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Abstract— The calculation of most objective speech intelligibil-
ity assessment metrics requires clean speech as a reference. Such 
a requirement may limit the applicability of these metrics in real-
world scenarios. To overcome this limitation, we propose a deep 
learning-based non-intrusive speech intelligibility assessment 
model, namely STOI-Net. The input and output of STOI-Net are 
speech spectral features and predicted STOI scores, respectively. 
The model is formed by the combination of a convolutional neural 
network and bidirectional long short-term memory (CNN-
BLSTM) architecture with a multiplicative attention mechanism. 
Experimental results show that the STOI score estimated by 
STOI-Net has a good correlation with the actual STOI score when 
tested with noisy and enhanced speech utterances. The correlation 
values are 0.97 and 0.83, respectively, for the seen test condition 
(the test speakers and noise types are involved in the training set) 
and the unseen test condition (the test speakers and noise types 
are not involved in the training set). The results confirm the capa-
bility of STOI-Net to accurately predict the STOI scores without 
referring to clean speech. 

I. INTRODUCTION 

For many speech-related applications, such as assistive oral 
communication devices [1-5] and telecommunications [6-8], 
and speech-related tasks, such as speech coding [9, 10], voice 
conversion [11, 12], speech separation [13, 14], and speech en-
hancement [15-18], speech intelligibility plays a crucial role in 
determining the performance of processed speech signals. An 
intuitive method to measure speech intelligibility is to conduct 
a human listening test. By playing test samples to subjects, the 
intelligibility scores can be calculated by the ratio of the num-
ber of accurately recognized words to the total number of 
words in the played speech samples. To make an accurate and 
unbiased evaluation of speech intelligibility, it is necessary to 
recruit as many subjects as possible, and each subject must lis-
ten to a large number of test utterances covering diverse condi-
tions. In general, this may be prohibitive and may not be feasi-
ble. Therefore, several approaches have been proposed to esti-
mate speech intelligibility as surrogates for the human listening 
test [19-23].  

The articulation index (AI) [19] and speech intelligibility in-
dex (SII) [20] are two well-known objective speech intelligi-
bility predictors; both metrics have been widely used to meas-
ure speech intelligibility in various speech-related applications. 

Based on the design of SII, extended SII (ESII) [24] and coher-
ence SII (CSII) [25] were derived to attain better intelligibility 
measurements. The speech transmission index (STI) [21, 22] 
extends the range of distortion to convolutive noise (e.g., rever-
berant speech and effects of room acoustics) by considering the 
depth of temporal signal modulation compared to the clean, un-
distorted reference signal. Recently, short-time objective intel-
ligibility (STOI) [23] has been proposed. Its calculation con-
sists of five major steps: (1) silent frame removal, (2) short-
time Fourier transform (STFT), (3) one-third octave band anal-
ysis, (4) normalization and clipping, and (5) intelligibility 
measurement. In terms of predictive ability, STOI has shown a 
notable improvement in intelligibility scoring in several do-
mains [26-28] over the previous methods, and has therefore 
been widely used as a standardized evaluation metric for many 
speech-related tasks. A notable limitation of STOI, however, is 
the requirement for clean speech as a reference, which may not 
always be accessible, especially during online operations. Sev-
eral extensions to address this issue have been developed, such 
as non-intrusive STOI [29]. 

Although the traditional signal processing-based intelligibil-
ity assessment metrics have shown satisfactory measurement 
results and have been widely adopted as assessment tools for 
various speech-related tasks, their applicability is still limited 
because of the following two factors. (1) The generalization of 
these metrics to new conditions still has room for improvement. 
Particularly, the assessment performance may degrade while 
operating under new and unseen conditions. Even if some train-
ing data for the new conditions are available, the assessment 
metrics cannot be adapted to the new data. (2) The compatibil-
ity of these metrics to speech processing systems, which are 
usually built based on deep neural networks in recent years, is 
restricted. More specifically, these traditional metrics cannot 
be readily integrated with speech-related systems (such as 
noise reduction and speech separation) to jointly optimize the 
overall performance. Due to the above limitations, it is crucial 
to determine an effective intelligibility assessment metric that 
can be continuously learned to adapt to new test conditions and 
can be easily combined with (learning-based) speech pro-
cessing systems.  

 In our previous work [30], we had developed a neural net-
work-based non-intrusive quality assessment model, namely 
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Quality-Net, to estimate the perceptual evaluation of speech 
quality (PESQ) score [31]. Quality-Net has shown remarkable 
performance in evaluating noisy and processed speech without 
the need for clean speech as a reference. As Quality-Net is 
based on deep neural network architecture, its prediction ability 
for new environments can be improved by adapting to the cor-
responding new data. Moreover, several studies have combined 
Quality-Net with speech-related systems to jointly optimize the 
overall performance [32, 33]. Along with this research direc-
tion, this study investigates and develops STOI-Net, a deep 
neural network model that can accurately predict STOI scores 
without the need for clean speech as a reference.  

The proposed STOI-Net is formed by the combination of a 
convolutional neural network and bidirectional long short-term 
memory (CNN-BLSTM) architecture with a multiplicative at-
tention mechanism. The CNN is used to extract informative 
features from the input data, and the BLSTM is used to model 
time-variant characteristics. The attention mechanism aims to 
boost the performance by focusing on important regions while 
calculating intelligibility scores. Experimental results reveal 
that the predicted scores yielded by STOI-Net have rather high 
correlation with the ground-truth STOI scores when tested in 
both seen (the test speakers and noise types are involved in the 
training) and unseen (the test speakers and noise types are not 
involved in the training) conditions. It may be noted that the 
STOI calculation requires clean speech as a reference, whereas 
STOI-Net does not. The results confirm the decent ability of 
STOI-Net to accurately predict STOI scores (evaluation of 
speech intelligibility) without the need for clean speech as a 
reference.  

 The remainder of this paper is organized as follows. Section 
II introduces the proposed STOI-Net. Section III describes the 
experimental setup and results. Finally, conclusions and future 
work are presented in Section IV. 

II. STOI-NET 

In this section, we introduce the model architecture and 
training objective of the proposed STOI-Net. 

A. Architecture 
Fig. 1 shows the overall architecture of STOI-Net, which 

consists of several stages. The input to STOI-Net is a sequence 
of spectral features of noisy/processed speech, and the output 
is the predicted STOI score. In STOI-Net, the CNN module has 
12 convolutional layers, which are used to obtain informative 
features from the spectral features. Next, the BLSTM module 
is used to further model the temporal characteristics of the ex-
tracted features from the CNN. The attention mechanism is 
used to identify and weight the important regions in the input 
features. In our implementation, multiplicative attention is used 
to form the attention layer because of its high efficiency and 
satisfactory performance [34]. Next, a fully connected layer is 
used to map the frame-wise features into frame-wise scores. 
Finally, based on these estimated frame-level scores, a global 
average operation is applied to calculate the final predicted 
STOI score.  

 

 
B. Objective Function 

STOI-Net aims to estimate an utterance-level intelligibility 
score. However, because a speech utterance may contain non-
stationary noises or distortions in different regions (segments 
of frames), directly assigning an utterance-level score to train 
STOI-Net may not be a suitable approach. Therefore, we pre-
pare the frame-level scores to train STOI-Net. With the frame-
level scores, the objective function can be derived as follows. 
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(1) 

 

where 𝐼𝐼𝑛𝑛 and 𝐼𝐼𝑛𝑛 are the true and predicted utterance-level STOI 
scores, respectively; 𝑁𝑁 denotes the total number of training ut-
terances; 𝐿𝐿(𝑢𝑢𝑛𝑛) denotes the number of frames in the n-th utter-
ance; 𝚤𝚤̂𝑛𝑛,𝑡𝑡  is the predicted frame-level STOI score of the 𝑡𝑡-th 
frame of the 𝑛𝑛-th utterance; and 𝛼𝛼(𝐼𝐼𝑛𝑛) denotes the weighting 
scale, which is determined by the attention mechanism. It can 
be seen that the first term estimates the accuracy of utterance-
level scoring, and the second term estimates the accuracy of 
frame-level scoring. We believe that with the objective func-
tion in Eq. (1), STOI-Net can be trained to model the STOI 
metric locally and globally.  
 

STFT

Noisy Speech

STOI

CNN-BLSTM
Layer

Attention Layer

Global Average

Fully Connected Layer

Frame-Level Score

Fig. 1: Architecture of the STOI-Net model. 
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III. EXPERIMENTS 

A. Experimental Setup 
The Wall Street Journal (WSJ) dataset [35] was used to pre-

pare the training and test sets in this study. The training set of 
the WSJ dataset contained 37,416 utterances, while the test set 
of the WSJ dataset contained 330 utterances, all recorded at a 
sampling rate of 16 kHz. We polluted the training utterances 
with 100 types of noise [36], covering both stationary and non-
stationary noise types, with 31 different SNR levels ranging 
from -10 to 20 dB with an interval of 1 dB. A pretrained speech 
enhancement (SE) model was used to process the noisy utter-
ances to obtain enhanced utterances. The SE model was formed 
by a BLSTM model with two bidirectional hidden layers, each 
consisting of 300 neurons. We randomly selected 15,000 noisy 
utterances, 15,000 enhanced utterances, and 1,500 original 
clean utterances to form the training set for the proposed STOI-
Net model. The 1,500 clean utterances were used to let the 
STOI-Net learn the highest STOI score (i.e., 1.0). 

We prepared two test sets to evaluate the STOI-Net model: 
the seen and unseen test sets. For the seen test set, we randomly 
selected 2,350 noisy utterances, 2,350 enhanced utterances, 
and 300 clean utterances from the remaining utterances in the 
above large training set. Thus, the seen test set contained a total 
of 5,000 utterances. It may be noted that the speakers and noise 
types overlap with those in the training utterances, but the ut-
terances are different. For the unseen test set, we randomly se-
lected 300 utterances from the test set of the WSJ dataset. For 
this test set, the speakers and noise types were different from 
those in the training utterances. We used four other noise types 
(car, pink, street, and babble) and contaminated the speech ut-
terances at 6 SNR levels (-10, -5, 0, 5, 10, and 15 dB). Finally, 
we randomly selected 2,350 noisy utterances, 2,350 enhanced 
utterances, together with the 300 clean utterances, to form the 
unseen test set (a total of 5,000 utterances).  

Each utterance in the training and testing sets was converted 
into a 257-dimensional spectrogram by applying a 512-point 
STFT with a Hamming window of 32 ms and a hop of 16 ms, 
which was used as the input for the STOI-Net. Three evaluation 
metrics, namely mean square error (MSE), linear correlation 
coefficient (LCC), and Spearman’s rank correlation coefficient 
(SRCC), were used to evaluate the predicted STOI scores. 

B. Effect of Model Architecture 
First, we analyzed the prediction capability of STOI-Net 

with different model architectures. In a previous work [30], 
BLSTM has shown its advantage in modeling time-variant 
speech patterns. Therefore, we used the BLSTM model as our 
baseline system in this study. The proposed STOI-Net was 
formed by a CNN-BLSTM architecture, which included 12 
convolutional layers, each consisting of four channels {16, 32, 
64, and 128}, a one-layered BLSTM (with 128 nodes), and a 
fully connected layer (with 128 neurons).  

Table 1 presents the LCC, SRCC, and MSE results of the 
BLSTM and CNN-BLSTM models under the seen test condi-
tion. Higher LCC and SRCC scores denote better results, while 
lower MSE scores denote better results. From Table 1, it can 

be seen that CNN-BLSTM outperforms BLSTM consistently, 
with higher LCC and SRCC scores and a lower MSE score. 
Table 2 presents the LCC, SRCC, and MSE results of the 
BLSTM and CNN-BLSTM models under the unseen test con-
dition. In this table, the same trend as in Table 1 can be seen; 
in other words, compared with the BLSTM baseline, CNN-
BLSTM can yield higher LCC and SRCC scores and a lower 
MSE score. In the following discussion, we will further evalu-
ate the STOI-Net that is developed based on the CNN-BLSTM 
architecture. 
 

Table 1.  LCC, SRCC, and MSE results of BLSTM and CNN-
BLSTM under the seen test condition. 
 LCC SRCC MSE 

BLSTM [30] 0.923 0.928 0.005 
CNN-BLSTM 0.964 0.962 0.002 

 
Table 2.  LCC, SRCC, and MSE results of BLSTM and CNN-

BLSTM under the unseen test condition. 
 LCC SRCC MSE 

BLSTM [30] 0.764 0.784 0.029 
CNN-BLSTM 0.789 0.797 0.016 

 

C. Effect of Attention Mechanism 
From the previous experiment, we have confirmed that 

compared with BLSTM, CNN-BLSTM can achieve better pre-
diction performance for STOI-Net. In this set of experiments, 
we aimed to further improve the prediction performance by 
adding a multiplication attention mechanism to STOI-Net; the 
system is termed CNN-BLSTMATT. From Table 3, it can be 
seen that under the seen test condition, CNN-BLSTMATT can 
achieve higher LCC and SRCC scores compared to CNN-
BLSTM. It should also be noted that the MSE score of CNN-
BLSTMATT is lower than that of CNN-BLSTM, but the im-
provement is small. Table 4 presents the results under the un-
seen test conditions. The results again show that with the atten-
tion mechanism, CNN-BLSTMATT always produces better 
LCC, SRCC, and MSE scores, as compared to CNN-BLSTM 
without the attention mechanism.  

 
Table 3.  LCC, SRCC, and MSE results of CNN-BLSTM and 

CNN-BLSTM-ATT under the seen test condition. 
 LCC SRCC MSE 

CNN-BLSTM 0.964 0.962 0.002 
CNN-BLSTMATT 0.970 0.968 0.001 

 
Table 4.  LCC, SRCC, and MSE results of CNN-BLSTM and 

CNN-BLSTM-ATT under the unseen test condition. 
 LCC SRCC MSE 

CNN-BLSTM 0.789 0.797 0.016 
CNN-BLSTMATT 0.827 0.815 0.015 

 
To study the reasons for the performance improvement pro-

vided by the attention mechanism, we further analyzed the 
CNN-BLSTM and CNN-BLSTMATT models by visualizing the 
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hidden layers. As shown in Fig. 2, the representations of the 
hidden layers of CNN-BLSTM and CNN-BLSTMATT show 
different patterns, confirming that the attention layer provides 
additional weights to specific regions. In addition, the scatter 
plots of speech intelligibility assessment by STOI-Net are 
shown in Fig. 3. We compared the scatter plots of the predicted 
scores generated by CNN-BLSTM and CNN-BLSTMATT. 
From the figure, it is clear that CNN-BLSTMATT can predict 
STOI scores more accurately than CNN-BLSTM. This further 
shows that the proposed STOI-Net using CNN-BLSTM and the 
attention mechanism can achieve higher correlation perfor-
mance, as compared to STOI-Net using CNN-BLSTM without 
an attention mechanism. 

IV. CONCLUSIONS 

In this study, we proposed STOI-Net, a deep neural network-
based non-intrusive speech intelligibility assessment model. 
We aimed to use the STOI-Net as a surrogate to the traditional 
STOI evaluation metric. Experimental results first confirmed 
that the predicted scores of STOI-Net have a good correlation 
with the ground-truth STOI scores. Then, we confirmed the ad-
vantages of using CNN-BLSTM over BLSTM to form the 
STOI-Net model architecture under both seen and unseen test 
conditions. Finally, we confirmed the effectiveness of the at-
tention mechanism, which can further improve the prediction 
performance. In the future, we will further evaluate the gener-
alization ability by testing the STOI-Net prediction results un-
der completely different test conditions from those in the train-
ing set. We will also explore the integration of STOI-Net into 
numerous speech-related applications to directly improve the 
performance of the target tasks. 
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