-end text-
dependent speaker verification. In 2016 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pages 5115–
5119. IEEE, 2016.

[16] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural

Comput., 9(8):1735–1780, 1997.

[17] D. Reynolds, T. Quatieri, and R. Dunn. Speaker verification using
adapted gaussian mixture models. Digit. Signal Process., 10(1-3):19–41,
2000.

[18] W. Campbell, D. Sturim, and D. Reynolds. Support vector machines
using gmm supervectors for speaker verification. IEEE Signal Process.

Lett., 13(5):308–311, 2006.

[19] S. Prince and J. Elder. Probabilistic linear discriminant analysis for
inferences about identity. In International Conference on Computer

Vision, pages 1–8. IEEE, 2007.

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in Neural

Information Processing Systems, pages 1097–1105, 2012.
[21] A. Nagrani, J. S. Chung, W. Xie, and A. Zisserman. Voxceleb: Large-

scale speaker verification in the wild. Comput. Speech Lang., 60:101027,
2020.

[22] L. Xu, K. A. Lee, H. Li, and Z. Yang. Generalizing i-vector estimation
for rapid speaker recognition. IEEE/ACM Trans. Audio, Speech, Lang.

Proc., 26(4):749–759, 2018.
[23] W. C. Davidon. Variable metric method for minimization. Technical

report, Argonne National Lab., Lemont, Ill., 1959.
[24] R. Fletcher. A new approach to variable metric algorithms. Comput. J.,

13(3):317–322, 1970.
[25] D. C. Liu and J. Nocedal. On the limited memory bfgs method for large

scale optimization. Math. Program., 45(1-3):503–528, 1989.
[26] A. Nagrani, J. S. Chung, and A. Zisserman. Voxceleb: A large-scale

speaker identification dataset. In Proceedings INTERSPEECH, 2017.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

531


