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Abstract—Deep neural networks (DNNs) have been applied
successfully to music information retrieval (MIR). In this paper,
we design a convolutional recurrent neural network (CRNN) for
automatic singing quality evaluation, and present a comparative
study over various acoustic features as network input. We opti-
mize the CRNN so that the machine-predicted scores are closer to
the human-annotated scores. Furthermore, we augment spectral
features with pitch histogram (a musically-motivated representa-
tion) as network input. The experiments show that our proposed
CRNN framework can learn the underlying discerning properties
of singing quality effectively. Moreover, explicit incorporation
of pitch histogram further improves system performance, and
reduces the system’s dependency on song content.

I. INTRODUCTION

Singing is a popular entertainment and a desirable skill to
develop. Traditional singing evaluation methods rely heavily
on professional music teachers or experts, which is often
inaccessible for ordinary people. Therefore, a system for
automatic and reliable evaluation of singing quality would be
useful for singing pedagogy, singing competitions, and karaoke
systems.

Many studies on automatic music performance assessment
utilize hand-crafted features to characterize different percep-
tual music parameters, such as intonation accuracy, rhythm
consistency, and appropriate vibrato. These parameters are
defined based on music knowledge and perceptual preferences,
which are important for reliably predicting the overall singing
quality [1]. Gupta et al. [2] proposed various perceptual
features that measured the similarity between a test singing
rendition and a reference singing rendition to help predict the
overall singing quality. Nakano et al. [3] used pitch interval
accuracy that measured the offset of the pitch values from
the musical semitone grid to assess singing quality without a
reference. Gupta et al. [4], [5] calculated statistical features
that characterized the pitch histogram’s shape to evaluate the
intonation accuracy of a music piece. For capturing informa-
tion about other perceptual parameters like rhythm and timbre,
Gupta et al. [5] additionally designed inter-singer relative
measures based on the concept of “veracity”, that is, the
singing vocals of good singers are similar while those of bad
singers are different.

As hand-crafted features are extracted under simplified as-
sumptions and rely on individual signal processing techniques,
evaluation systems may draw conclusions from incomplete
information. Deep neural network (DNN) is a feature learn-
ing approach for the effective characterization of meaningful

features in complex and non-linear tasks. Ref. [6] showed
that DNN-based methods can capture more relevant aspects
of music than hand-crafted features. Therefore, in this study,
we are motivated to use DNN models for feature learning and
then evaluating singing quality reliably.

Convolutional neural networks (CNNs) are based on con-
volving the input with learnable kernels and are efficient at
learning local features [7]. With their success in image classifi-
cation tasks, CNNs have now been applied to audio processing
tasks as well. For example, Hershey et al. [8] used AlexNet
and VGGs for audio classification. Takahashi and Mitsufuji
[9] used DenseNet for audio source separation. However,
CNNs lack the ability to learn temporal dependencies, which
is essential for modeling sequential data like audio, speech, or
music. Recurrent neural networks (RNNs) are another type of
neural networks that calculate the output of a time step from
both the input of this time step and the hidden state of the
previous step. This models the temporal dependency in the
input. Moreover, RNNs can process the output of a CNN to
form a convolutional recurrent neural network (CRNN). In this
case, the early convolutional layers capture local information,
and the recurrent layer summarises it along time. Some studies
used CRNN for music information retrieval (MIR) tasks such
as music transcription [10], music classification [11] and music
emotion recognition [12].

The success of deep learning methods relies on the design
of network architecture and feature representation. Zhang et al.
[13] created a CNN architecture named Bi-DenseNet process-
ing fft-spectrograms to discriminate the good singings from
the poor singings. Pati et al. [6] trained a fully convolutional
neural network on pitch contours and a CRNN model on Mel-
scaled spectrograms (Mel-spectrograms) to assess music per-
formances of pitched wind instruments. Wang and Tzanetakis
[14] utilized CNNs in a siamese architecture trained on both
Mel-spectrograms and constant-Q transformed spectrograms
(CQT) to investigate singing style.

In this study, we would like to apply deep neural networks
to singing quality evaluation. We adopt a CRNN architecture
to learn features from input and predict evaluation scores of
singers. To fine-tune the input representation, we compare the
system performance among three types of spectral features,
i.e. Mel-spectrogram, CQT and chromagram. In addition, we
propose incorporating pitch histogram, a musically-motivated
representation, as a conditioning vector, in the neural network.

This paper is structured as follows. In Section II, we
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introduce the audio data representations. Section III describe
the neural network architectures employed in this study. The
experimental setup and results are discussed in Section IV and
V. Section VI concludes the study.

II. AUDIO DATA REPRESENTATIONS

We study different methods of audio and music motivated
acoustic features. As we aim to develop a singing quality
evaluation system, we consider spectral features that char-
acterize singing quality, such as Mel-spectrogram, CQT, and
chromagram. In addition, we use a combination of spectral
features and pitch histogram as network input to capture both
spectral and prosodic patterns of singing.

A. Mel-spectrogram

Mel-spectrogram is a time-frequency representation that is
optimized for human auditory perception (Fig. 1(a)). It consists
of two concepts: the Mel-scale and the spectrogram. The
spectrogram is a bunch of fast Fourier transforms (FFTs)
stacked on top of each other. It varies with time at different
frequencies and therefore can visually represent the amplitude
of audio signals. The Mel-scale is the result of some nonlinear
transformations of the frequency scale, which is consistent
with known human perception [15].

Mel-spectrogram can preserve perceptually important infor-
mation and therefore has been popular in many audio process-
ing tasks, such as automatic tagging [16], onset detection [17],
and learning features of music recommendation [18].

B. Constant-Q Transform (CQT)

CQT provides a time-frequency representation with
logarithmic-scale center frequencies (Fig. 1(b)). It employs
constant-Q transform instead of FFT to transform audio signals
from time domain to frequency domain. Constant-Q transform
uses geometrically spaced frequency bins to ensure that the Q
factors (the ratio of the center frequencies to bandwidths) of all
bins are constant [19]. This makes CQT well suited for music
data, since the Q factor is approximately constant in most of
the audible frequency range of the human perception system,
and the fundamental frequencies of the tones in Western music
are geometrically spaced along the standard 12-tone scale [19].

CQT is essentially a wavelet transform, which means that
the frequency resolution is better at low frequencies and the
temporal resolution is better at high frequencies. Therefore,
it can capture essential audio information from both low and
high frequencies in sufficient resolution, and has been widely
used in music signal processing [20].

C. Chromagram

Chromagram (also called the pitch class profile) provides
a 2D representation of the energy distribution over a set
of pitch classes (often 12 pitches in Western music) (Fig.
1(c)) [21], [22]. Compared with Mel-spectrogram and CQT,
chromagram is rarely used as input of the neural network.
But it can efficiently capture the existence of each tone in a
short-time music segment, which is useful for the harmonic

Fig. 1. Three types of spectral features of the same singing rendition: (a)
Mel-spectrogram (x-axis is time in seconds, y-axis is frequency with Mel-
scale in Hz), (b) CQT (x-axis is time in seconds, y-axis is frequency with
logarithmic-scale center in Hz), (c) chromagram (x-axis is time in seconds,
y-axis is pitch class).

and melody characterization of music signals. Birajdar and
Patil [23] explored the features related to music tones from
the chromagram for the speech/music classifcation.

D. Pitch Histogram

The spectral features, namely Mel-spectrogram, CQT and
chromagram, as shown in Fig. 1, capture music-related in-
formation. Meanwhile, pitch histogram is also an effective
indicator of singing quality [5]. Pitch is an auditory sensation,
and pitch correctness is important for a good singer. The pitch
histogram is a global statistical representation of the pitch
content of a music composition, representing the distribution
of pitch values in a music piece [24]. A pitch histogram is
computed as the count of pitch values (in the units of cents)
folded over 12 semitones in an octave (one semitone represents
100 cents on equi-tempered octave). To compute the pitch
histogram from the input audio, we first extract the pitch
contour (in Hz), and convert it to an equi-tempered scale (in
the unit of cents) using the following equation:

fcent = 1200× log2
fHz

440
(1)

where fHz is the pitch value in Hz, 440 Hz (pitch-standard
musical note A4) is considered as the base frequency, fcent is
the resulting pitch value in cents.

Then, we subtract the median of obtained pitch values (in
the unit of cents) in a singing rendition to remove the key of
the song, and then transpose all pitch values to a single octave.
Next, the pitch histogram H is calculated by placing the pitch
values into their corresponding bins [25]:

Hk =

N∑
n=1

mk (2)

where Hk is the kth bin count, N is the number of pitch
values, mk = 1 if ck ≤ P (n) ≤ ck+1 and otherwise mk = 0,
where P (n) is the nth pitch value in an array of pitch values
and (ck, ck+1) are the bounds on kth bin.

Fig. 2 gives the pitch histogram of two different levels
of singers (both performing the same song). To obtain a
fine histogram representation, we divide each semitone into
10 bins. Therefore, for each pitch histogram, we have 12
semitones x 10 bins = 120 bins in total (each bin represents
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Fig. 2. Normalized pitch histogram of (a) a good singer and (b) a poor singer.
(1 bin = 10 cents).

10 cents). We also normalize the pitch histogram to scale the
range of its y-axis in [0, 1].

A song’s melody usually consists of a set of dominant
notes (or pitch values), which are hit frequently in the song
and sometimes last a long time. In the pitch histogram of
a good singer, there are several sharp and narrow peaks,
suggesting that these dominant notes are hit more frequently
and consistently than the rest of pitch values (Fig. 2(a)). In
other words, this singer sings in tune. On the other hand,
the poor singer has a dispersed distribution of pitch values,
reflecting that this singer cannot consistently hit the song’s
dominant notes (Fig. 2(b)).

As pitch histogram has strong relevance to “sing-in-tune”
quality, we propose incorporating pitch histogram to the neural
network. In this way, the network learns music-related infor-
mation, such as timbre and rhythm, from the spectral features,
and “sing-in-tune” quality from pitch histogram.

III. NEURAL NETWORK ARCHITECTURE

Convolutional recurrent neural network (CRNN) takes ad-
vantage of CNN for local feature extraction and RNN for
temporal summarization of the features extracted by CNN.
In this work, we train CRNN models on different kinds of
spectral features mentioned in Section II. In addition, we
incorporate the pitch histogram as a conditioning vector to
the neural network, which we call a hybrid CRNN.

A. CRNN with Spectral Features

The CRNN used in this paper is motivated by the structure
for assessing music performances of pitched wind instruments
[6]. The network consists of 3-layer CNNs, 1 recurrent layer
and 1 fully-connected dense layer, as shown in Fig. 3. Each
CNN sub-structure has 4 components: (i) a 2D convolutional
layer, (ii) a 2D batch normalization layer, (iii) an exponential
linear unit (ELU) activation function, and (iv) a 2D max-
pooling layer, as shown in Fig. 4. The 2D input representation
is fed into the first convolutional layer and abstracted to a
feature map. Batch normalization and max-pooling can control
overfitting during training. The last CNN is followed by a
RNN with gated recurrent units (GRUs). Compared with other
RNN units like long short-term memory (LSTM), GRUs are
simpler to implement and are equally well suited to capture
long-term dependencies [26], [27]. We remove the last ReLU
activation function behind the dense layer in [6], since the

Fig. 3. CRNN model with spectral features as input.

Fig. 4. CNN sub-structure.

range of our manual annotations is [-1, 1]. Then, the hidden
state of the last GRU is passed to a fully-connected linear
layer to directly obtain the predicted scores of singers.

The spectral features like Mel-spectrogram, CQT and chro-
magram are directly fed into the CRNN architecture. There-
fore, we build 3 CRNN models: (i) Mel-CRNN using Mel-
spectrogram as input, (ii) CQT-CRNN using CQT as input,
and (iii) Chro-CRNN using chromagram as input.

B. CRNN Conditioned on Pitch Histogram

The pitch histogram is a musically-motivated acoustic fea-
ture that encodes pitch accuracy information. However, it is
not straightforward to use the pitch histogram directly as
the input of the neural network because it takes a more
compressed form than spectral features. In addition, the input
of the network framework used in this paper should be a
2D representation, while the pitch histogram is a 1D audio
representation. Therefore, we condition the CRNN on pitch
histogram by concatenating the pitch histogram vector with the
output vector of its intermediate layer (the recurrent layer), as
shown in Fig. 5. We insert the pitch histogram here, because
the output here has dimensions comparable to the histogram.
Then, the concatenated feature vector is passed to the dense
layer to obtain the output of the model. Such a configuration,
which we call the hybrid CRNN, aggregates the features
learned by the original CRNN along with the pitch accuracy
related information captured by the pitch histogram, thereby
improving the discrimination ability of the network for singing
quality evaluation.

We construct 3 hybrid CRNN models: (i) MPH-CRNN
using Mel-spectrogram and pitch histogram as input, (ii) CPH-
CRNN using CQT and pitch histogram as input, and (iii)
ChPH-CRNN using chromagram and pitch histogram as input.
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Fig. 5. Hybrid CRNN model conditioned on pitch histogram.

IV. EXPERIMENTAL SETUP

We conduct experiments to evaluate the performance of
CRNN and hybrid CRNN for automatic singing quality eval-
uation. We also evaluate the effect of different input represen-
tations. We further compare the performance of the proposed
system with prior work about music assessment in literature.
Moreover, we design the “leave-one-song-out” experiment to
test the framework on unseen songs and visualize the features
learned by the neural network.

A. Dataset

1) Singing Voice Dataset: We use the dataset used by [5]
that consists of solo-singing recordings of 4 popular Western
songs (Let it go (Idina Menzel), Cups (Anna Kendrick), When
I was your man (Bruno Mars), Stay (Rihanna)) in Smule’s
DAMP dataset1. Each song is sung by 100 unique singers,
including 50 males and 50 females, which can avoid gender
bias. There were no common singers in different songs. For
data augmentation, we divide every singing rendition into 5
snippets, where each snippet is of 20-30 seconds in duration,
and full-length audio files are also used. Therefore, there are
2400 audio files in total.

The experiment consists of two phases: (i) training and
validation phase to train and determine the model; and (ii)
testing phase to evaluate the final model. Therefore, we divide
the dataset into training, validation, and test sets. For each
song, we select 80 singers for training, 10 singers for valida-
tion and 10 singers for testing. We first rank the 100 singers
according to their ground-truth scores, i.e. rank 1 represents
the best singer with the highest subjective score, and rank
100 represents the worst singer with the lowest subjective
score. Next, we pick the singers with ranks [1,11,· · · ,81,91] as
the test singers, the singers with ranks [2,12,· · · ,82,92] as the
validation singers, and the rest are used for training models.
Such a data configuration method ensures similar distribution
of singing quality in all of these subsets. Note that the test

1https://ccrma.stanford.edu/damp/

TABLE I
SUMMARY OF THE NUMBER OF AUDIO SAMPLES IN TRAINING,

VALIDATION AND TEST SETS

Dataset
division # Songs # Singers

per song # Snippets # Total samples

Training 4 80 6 4× 80× 6 = 1920
Validation 4 10 6 4× 10× 6 = 240

Test 4 10 6 4× 10× 6 = 240

singers are not in training or validation sets, but the songs in
the three sets are the same. The dataset division is summarized
in Table I. There are 4 songs in the audio dataset, and each
singer’s singing voice is represented by 6 audio files (5 audio
snippets plus the entire file), so there are a total of 1920 audio
files for training, 240 for validation, and 240 for testing.

2) Ground-Truth Scores: The ground-truth subjective rat-
ings (manual annotations) provided with the dataset in [5]
were Best-Worst Scaling (BWS) scores obtained from pairwise
BWS tests on Amazon mechanical turk (MTurk, one crowd-
sourcing platform), by asking listeners to choose the better
singer between a pair of singers singing the same song. The
BWS score is defined as follows:

B =
nbest − nworst

n
(3)

where nbest and nworst are the number of times a singer is
marked as preferable and otherwise, and n is the total number
of times the singer appears in the pairwise BWS tests.

The BWS score is reliable since people are better at relative
judgments, i.e. choosing the preferable singer between a small
set of singers, rather than giving an absolute rating [28], [29].
For further improving the reliability of the pairwise BWS test,
some rules were set to screen MTurk users. For example,
the accepted attempts required users to have some formal
training in music and be able to write the musical notations
successfully, and the less serious attempts (users did not finish
listening to snippets) would be removed through monitoring
the time spent by MTurk users in performing the test.

B. Input Representation Computation

The spectral features (Mel-spectrogram, CQT and chro-
magram) are calculated with Librosa. For Mel-spectrogram,
the window length and hop size are set to 2048 and 1024
respectively, and the number of Mel bins is fixed to 96. For
CQT, the hop size is set to 512. There are 96 bins per CQT and
24 bins per octave to capture sharp/flat pitches. The calculated
Mel-spectrogram and CQT are both squared and then scaled
into decibels (dB). For chromagram, the hop size is 512 and
the number of chroma bins is 96.

For computing the pitch histogram, we extract the pitch
using the autocorrelation-based pitch estimator PRAAT [30],
[31] with a hop size of 10 ms, and calculate the pitch histogram
as described in Section II-D. We have 120 bins in total (12
semitones x 10 bins = 120 bins) for each pitch histogram, and
we use the min-max normalization method to scale the range
of the pitch histogram (values on the y-axis) in [0, 1].
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C. Training of Networks

1) Network Configuration: The hybrid CRNN (Fig. 5) is
a modified version of the CRNN (Fig. 3). These two neural
network frameworks have the same hyperparameters of the 3-
layer CNNs and the RNN layer. The number of feature maps
increases from 32 in the first CNN to 128 in the third CNN.
The hidden size of the GRU is 200. For the dense layer of
the basic CRNN model (Fig. 3), the input size is 200 and the
output size is 1. For the hybrid CRNN model (Fig. 5), the input
size of its dense layer is changed to 320, since we concatenate
the 200-dimensional output vector of the RNN layer with the
normalized 120-dimensional pitch histogram vector before the
dense layer.

2) Training: The neural network framework for the training
process is developed using PyTorch. We use the adaptive
moment estimation (Adam) optimization algorithm with a
learning rate of 0.0001 to update the parameters and the mean
square error (MSE) as the loss function. The batch-mode is
used to train the model, which means dividing the dataset
into small batches and updating the model parameters based
on the MSE calculated in each batch. All spectral features
in a mini-batch are matched to the same sequence length
(the longest length in that mini-batch) by zero paddings. The
batch size is 10 for the model using Mel-spectrogram as input
and 5 for the model using CQT/chromagram as input. The
maximum number of epochs is set to 250 for the model using
Mel-spectrogram/CQT as input and 100 for the model using
chromagram as input. We select the trained model from the
epoch that shows the best performance on the validation set.

D. Evaluation Metrics

We utilize two types of statistical metrics (calculated using
Scipy) to evaluate the performance of the framework: (i) Pear-
son correlation coefficient: Measure the correlation between
the scores predicted by the machine and the BWS scores
annotated by humans. (ii) Spearman’s rank correlation
coefficient: Measure the correlation between the rank-order
obtained from the machine-generated scores and the rank-
order obtained from the manually-annotated BWS scores.

V. EXPERIMENTS AND RESULTS

A. Performance of CRNN with Various Spectral Features

The manual annotations (human-annotated BWS scores) are
reliable and can be considered as “development” data. By
comparing the correlation between the output results generated
by the CRNN model (Fig. 3) and the manual annotations, we
can fine-tune (or select) the better input representation for the
CRNN to learn. In this experiment, we use 3 types of spectral
features as input to train the CRNN model, and then obtain
3 CRNN models: Mel-CRNN, CQT-CRNN and Chro-CRNN,
as described in Section III-A.

From Table II, we see that all 3 models can converge on
the training set with a high correlation. While on the test
set, we observe that the CQT-CRNN outperforms the other
2 CRNN models. This implies that CQT can capture the
underlying aspects of singing quality more effectively than

TABLE II
PERFORMANCE OF THE CRNN FRAMEWORK WITH DIFFERENT SPECTRAL

FEATURES AS INPUT IN TERMS OF PEARSON AND SPEARMAN
CORRELATION BETWEEN MACHINE-PREDICTED SCORES AND

HUMAN-ANNOTATED BWS SCORES (MEL-CRNN USES
MEL-SPECTROGRAM AS INPUT, CQT-CRNN USES CQT AS INPUT,

CHRO-CRNN USES CHROMAGRAM AS INPUT)

Model Pearson correlation Spearman correlation
Train set Vali. set Test set Train set Vali. set Test set

Mel-CRNN 0.99 0.68 0.56 0.99 0.67 0.56
CQT-CRNN 0.99 0.72 0.72 0.99 0.72 0.73
Chro-CRNN 0.98 0.73 0.70 0.98 0.73 0.70

TABLE III
PERFORMANCE OF HYBRID CRNN MODELS: (I) MPH-CRNN USING

MEL-SPECTROGRAM AND PITCH HISTOGRAM AS INPUT, (II) CPH-CRNN
USING CQT AND PITCH HISTOGRAM AS INPUT, AND (III) CHPH-CRNN

USING CHROMAGRAM AND PITCH HISTOGRAM AS INPUT

Model Pearson correlation Spearman correlation
Train set Vali. set Test set Train set Vali. set Test set

MPH-CRNN 0.99 0.64 0.63 0.99 0.65 0.61
CPH-CRNN 0.99 0.73 0.76 0.99 0.73 0.76
ChPH-CRNN 0.99 0.69 0.73 0.99 0.71 0.74

Mel-spectrogram and chromagram. Therefore, we select the
CQT spectrogram as the better input representation.

B. CRNN Vs. Hybrid CRNN

CRNN is designed to learn the discriminatory characteristics
of singing quality from the spectral features. The hybrid
CRNN is expected to outperform CRNN, because pitch his-
togram reflects “sing-in-tune” quality, as discussed in Section
II-D. In this experiment, we train 3 hybrid CRNN models:
MPH-CRNN, CPH-CRNN and ChPH-CRNN (as described in
Section III-B) to test our hypothesis that the hybrid CRNN
conditioned on the pitch histogram can improve the network
performance.

From Table III, we see that all 3 hybrid CRNN models con-
verge on the training set, and on the test set, the performance of
the model with CQT as input (CPH-CRNN) is still better than
the other 2 models. We compare the performance of the hybrid
CRNN and the CRNN on the test set. Then, as Table IV shows,
the hybrid CRNN outperforms the CRNN. This means that
explicitly encoding pitch accuracy related information via the
pitch histogram supports the network to learn other aspects of
singing quality from the spectral features, hence conditioning
the network on such acoustic feature (pitch histogram) can
boost the system performance.

TABLE IV
COMPARISON OF THE PERFORMANCE OF CRNN WITH THAT OF HYBRID

CRNN ON THE TEST SET

Model Pearson corr. Spearman corr.
CRNN Mel-CRNN 0.56 0.56

Hybrid CRNN MPH-CRNN 0.63 0.61
CRNN CQT-CRNN 0.72 0.73

Hybrid CRNN CPH-CRNN 0.76 0.76
CRNN Chro-CRNN 0.70 0.70

Hybrid CRNN ChPH-CRNN 0.73 0.74
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C. Performance of Model with Only Pitch Histogram

Hybrid CRNN combines spectral features and pitch his-
togram as input, improving the performance of singing quality
evaluation system. However, it is uncertain whether it is the
pitch histogram or the combination of spectral features and
pitch histogram that improves system performance. Therefore,
we conduct an experiment that uses only the pitch histogram
as input to train a model and evaluate the singing quality.
As described in Section III-B, the pitch histogram cannot
be as input of CRNN since it is a 1D audio representation.
Therefore, we pass the pitch histogram directly to the dense
layer. That is, we remove the CRNN part from the hybrid
CRNN model (Fig. 5), and modified the input size of the dense
layer from 320 to 120. The other configuration is the same as
the hybrid CRNN.

The Pearson correlation coefficient and Spearman’s rank
correlation coefficient of this model on the test set are
0.39 (Pearson) and 0.37 (Spearman). Therefore, we can
conclude that it is the combination of spectral features and
pitch histogram that improves system performance. The pitch
histogram helps capture information related to pitch accuracy,
while spectral features can learn other music-related informa-
tion, such as rhythm and timbre.

D. Comparison with Prior Studies

The previous studies of Gupta et al. [5] and Pati et al.
[6] are similar to ours. Gupta et al. explored various hand-
crafted features from the pitch histogram to generate a rank-
order of singers. Pati et al. trained a CRNN model that used
Mel-spectrogram as the input representation to assess music
performances of pitched wind instruments. In this experiment,
we compare the performance of our proposed hybrid CRNN
model CPH-CRNN (using CQT and pitch histogram as input)
with the absolute scoring system using hand-crafted features
(computed from pitch histogram) of [5]. Our framework is
similar to the absolute scoring system of [5] because both are
direct evaluations of singing quality. Additionally, we train the
CRNN model of [6] on our dataset. This model is also our
previously trained model Mel-CRNN (see Section V-A).

In Table V, we see that our proposed hybrid CRNN per-
forms better than the absolute scoring system of Gupta et al.
[5]. This implies that the neural network conditioned on the
pitch histogram can capture more discriminatory information
about singing quality than hand-crafted features. Moreover, the
hybrid CRNN outperforms the work of Pati et al. [6]. This
means that the neural network performs better by using the
combination of the CQT spectrogram and pitch histogram as
input rather than using only the spectrogram.

E. Cross-Validation

Since our test set is small (only 240 samples, see Table
I), we perform cross-validation to take advantage of all audio
samples. In this experiment, the cross-fold 1 is of the same
data configuration as described in Section IV-A1. The other
folds are set in a similar way, e.g. for cross-fold 2, the
singers with ranks [2,12,· · · ,82,92] are test singers, the singers

TABLE V
COMPARISON OF THE PERFORMANCE OF OUR PROPOSED HYBRID CRNN

WITH THAT FROM PREVIOUS WORK ON THE SAME DATASET

Framework Model description Spearman
corr.

Gupta et al.
[5]

The absolute scoring system
with hand-crafted features
computed from pitch histogram

0.48

Pati et al.
[6]

The CRNN model
using Mel-spectrogram as input,
i.e. model Mel-CRNN

0.56

This work
The hybrid CRNN model
using CQT and pitch histogram as input,
i.e. model CPH-CRNN

0.76

TABLE VI
PERFORMANCE OF THE HYBRID CRNN MODEL CPH-CRNN IN

CROSS-VALIDATION

Cross
fold 1 2 3 4 5 6 7 8 9 Average

Pearson
corr. 0.76 0.73 0.73 0.69 0.67 0.68 0.71 0.66 0.66 0.70

Spearman
corr. 0.76 0.72 0.73 0.66 0.67 0.68 0.71 0.65 0.64 0.69

with ranks [3,13,· · · ,83,93] are validation singers, the rest are
training singers. Note that for cross-fold 9, the test singers are
ranked in [9,19,· · · ,89,99], the validation singers are ranked
in [0,10,· · · ,90]. We conduct this experiment on the hybrid
model CPH-CRNN which has the highest correlation in this
work (0.76, see Table IV). We also compute the average result
of the 9 folds.

In Table VI, we observe that the results of all folds (in-
cluding the average result) have slight difference, and each
Spearman’s rank correlation is higher than that of the work
in [5] and [6], as given in Table V. Therefore, the correlation
coefficients of the hybrid CRNN model CPH-CRNN in Table
IV are reliable.

F. Evaluation on Unseen Songs

As mentioned in Section IV-A1, the songs in 3 sets (training,
validation and test sets) are the same. To test whether the
proposed model is song-independent, we need to test the
performance of the trained model on unseen songs, i.e. the
songs in the test set are not in the training and validation sets.
Therefore, we conduct the “leave-one-song-out” experiment,
i.e. leave one of the 4 songs to test the trained model, and
the remaining 3 songs are used to train and tune the neural
network. We perform this experiment on both the CRNN
model (CQT-CRNN) and the hybrid CRNN model (CPH-
CRNN). Since there are 4 songs in the dataset, we need to
perform this experiment 4 times and then compute the average
result.

From Table VII, we see that hybrid CRNN outperforms
CRNN. This implies that the pitch histogram is a powerful
acoustic feature of singing quality which reduces the depen-
dence of the network on the song content.
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TABLE VII
EVALUATION OF THE CRNN AND THE HYBRID CRNN MODEL ON

UNSEEN SONGS

Framework Average
Pearson corr.

Average
Spearman corr.

CRNN
(CQT-CRNN) 0.48 0.48

Hybrid CRNN
(CPH-CRNN) 0.56 0.56

Fig. 6. Feature visualization of the hybrid model CPH-CRNN (using CQT and
pitch histogram as input) on (a) the training set and (b) the test set. Purple
points represent good singers, and yellow points represent poor singers.

G. Feature Visualization

The neural network proposed in this study learn features
that can distinguish singing quality. For CRNN, the feature
vector is of 200 dimensions, and for hybrid CRNN, it is
320-dimensional, as mentioned in Section IV-C1. To visualize
how learned features capture the singing characteristics of
individual singers, we first extract these features before the
final dense layer, and then project them onto a 2D space using
t-SNE [32]. The t-SNE plots often show clustering (which
means that the samples belonging to the same category will
cluster together), so we need to label each sample based on
their ground-truth BWS scores (range in [-1, 1]), i.e. singers
with BWS scores higher than 0.25 are good singers, and the
rest are poor singers. The visualization is shown in Fig. 6 and
Fig. 7.

In Fig. 6, we extract the features learned by CPH-CRNN
(the hybrid CRNN using CQT and pitch histogram as input)
from the training set and test set. The purple points represent
good singers, and the yellow points represent poor singers. We
see that the feature vectors from the training set and test set
can cluster singers of the same label together. The size of the
training set is larger than the test set, and the correlation of
the training set is higher than the test set, so the clustering
effect is more obvious on the training set.

In Fig. 7, we visualize the learned features extracted from
the CRNN model (CQT-CRNN) and the hybrid CRNN model
(CPH-CNN) on the test set. We observe that both CRNN and
hybrid CRNN have the ability to cluster singers belonging
to the same category together. This further proves that the
features learned by our proposed neural network frameworks
can well capture discriminatory information about singing
quality.

Fig. 7. Feature visualization of (a) CRNN model and (b) hybrid CRNN model
on the test set.

TABLE VIII
COMPARISON OF THE PERFORMANCE OF MODEL USING THREE SPECTRAL

FEATURES WITH MODEL USING ONE SPECTRAL FEATURE

Model Pearson corr. Spearman corr.

CRNN CQT-CRNN 0.72 0.73
Model fusion 0.76 0.76

Hybrid CRNN CPH-CRNN 0.76 0.76
Model fusion 0.78 0.78

H. Model Fusion

This paper explored three types of spectral features:
Mel-spectrogram, CQT and chromagram. Both the Mel-
spectrogram and CQT are time-frequency representations of
audio, which can preserve perceptual information. The chro-
magram can be regarded as a CQT folding in the frequency
axis [33]. Since various spectral features cause different eval-
uation results, we conduct an experiment to combine models
with the three spectral features. For CRNN, we have three
models: Mel-CRNN, CQT-CRNN and Chro-CRNN. Each
model generates a score for every singer. We calculate the
average of the scores obtained from the three CRNN models
as the result of model fusion. For Hybrid CRNN, we also have
three models: MPH-CRNN, CPH-CRNN and ChPH-CRNN,
and compute the average score from the three hybrid CRNN
models.

From Table VIII, we see that model fusion improves the
evaluation results for both CRNN and Hybrid CRNN with
only one spectral feature (CQT). Therefore, model fusion can
aggregate information captured by different types of spectral
features.

VI. CONCLUSIONS

In this work, we build a CRNN framework for automatic
singing quality evaluation. We compare the correlation be-
tween machine-predicted scores and manual annotations when
using Mel-spectrogram, CQT and chromagram as network
input respectively, to fine-tune the spectral features. The exper-
imental results show that CRNN can learn more discriminatory
information about singing quality from CQT compared to
Mel-spectrogram and chromagram. We also incorporate the
musically relevant pitch histogram representation in the CRNN
to build a hybrid CRNN framework, which shows to improve
the performance and song-independence of the neural network.
In future work, other types of audio data representations can
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be explored, since different acoustic features capture different
information from the raw audio.
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[17] J. Schlüter and S. Böck, “Improved musical onset detection with
convolutional neural networks,” in 2014 ieee international conference
on acoustics, speech and signal processing (icassp). IEEE, 2014, pp.
6979–6983.

[18] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in Proceedings of the fourteenth international conference on
artificial intelligence and statistics, 2011, pp. 315–323.

[19] C. Schörkhuber and A. Klapuri, “Constant-q transform toolbox for music
processing,” in 7th Sound and Music Computing Conference, Barcelona,
Spain, 2010, pp. 3–64.

[20] M. Todisco, H. Delgado, and N. W. Evans, “A new feature for automatic
speaker verification anti-spoofing: Constant q cepstral coefficients.” in
Odyssey, vol. 2016, 2016, pp. 283–290.

[21] T. Fujishima, “Real-time chord recognition of musical sound: A system
using common lisp music,” Proc. ICMC, Oct. 1999, pp. 464–467, 1999.

[22] G. H. Wakefield, “Mathematical representation of joint time-chroma
distributions,” in Advanced Signal Processing Algorithms, Architectures,
and Implementations IX, vol. 3807. International Society for Optics
and Photonics, 1999, pp. 637–645.

[23] G. K. Birajdar and M. D. Patil, “Speech/music classification using visual
and spectral chromagram features,” Journal of Ambient Intelligence and
Humanized Computing, vol. 11, no. 1, pp. 329–347, 2020.

[24] G. Tzanetakis, A. Ermolinskyi, and P. Cook, “Pitch histograms in
audio and symbolic music information retrieval,” Journal of New Music
Research, vol. 32, no. 2, pp. 143–152, 2003.
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Society for Music Information Retrieval (ISMIR), 2012.

[26] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.

[27] R. Jozefowicz, W. Zaremba, and I. Sutskever, “An empirical exploration
of recurrent network architectures,” in International conference on
machine learning, 2015, pp. 2342–2350.

[28] J. J. Louviere, T. N. Flynn, and A. A. J. Marley, Best-worst scaling:
Theory, methods and applications. Cambridge University Press, 2015.

[29] A. Marley, T. N. Flynn, and V. Australia, “Best worst scaling: theory
and practice,” International encyclopedia of the social & behavioral
sciences, vol. 2, no. 2, pp. 548–552, 2015.

[30] P. Boersma, “Praat, a system for doing phonetics by computer,” Glot.
Int., vol. 5, no. 9, pp. 341–345, 2001.

[31] L. Rabiner, “On the use of autocorrelation analysis for pitch detection,”
IEEE transactions on acoustics, speech, and signal processing, vol. 25,
no. 1, pp. 24–33, 1977.

[32] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of machine learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[33] K. Choi, G. Fazekas, K. Cho, and M. Sandler, “A tutorial on deep learn-
ing for music information retrieval,” arXiv preprint arXiv:1709.04396,
2017.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

499


