
Boosting Objective Scores of a Speech Enhancement 

Model by MetricGAN Post-processing 

Szu-Wei Fu
12*

, Chien-Feng Liao
 2*

, Tsun-An Hsieh
2*

, Kuo-Hsuan Hung
2*

, Syu-Siang Wang
2
,   Cheng Yu

2
, Heng-

Cheng Kuo
2
, Ryandhimas E. Zezario

12
, You-Jin Li

2
, Shang-Yi Chuang

2
, Yen-Ju Lu

2
, Yu-Chen Lin

 12
,Yu Tsao

2
 

1
 Department of Computer Science and Information Engineering, National Taiwan University, 

Taipei, Taiwan 
2
 Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan 

E-mail: {jasonfu, yu.tsao}@citi.sinica.edu.tw 

 

 

 
Abstract—The Transformer architecture has demonstrated a 

superior ability compared to recurrent neural networks in many 

different natural language processing applications. Therefore, 

our study applies a modified Transformer in a speech 

enhancement task. Specifically, positional encoding in the 

Transformer may not be necessary for speech enhancement, and 

hence, it is replaced by convolutional layers. To further improve 

the perceptual evaluation of the speech quality (PESQ) scores of 

enhanced speech, the 𝑳𝟏 pre-trained Transformer is fine-tuned 

using a MetricGAN framework. The proposed MetricGAN can 

be treated as a general post-processing module to further boost 

the objective scores of interest. The experiments were conducted 

using the data sets provided by the organizer of the Deep Noise 

Suppression (DNS) challenge. Experimental results 

demonstrated that the proposed system outperformed the 

challenge baseline, in both subjective and objective evaluations, 

with a large margin. 

I. INTRODUCTION 

Commercial speech-related applications, such as automatic 

speech recognition (ASR), hearing aids systems, and VoIP 

services rely heavily on clear sound provided by robust 

speech enhancement (SE) systems [1-4]. A SE system aims to 

reduce the background noise from noisy speech signals and 

further improve the quality and intelligibility of enhanced 

signals. Traditional approaches utilize the statistical attributes 

of speech signals for enhancement under many circumstances. 

However, these approaches require certain premises. For 

instance, a widely used denoise approach, Wiener filtering [5], 

performs well in many conditions, but the input must be 

guaranteed as a stationary process, which may not be fulfilled 

in a real-world situation.  

Deep learning algorithms are known for their powerful 

capability of learning transformations. Learned features are 

usually more representative than handcrafted ones. In recent 

years, deep learning algorithms have been incorporated into 

SE tasks. Some approaches [6-10] operate SE on time-

frequency acoustic features provided by short-time Fourier 

transform (STFT). Lu et al. [3] used a deep denoising 

autoencoder (DDAE) to estimate the enhanced speech. A 

main drawback of DDAE is that global time information is 

not considered because it merely depends on the frames 

nearby to predict an enhanced frame, and not on the entire  
*Equal Contribution 

sequence. To avoid this problem, some approaches operate SE 

in a sequential modeling manner. Weninger et al. [11] and 

Maas et al. [12] utilized recurrent neural networks (RNNs) for 

SE systems and further improved the robustness of ASR 

systems. RNNs, such as long short-term memory (LSTM) and 

gated recurrent unit, handle multiple gates and use hidden 

states to capture correlations within a sequence. However, it is 

difficult for RNNs to learn long-range dependencies between 

symbols because of sequential processing. In addition, the 

computation of gates is inefficient because of the time 

dependency between each other.  

Therefore, the Transformer model has been proposed and 

has been demonstrated to achieve state-of-the-art results in 

various natural language processing tasks [13]. Specifically, 

to model long-range dependencies, the sequence relation 

between all-time steps is learned using the parallelly-

computed attention mechanism [14]. Unlike RNNs, the 

Transformer processes an input sequence in parallel, thus 

significantly increasing training and inference efficiency. 

However, Kim et al. [15] found that the original Transformer 

did not demonstrate improvements in speech enhancement 

tasks. Hence, they proposed Gaussian-weighted self-attention 

and surpassed the LSTM-based model. In our study, we found 

that positional encoding in Transformer might not be 

necessary for SE, and hence, it was replaced by convolutional 

layers. 

To further boost the objective scores of speech enhanced 

using the modified Transformer model, we applied it as a 

generator to the previously proposed MetricGAN [16]. Using 

some training techniques proposed by [17], the MetricGAN 

framework was used as a post-processing module. 

Specifically, the SE model (generator) was first pre-trained 

with a conventional loss function (e.g., 𝐿1 or 𝐿2 loss) until it 

converged, and the surrogate loss from the discriminator 

further guided the generator training to achieve a better 

solution. Because previous studies [16, 17] have already 

successfully applied BLSTM and convolutional BLSTM as 

the generator of MetricGAN, this framework can be treated as 

a general module to improve the performance of a trained 

deep SE model. 
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II. TRANSFORMER MODEL FOR CAUSAL SPEECH 

ENHANCEMENT 

In our study, we developed the Transformer as the 

backbone architecture of our SE system and made some 

modifications to fit the denoising task. In addition, we 

adopted a causal setting to achieve the real-time processing 

requirement. The original Transformer consisted of encoder 

and decoder networks for sequence-to-sequence learning. 

First, for SE, the decoder part was omitted from our system 

because the input and the output sequence lengths were 

identical. Second, to inject some type of relative location 

information into the frames in the sequence, causal 

convolutional layers were utilized, instead of the original 

positional encoding. There are many choices of positional 

encodings, learned and fixed [18]. The learned ones require 

the input sequence to be of fixed length and are thus unable to 

adapt to sequence lengths that are longer than those 

encountered during training. Although the fixed ones may 

allow the model to adapt to variable sequence lengths, hand-

crafted fixed features may not be rich enough for embedding. 

Hence, for both flexibility and model capacity, convolutional 

layers were chosen to capture location information. Finally, a 

future masking mechanism was applied to the scaled dot-

product attention in the multi-head self-attention (MHSA) 

layer for causality, where the attention weights were set to 

zero for all future frames. More formally, three linear layers 

transformed the input argument of MHSA into queries 

𝑄ℎ ∈ ℝ𝑇×𝑑𝑘 , keys 𝐾ℎ ∈ ℝ𝑇×𝑑𝑘 , and values 𝑉ℎ ∈ ℝ𝑇×𝑑𝑘 , 

where 𝑇 , ℎ  and 𝑑𝑘  denote the sequence length, head index, 

and feature dimension, respectively. The masked scaled dot-

product is computed as  

Attention(𝑄ℎ , 𝐾ℎ , 𝑉ℎ) =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑀 +
𝑄ℎ𝐾ℎ

𝑇

√𝑑𝑘
)𝑉ℎ   (1) 

𝑀 denotes the future masking, which is an upper triangular 

matrix, where the upper entries are set to negative infinity 

(excluding main diagonal), that is,  

𝑀 =  [
0 ⋯ −∞
⋮ ⋱ ⋮
0 ⋯ 0

]                                 (2) 

In this way, future frames would not be considered because 

the upper entries of the attention weight became zero after the 

softmax function. 

The remainder of the architecture is implemented as a 

standard Transformer shown in Fig. 1, composed of N 

attention blocks. In each attention block, the first sub-layer is 

the masked MHSA, and the next is a feedforward network 

with two fully connected layers. Both sub-layers are followed 

by a residual connection to the input and layer normalization. 

Herein, the moments for layer normalization are computed 

only across the channel dimension, thus obeying the causal 

setting. Finally, the Transformer output is projected back to 

the frequency dimension using a fully connected layer with 

ReLU activation, and the 𝐿1  loss is computed with clean 

speech. 

A. Implementation 

Speech waveforms were recorded at a 16 kHz sampling 

 
Fig. 1. Proposed Transformer architecture with 1-D convolutional encoding. 
1-D Conv is in the format (output channels, kernel size, stride), and FC 

(output channels) denotes the fully connected layer. Add and Norm are the 
residual connections followed by layer normalization. Finally, each MHSA 

layer consists of 8 heads and 64 dimensions per head. 

 

rate. A STFT with a hamming window size of 32 ms and a 

hop size of 16 ms was applied to transform the speech 

waveforms into 257-points spectral features. In the 

preliminary experiments, we found that compressing each 

coefficient to a tighter range produced better results; hence, 

the 𝑙𝑜𝑔1𝑝 function (𝑙𝑜𝑔1𝑝(𝑥) = log (1 + 𝑥)) was adopted on 

the magnitude spectrogram. During testing, the enhanced 

spectral features were synthesized back to the waveform 

signals via the inverse STFT and an overlap-add procedure. 

The phases of the noisy signals were used for waveform 

generation. The Adam optimizer was used with a learning rate 

of 5e-5, and an early stopping was performed based on the 

validation set to prevent overfitting. 

 

III. FINE-TUNING THE ENHANCEMENT MODEL USING 

METRICGAN 

Because the evaluation of this challenge is based on the 

ITU-T P.808, subjective evaluation of speech quality, a 

quality-related loss function may be a good choice to train the 

speech enhancement model. However, most of the quality 

metrics (e.g., PESQ) are too complicated to be directly 

applied as an objective function. Therefore, [19] employed a 

deep model (called Quality-Net [20]) to learn the behavior of 

PESQ function. Quality-Net is served as a surrogate to PESQ 

function to guide the enhancement model’s learning. 

Although Quality-Net loss can further improve the PESQ 

score of enhanced speech, gradient provided by Quality-Net is 

only accurate for the first few learning iterations. In other 
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words, Quality-Net is easily fooled (estimated quality scores 

increase but true scores decrease) [19]. 

To solve this  problem, [16] proposed a learning 

framework such that Quality-Net and enhancement models 

are alternately updated. This method is called MetricGAN 

because its goal is to optimize black-box metric scores, and 

the architecture is similar to generative adversarial networks 

(GANs). Below, we briefly introduce the training of 

MetricGAN. 

Let a function 𝑄′(I) represent the normalized evaluation 

metric (between 0 and 1) to be optimized, where I denotes the 

input of the metric. For example, for PESQ and STOI, I 

denotes a pair of enhanced speech, 𝐺(𝑥) , that we want to 

evaluate and the corresponding clean speech, y. Therefore, to 

ensure that the discriminator network, (D), behaves similar to 

𝑄′, the objective function of D is 

𝐿D(MetricGAN) = 𝔼𝑥,𝑦[(𝐷(𝑦, 𝑦)  −  1)2 + 

(𝐷(𝐺(𝑥), 𝑦)  −  𝑄′(𝐺(𝑥), 𝑦))2]   (3) 

where 0 ≤ 𝑄′(𝐺(𝑥), 𝑦) ≤ 1. 

The training of the generator network, (G), can completely 

rely on the adversarial loss 

𝐿G(MetricGAN) = 𝔼𝑥[(𝐷(𝐺(𝑥), 𝑦)  −  𝑠)2]           (4) 

where s denotes the desired assigned score. For example, to 

generate clean speech, we can simply assign s to be 1. 

Although the original MetricGAN is trained from scratch 

[16], Kawanaka et al. [17] proposed some training techniques 

to make MetricGAN a post-processing method of a trained 

speech enhancement model. After fine-tuning with the 

surrogate loss in MetricGAN, the metric scores of interest can 

be further improved. In our study, we applied some of the 

tricks to fine-tune the Transformer model (pre-trained with 𝐿1 

loss) to further boost the PESQ scores. The overall flow chart 

is shown in Fig. 2. 

IV. EXPERIMENTS 

A. Dataset 

The dataset used in this experiment was provided by the 

Deep Noise Suppression Challenge [21]. The default 

configuration was used to generate noisy-clean paired speech 

data. To reduce the training time, we randomly chose 10,000 

training utterances to train our model. A synthetic test set 

without reverberation was selected as the validation set to 

evaluate the performance of different models. Subjective 

speech quality evaluation was based on a blind test set. 

B. Model Structure  

The pre-trained Transformer described in Section 2 is used 

as the SE model in our experiment. The parameters were first 

pre-trained with 𝐿1-based signal approximation (SA) [11] loss. 

The discriminator (Quality-Net) was a CNN with four two-

dimensional (2-D) convolutional layers with the number of 

filters and kernel size as follows: [15, (5, 5)], [25, (7, 7)], [40, 

(9, 9)], and [50, (11, 11)]. 
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Fig. 2. Flow chart of MetricGAN training. 

 
TABLE I 

PERFORMANCE COMPARISONS OF DIFFERENT MODELS ON THE 

SYNTHETIC TEST SET WITHOUT REVERBERATION. 

 PESQ STOI 

                Noisy 2.454 0.915 

            NSNet [22] 2.692 0.906 

      Transformer (PE) 2.429 0.894 

  Proposed Transformer 2.966 0.932 

  Transformer + MetricGAN 3.104 0.946 

 

To handle the variable-length input, a 2-D global average 

pooling layer was added, so that the features were fixed with 

50 dimensions (50 was the number of feature maps in the 

previous layer). Three fully connected layers were added 

subsequently, each with 50 and 10 LeakyReLU nodes and 1 

linear node, respectively. To make Quality-Net a smooth 

function, we constrained it to be 1-Lipschitz continuous by 

spectral normalization [23]. 

 

C. Experimental Results of Objective Evaluation 

To verify the proposed framework’s effectiveness, the 

standard PESQ function was used to measure the speech 

quality, and the score ranged from −0.5 to 4.5. In addition, we 

presented STOI [24] for speech intelligibility evaluation, and 

the score ranged from 0 to 1. For both metrics, higher the 

score, better the quality. Table I presents the results of the 

average PESQ and STOI scores on the validation set for the 

Noise Suppression Net (NSNet) [8] baseline and the proposed 

method that fine-tunes the parameters of the Transformer 

model using the MetricGAN framework. As presented in 

Table I, the significant performance drop in the Transformer 

with additive fixed positional encoding, denoted as 

Transformer (PE), echoes our hypothesis that the Transformer 

requires a better mechanism to inject location information. 

The performance of the proposed Transformer is much better  
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Fig. 3. PESQ scores of fine-tuning process using the MetricGAN framework. 

 
TABLE II  

COMPUTATIONAL COMPLEXITY OF THE PROPOSED MODEL. 

 Number of 

parameters 

Inference time 

(ms/frame) 

Proposed 

Transformer 
5,953,920 0.256 

 

than that of NSNet. When we pre-trained the Transformer 

model with 𝐿1 loss and subsequently post-processed it using 

MetricGAN, we could further improve both the PESQ and 

STOI scores with a large margin. Note that, the computation 

load and model size remained unchanged because we only 

fine-tuned the parameters. 

Fig. 3 shows the fine-tuning process of the proposed 

MetricGAN. The PESQ score roughly converges to 2.97 

when the 𝐿1  loss is used to train the Transformer model. 

When the surrogate loss in MetricGAN is applied, the score 

can be further improved by 0.13. 

 

D. Computational Complexity 

In this section, we report the computational complexity in 

terms of the number of parameters and the time taken to infer 

a frame. As presented in Table II, the number of weights in 

the proposed Transformer  model is approximately 5.9 M, and 

it takes 0.256 ms to process a frame of 32 ms long (this is 

based on the average processing time of the whole blind test 

set) using an Intel Core i5 CPU quad core machine clocked at 

2.4 GHz. 

 

E. Spectrogram Comparison 

Fig. 4 shows the spectrograms of a clean utterance in the 

synthetic test set, the same utterance corrupted by traffic noise, 

enhanced speeches using the Transformer with 𝐿1  loss, and 

fine-tuned using the proposed MetricGAN. From Fig. 4(c), 

we observe that although the 𝐿1  loss can guide the 

Transformer effectively removing the background noise, 

some noise still exists (as shown inside the blue dashed 

rectangle). Comparing Fig. 4(c) and 4(d), we find that the 

remaining noise can be further removed by the MetricGAN 

post-processing. 

 

   
(a)                                        (b) 

   
(c)                                         (d) 

Fig. 4. Spectrograms of an utterance in the synthetic test set: (a) clean speech, 
(b) noisy speech (traffic noise), (c) enhanced speech using Transformer with 

L1 loss (d) enhanced speech using Transformer + MetricGAN. 

 
TABLE III 

 MOS OF THE BLIND TEST SET. 

 noreverb realrec reverb Overall 

Noisy 3.32 2.97 2.78 3.01 

NSNet [22] 3.49 3.00 2.64 3.03 

Transformer + 

MetricGAN 
3.63 3.18 2.83 3.21 

 

F. Subjective Evaluation 

The organizer of the DNS challenge conducted a P.808 

subjective evaluation of the submitted enhanced speech. 10 

qualified judges rated each clip that resulted in a 95% 

confidence interval (CI) of approximately 0.02 on the overall 

mean opinion scores (MOS). The blind test set can be further 

split into noisy speech without reverberation (noreverb), noisy 

real recordings (realrec), and noisy reverberant speech (reverb) 

categories. Table III presents the MOS of noisy, NSNet 

baseline, and the proposed Transformer model fine-tuned 

using MetricGAN. From this table, we can observe that our 

proposed model can significantly outperform the baseline. 

V. DISCUSSION 

The proposed MetricGAN fine-tuning framework can be 

treated as a universal post-processing module for a speech 

enhancement model. For example, although we apply a 

Transformer as the generator (enhancement model) in our 

study, it works for other models such as BLSTM [16] and 

convolutional BLSTM [17] too. In addition to TF mask 

estimation, this method can improve the objective scores of 

the mapping-based enhancement model. However, to avoid 

generating additional artifacts (we observe that it may 

generate some high-frequency noise when we use PESQ or 

STOI function as 𝑄′ because these two functions [24] ignore 

the signal difference in the high-frequency range.), we suggest 

that this post-processing is better applied to the mask 

estimation based deep model. 
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VI. CONCLUSION 

In our study, we applied a modified Transformer model as 

the generator of MetricGAN. To further boost the objective 

scores of interest, the Transformer model was first trained 

with the conventional 𝐿1  loss, and then fine-tuned with the 

surrogate loss provided by the discriminator. Experimental 

results demonstrated that the proposed framework 

outperformed the challenge baseline, in terms of both 

objective scores and subjective evaluation. Using MetricGAN, 

we anticipate that the mismatch between human auditory 

perception and the loss used in training a speech enhancement 

model can be effectively reduced. 
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