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Abstract—Objective speech quality assessment is an impor-
tant component in speech processing systems. It can serve not
only as an evaluation metric but also as a loss function in
some deep learning-based systems. In this work, a novel deep
learning-based non-intrusive speech quality assessment approach
is proposed. Instead of using manually designed features or
magnitude spectrum as input, the proposed method directly
works on the time-domain waveform. The perceptual evaluation
of speech quality (PESQ) is used as the learning target, and the
network structure is designed referring to the PESQ calculation
procedure. Multi-task training strategy is employed to optimize
the network. Experimental results show that the proposed ap-
proach can yield high correlation to PESQ in both matched and
unmatched situations. The proposed method can also be used
as a non-intrusive estimation model for other speech quality or
intelligibility assessment methods, such as the short time objective
intelligibility (STOI).

I. INTRODUCTION

Speech quality is a concept reflecting the listeners’ feeling
to the heard speech. There are two ways to measure the
speech quality, which are subjective listening test and objective
algorithms. The subjective listening test can get accurate
results if it is carried out properly. However, it costs a lot
of time and other resources. An objective algorithm is a flow
of given calculation steps. It costs little time and leads to a
result that has high correlation with the result of a subjec-
tive listening test. Thus the objective algorithms are widely
used in the field of speech signal processing. The perceptual
evaluation of speech quality (PESQ) [1] is one of the most
famous objective algorithms. Despite of the good performance
of PESQ algorithm, it has two shortcomings that limit its
application. One is that it need a reference signal which is
hard to acquire in some real-world scenarios. The other one is
that the algorithm does not support gradient calculation. For
example, to design a deep learning based speech enhancement
system that directly optimize speech quality instead of mean
square error (MSE) or signal-to-noise ratio (SNR), a speech
quality assessment algorithm that supports gradient calculation
is essential.

During the last twenty years, several non-intrusive speech
quality assessment methods have been proposed [2-12]. Dubey
and Kumar [2] extracted a set of auditory features includ-
ing multi-resolution auditory model (MRAM) features, Mel-
frequency cepstral coefficients (MFCC) and line spectral fre-
quencies (LSF) feature, and trained a Gaussian mixture model
to predict the speech quality score. Sharma et al. [3] also pre-
pared a set of handcrafted features, and employed classification

and regression trees (CART) to make the assessment. Although
these non-intrusive methods have already achieved relatively
good performances, the complex manually designed feature
sets are unsuitable for the gradient calculation.

With the development of deep learning, it is believed that
the neural network can extract effective feature representation
by itself. Soni and Patil [5] used an auto-encoder to convert
the spectrogram of a speech utterance into deep features, and
trained a fully-connected network to estimate the quality score.
Fu et al. [7] proposed the Quality-Net based on bidirectional
long and short-term memory (BLSTM) network, which also
took the spectrum as input. Lo et al. [12] replaced the BLSTM
network with a structure that combined convolutional neural
network (CNN) and BLSTM. These methods trained neural
networks mapping the spectrum into the quality score and
satisfied the requirement of gradient calculation.

Recently, time-domain speech signal processing achieved
great success. Luo and Mesgarani [13] proposed a time-
domain speech separation model named Conv-TasNet. It is an
encoder-decoder based architecture with a temporal convolu-
tional module inserted between the encoder and decoder. It im-
proved the performance of speech separation by a large margin
and surpassed the ideal time-frequency magnitude masking.
Similarly, in the field of speech enhancement, Pandey and
Wang [14] also proposed a time-domain speech enhancement
model and achieved significant improvement of performance.

In this work, we propose a time-domain speech quality
assessment approach. The main inspiration for this work is the
success that time-domain deep learning methods have made
in speech separation. This is reasonable because it avoids
the loss of the phase information and gives the network a
chance to learn a better feature representation. What’s more,
as the outputs of the time-domain speech separation models
mentioned above are speech waveforms, a time-domain speech
quality assessment model can be directly used as the loss
function to further optimize these models.

The rest of this paper is organized as follows. In section II
we describe the structure of the proposed time-domain model
in detail. In section III we show some experimental results
and make some discussions. At last in section IV we draw the
conclusions.

II. NETWORK STRUCTURE

DNN-based speech quality assessment models have differ-
ent network structures, such as multilayer perceptron (MLP)
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[5], BLSTM [7] and CNN [12], et al. These models treat the
neural network as a black box and the fitting capacity is a
main factor influencing the performance. We believe that the
combination of human inspiration and deep learning can lead
to a better result. For example, Fu et al. took the advantage
of the observation that the distribution of the frame-level
quality scores varies with the utterance-level speech quality
in Quality-Net [7]. They added a frame-level constraint to the
loss function while the constraint weight was decided by the
corresponding utterance-level score. In this work, we propose
a network structure for speech quality assessment that refers
to the calculation procedure of PESQ. We will describe the
calculation procedure of PESQ briefly and then explain the
network structure in detail.

A. Calculation procedure of PESQ

PESQ is a widely used objective speech quality assessment
method. The calculation procedure can be described concisely
as follows.

1) Time-domain preprocessing. This step includes the level
and time alignment, as well as the filtering correspond-
ing to human ear canal.

2) Auditory transform. After the time-domain preprocess-
ing in step one, the signals are converted into time-
frequency domain. This step includes the Bark spectrum
generation, frequency equalization, equalization of gain
variation and loudness mapping. After this step the
signals are transformed to the perceived loudness in each
time frequency cell.

3) Disturbance processing and cognitive modeling. The
disturbance here means the absolute difference of the
perceived loudness between the reference and degraded
signal. This step includes discard of some long dele-
tion sections, masking of the loudness and asymmetric
processing.

4) Final score calculation. This includes calculating the
error average over frequency and time, and using a
simple formula to calculate the final score.

According to this procedure, we design a two-step network
structure instead of a single network directly mapping the
features into the quality scores. The first network tries to
estimate the disturbance for each time frequency cell, and the
second network converts the estimated disturbance into quality
score.

B. Time-domain speech quality assessment

Although the speech quality assessment models using spec-
trum features in time frequency domain have achieved good
performance, they are faced with the shortcoming that they
lose the phase information. Considering that it has been
proved that the phase distortion of the speech signal can
impact the listeners’ feeling [15], we believe that time-domain
speech quality assessment without losing the phase informa-
tion should result in a better performance.

The structure of the proposed neural network is shown in
Fig. 1. The network consists of an encoder, a disturbance
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Fig. 1. Block diagram of the proposed neural network

estimation module and a frame-score predicting module. The
encoder is a 1-D convolutional layer. It encodes the input
waveform with a frame length of 20 sampling points and a hop
size of 10 sampling points. It includes 128 filters which results
in a 128-channel output. Linear activation function is applied
here. This encoder converts the waveform into a feature map
which is similar to the spectrum. Thus the proposed neural
network can deal with the time-domain waveform.

The disturbance estimation module follows the structure
of temporal convolutional network (TCN) which is used in
[13] and [14]. It has two dilation blocks stacked together.
Each dilation block consists of eight residual blocks with
exponentially increasing dilation rate. The dilation rates are
set to 1, 2, 4, 8, 16, 32, 64, 128 successively, resulting in a
receptive field large enough for the disturbance estimation. The
structure of the residual blocks is shown in Fig. 2. Separable
convolutional layer [16] is used to reduce the model size,
and another point-wise convolutional layer is applied before
separable convolution to change the number of channels as
well as compensating for the lack of fitting capability of
the separable convolutional layer. The joint of the point-wise
convolutional layer and the separable convolutional layer can
reduce the number of parameters by 32% comparing to the
normal convolutional layer, when the kernel size is set to 3.
Layer normalization [17] is applied before every convolutional
layer to optimize the training stage and restrain overfitting.
Parametric ReLU [18] is used as the activation function.
The output of the last residual block is fed into a fully-
connected layer to predict the disturbance. Tanh is selected
as the activation function of this layer.

The frame-score predicting module also follows the struc-
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Fig. 2. Residual block used in the proposed neural network

ture of TCN, but with only 1 dilation block containing 4
residual blocks. The dilation block is followed by a fully-
connected layer to predict the frame score. An average over
all frames is calculated as the utterance score.

C. Multi-task training strategy

A multi-task training strategy is employed to optimize the
proposed neural network. The main task is speech quality
prediction and the assistant task is speech enhancement. The
realization of the enhancement task is also shown in Fig.
1. The estimated disturbance is added to the output of the
encoder to get an enhanced encoded feature. A decoder
converts the enhanced feature into time-domain waveform.
The decoder is simply realized by a fully-connected layer with
linear activation function. At last the frame-level waveforms
are overlapped and added together to get the utterance-level
waveform. Based on this structure, the signal-to-noise ratio
(SDR) is used as the loss function of the assistant task:

La = −10 ∗ log( ‖s‖
2

‖ŝ− s‖2
) (1)

where ŝ and s are the estimated and reference signal respec-
tively, and ‖ · ‖2 donates the signal power. The minus sign is
added to the formula to let the optimizer minimize this loss
function.

In previous deep-learning based speech quality assessment
tasks, mean square error (MSE) is often used as the loss
function. However, MSE and SDR are unmatched in scale,
which may impact the training performance. We design a new
loss function for the speech quality assessment task according
to SDR:

Lm = −10 ∗ log( c

‖ŷ − y‖2
) (2)

where ŷ and y are the estimated and reference speech quality
score respectively, and c is a constant which is set to 1 in this
work.

The overall loss function is the weighted sum of the main
and assistant loss function:

L = α ∗ Lm + (1− α) ∗ La (3)

where α is the weight constant and is set to 0.5 in this work.

III. EXPERIMENTS

A. Experimental setup

In our experiments, WSJ0 dataset [19] was used as the
speech dataset. Two noise datasets were used. One is the
NoiseX-92 [20] noise set and the other one is a self-made
noise set named Noise-200. The Noise-200 dataset contains
200 different noise signals collected through the internet. It
includes the natural sounds such as wind, stream, rain, bird,
et al., and human sounds such as traffic, factory, cafeteria,
hospital, cry, laugh, et al. The Noise-200 dataset was used to
generate the train, valid and test sets, while the NoiseX-92
was only used in the test sets.

The train set included two subsets consisting of noisy and
enhanced speeches respectively. The si tr s set in WSJ0 was
correspondingly divided into two non-overlapping parts. 190
noise signals from Noise-200 dataset were used here. Note
that the 190 noise signals did not include baby cry, rain,
battle, cafeteria and factory noises, which were only used
in the unmatched test set. For the noisy subset, the clean
speeches were mixed with noise signals at randomly decided
SNR levels between -10dB and 25dB. Each clean speech
from the WSJ0 dataset was used only once. For the enhanced
subset, after adding noise in the same way as the noisy part,
a speech enhancement system was employed to suppress the
added noise. The speech enhancement system has a similar
structure with Conv-TasNet [13], but was modified to adapt
to speech enhancement task. The speech enhancement system
was trained on 12000 noisy speeches with 200 different noises
at six SNR levels (from -10dB to 15dB with steps of 5dB). and
achieved 10.13dB improvement on the speeches with babble
noise at 0dB SNR. The noisy part and the enhanced part were
mixed together as the train set. The total length of the train
set was 24.9 hours. The valid set was generated in the same
way with train set, but using the si dt 05 set instead.

Three test sets were generated. All of them were generated
from the WSJ0 test set. Each of the speeches was used
twice for each test set, generating noisy and enhanced speech
respectively. The first test set, named test-1, was generated
with the 190 noises used in generation of train set. This is
the matched test set. The second test set, named test-2, was
generated with the other 10 noises which were not used in
train set. The last test set, named test-3, was generated with 5
noises from NoiseX-92 dataset, including m109, machinegun,
pink, white and Volvo. Both test-2 set and test-3 set were
unmatched test set.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

479



To evaluate the performance of the proposed network, the
Spearman’s rank correlation coefficient (SRCC), linear corre-
lation coefficient (LCC) and root mean square error (RMSE)
were calculated based on the predicted and true PESQ scores.

B. Comparison of loss functions

Despite of SDR, MSE can also be used as the loss function
in speech enhancement tasks. Meanwhile, the loss function for
speech quality assessment task has three choices, which are
MSE, (2) and (4).

Lm = −10 ∗ log( ‖y‖2

‖ŷ − y‖2
) (4)

Thus there are different combinations of the loss functions.
The comparison result on test-1 set is shown in Table I.

It can be seen that the combination of (2) and SDR as the
loss function has the best performance. SDR is better than
MSE for the enhancement task. Equation (2) and (4) have an
advantage over MSE for the quality assessment task. We think
that there are two reasons for this phenomenon. The first one
is that the value of (2) and (4) is close to the value of SDR,
thus it’s easier for the optimization algorithm to balance the
weights between the loss of the two parts. The second one
is that the logarithm operation amplifies the loss value when
it’s very small, providing a good reference for the training of
the network. The difference between (2) and (4) lies in the
numerator. Equation (4) uses the true value as the numerator,
giving the samples with better quality higher weights, while
(2) uses a constant as the numerator, giving the samples equal
weights despite of their quality scores. Equation (4) may work
better in the field of speech enhancement (which is SDR
actually), while as for the speech quality assessment task, (2)
is a better choice. Note that (2) is equivalent to log-MSE,
with two constants adjust its value. The following experimental
results are based on the combination of (2) and SDR.

C. Experiments on different test sets

The experimental results of the three test sets are shown in
Table II, Table III and Table IV. Three competitive algorithms
are included. The first one uses BLSTM network to map the

TABLE I
COMPARISON OF DIFFERENT COMBINATIONS OF LOSS

FUNCTIONS

Quality loss Enhance loss SRCC LCC RMSE
MSE MSE 0.927 0.934 0.298
MSE SDR 0.935 0.939 0.286

Equation (4) SDR 0.939 0.946 0.269
Equation (2) SDR 0.942 0.948 0.264

TABLE II
COMPARISON WITH OTHER METHODS IN RMSE

RMSE test-1 test-2 test-3
Freq-BLSTM [5] 0.329 0.312 0.436

Freq-CNN 0.274 0.291 0.528
Time-CNN 0.318 0.324 0.345
Proposed 0.264 0.284 0.277

spectrum into quality scores. It has the same structure with
Quality-Net [7], and is represented by Freq-BLSTM, because
it works on frequency domain features and uses BLSTM as
its main structure. The Second one uses CNN to map the
spectrum into quality scores. The CNN is the same with the
TCN used in the disturbance estimation module of our work.
It is represented by Freq-CNN. The third one is a time-domain
method. It uses the encoder and an TCN based predictor to
map the waveform into quality scores. It is represented by
Time-CNN.

It can be seen that the proposed approach has the best
performance over the three test sets consistently. There are
some interesting observations in the results. The comparison
of the first two methods shows that CNN works better than
BLSTM for this task. The comparison of the second and
the third methods shows that it is easier for the network to
converge to a better point in frequency domain than in time
domain. We think that it is because we use PESQ as the
training target, and the frequency analysis is similar to STFT,
which is used to generate the spectrum. This gives the network
a good start point. However, it can be seen that although the
second method works well on the test-1 and test-2 set, it suffers
a glaring performance degradation on the test-3 set, indicating
the lack of generalization capability. Focusing on the RMSE
results, it can be seen that time-domain methods have better
generalization capability than frequency-domain methods.

Both test-2 and test-3 are unmatched test, with noise signals
not appearing in train set. The reason that the test results have
an obvious gap may lie in the distribution of the PESQ scores.
As for the test-3 set, it is generated with five noise signals
from NoiseX-92 dataset. Experimental results on small sets
generated by single noise signal show that the networks tend
to have a good performance on the set from m109 noise, and
perform poorly on the set from machinegun noise and Volvo
noise. Consistent with this, the distribution of PESQ scores of
the m109 set is the most similar to the distribution of the train
set, while the distributions of machinegun set and Volvo set
differ from the distribution of the train set significantly. This
explains why the proposed method has similar RMSE results
on test-2 and test-3 set while the SRCC results have a large
gap.

D. Experiments on STOI

The proposed network structure is designed for speech
quality assessment. PESQ score is used as the training target
instead of the mean opinion score (MOS) of subjective listen-
ing test because we don’t have the MOS dataset at the moment.
As a complemental experiment, we also test the proposed

TABLE III
COMPARISON WITH OTHER METHODS IN SRCC

SRCC test-1 test-2 test-3
Freq-BLSTM [5] 0.908 0.937 0.801

Freq-CNN 0.940 0.948 0.728
Time-CNN 0.913 0.928 0.866
Proposed 0.942 0.952 0.917
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TABLE IV
COMPARISON WITH OTHER METHODS IN LCC

LCC test-1 test-2 test-3
Freq-BLSTM [5] 0.920 0.931 0.854

Freq-CNN 0.945 0.940 0.803
Time-CNN 0.925 0.923 0.901
Proposed 0.948 0.944 0.938

TABLE V
COMPARISON WITH OTHER METHODS FOR STOI

PREDICTION

SRCC LCC RMSE
Freq-BLSTM [5] 0.786 0.867 0.061

Freq-CNN 0.832 0.909 0.051
Time-CNN 0.685 0.827 0.074
Proposed 0.861 0.912 0.049

structure on short time objective intelligibility (STOI) [21]
estimation. The results are shown in Table V. It proves that the
proposed structure also has advantages on the task of STOI
predicting. It could be expected that the proposed structure
would have a good performance on MOS predicting.

IV. CONCLUSIONS

This paper proposed a novel time-domain speech quality
assessment method. Design of the structure followed the
inspiration from the calculation procedure of PESQ, and
multi-task training strategy was employed to optimize the
network. Experimental results show that the proposed method
has good convergence performance and significantly better
generalization capability. It can also be applied to other tasks
such as STOI prediction. Our future work includes training
the propose network on MOS dataset and using it to improve
our speech separation system.
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