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Abstract—The development of distant-talking speech measure-
ment systems is drawing attention since it can be used for security
and disaster relief. An optical laser microphone that measures
the vibration caused by sound using laser beam is suitable for the
system. It can capture only the target sound even in a noisy place.
However, the sound acquired by the optical laser microphone
depends on the irradiated objects, and most of the objects will
cause degradation of sound quality. Due to various deteriorations
in the sound acquired by the laser microphone, the results of
the conventional speech enhancement methods are insufficient.
Therefore, in this paper, we propose a speech enhancement
method using a two-stage process of noise suppression and
acoustic structure reconstruction for optical laser microphones
and conduct an objective experiment to evaluate the effectiveness
of the proposed method.

I. INTRODUCTION

Microphones play an important role in daily life, and a
variety of microphones have been developed to meet dif-
ferent needs. Ordinary microphones obtain sound signals by
converting sound pressure into electrical signals through an
internal diaphragm. However, as the distance between the
microphone and sound source increases, the power of the
sound waves is attenuated when the sound propagates in
the air, and therefore it is difficult to acquire distant sounds
with ordinary microphones. Since a distant-talking speech
measurement system is required for crime prevention security
and disaster relief, parabolic microphones and shotgun mi-
crophones were developed to obtain sounds at a distance[1].
These microphones acquire the distant sounds by changing the
shape of the receiving part and the position of the diaphragm.
These kinds of microphones receive all sounds regardless of
a target sound source at a distance or the noise around the
microphone, which makes them unusable in a noisy envi-
ronment. Therefore, an acoustic measurement system called
an optical laser microphone was developed that measures
vibration caused by a sound using a laser beam. Since the
optical laser microphone directly measures the vibration of
the object near the target sound source, it will not be affected
by the noise around the microphone.

However, the quality of the sound acquired by the optical
laser microphone usually deteriorates because of the following
two reasons. The first is the change in reflected light intensity
due to the rough surface of the irradiated object, causing a
noise mix in the signal, and the second is the objects cannot
vibrate at high frequency, causing a lack of high-frequency
information of the observed signal. Therefore, to improve the

sound quality, there are two main tasks in the processing of
the observation signal, one is noise reduction and the other is
high-frequency speech component reconstruction.

In recent years, deep learning has been widely used in
various fields of signal processing and has proven its effective-
ness in acoustic signal processing, such as speech generation
[2], voice conversion [3][4], and speech enhancement [5][6].
The speech is time-series data and is usually processed in
the frequency domain using a Fourier transform. Recently,
processing based on the sound waveforms has also been
proposed, such as the use of recurrent neural networks [7][8]
and WaveNet [9][10]. However, it is difficult to directly use
these methods because the observed sound of the optical laser
microphone has various distortions.

In this paper, we propose a speech enhancement method for
observed speech acquired by an optical laser microphone. The
proposed method uses a waveform-based deep neural network
(DNN) and consists of noise reduction and high-frequency
component reconstruction. To confirm the effectiveness of the
proposed method, we perform objective evaluation experi-
ments for the speech measured by the optical laser microphone
and evaluate the sound quality of the speech before and after
processing.

II. ACOUSTIC MEASUREMENT USING OPTICAL LASER
MICROPHONE

After sound is generated, the vibration caused by the sound
will be transmitted to the nearby objects through the air. When
irradiating a laser beam on the object, the amplitude and phase
of the reflected laser will be changed due to the vibration. By
focusing on the amplitude of the reflected laser, the vibration
can be measured by using a photo-diode. Figure 1 shows a
schematic diagram of the measurement by photo-diode, and
the relationship between the acoustic signal and amplitude of
measured reflected laser can be expressed as

Sr(t) = Ac(1 + s(t))cos(2πFct+ ϕc), (1)

where Ac, Fc, and ϕc are the amplitude, frequency, and phase
of the reflected laser, respectively, and t is the time index.

Also, by focusing on the phase of reflected laser, the
vibration can be measured by a laser Doppler vibrometer
(LDV) that utilizes the Doppler effect of light. Figure 2
shows a schematic diagram of the measurement by LDV. The
Doppler effect occurs when the laser light is reflected on the
surface of the vibrating object. The frequency difference fD(t)
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Fig. 1. Acoustic measurement by photo-diode.

between the reference laser and the reflected laser can be
detected by using the interferometer. The relationship between
the frequency difference fD(t) and the vibration velocity is
expressed as

fD(t) =
2v(t)

λ0
=

2

λ0
· dL1(t)

dt
, (2)

where λ0 is the wavelength of the reference laser, v(t) is
the velocity of the vibration, and L1(t) is the optical path
length from the laser transmitter to the detector in the LDV.
Interference occurs when the reflected light and the reference
light are superposed. The vibration velocity of the object can
be measured by calculating the interval of the interference
fringes that accompany changes in the optical path length.
However, the vibration direction cannot be discriminated if
only the interval of the interference fringes is used. Therefore,
the frequency of the reference light is changed by the fre-
quency shifter to determine the sign of the vibration velocity.
The luminous intensity can be expressed as

I(t) = I1 + I2 + 2
√

I1I2cos(ρ), (3)

ρ = 2π
(L2 − L1(t))(∆f − fD(t))

c
, (4)

where I1 is the intensity of the reflected laser, I2 is the
intensity of the reference laser, L2 is the optical path length of
the reference light, ∆f is the amount of frequency shift given
by the frequency shifter, and c represents the velocity of light.

Since the laser beam has high directivity, which means that
the component light waves travel together in a straight line
without spreading apart, it is possible to measure the vibration
generated at a distance. Also, since only the sound generated
around the irradiated object is measured, it is not affected
by the noise around the optical laser microphone. Because
of the features above, the optical laser microphone is useful
when receiving distant-talking speech. However, since the
acoustic information is acquired through the vibrating object,
the quality of the observed sound depends on the shape and
vibration characteristics of the irradiated object. For example,
when an object with a rough surface moves in a direction
different from the measurement direction, fD(t) changes not
only due to v(t) but also due to the unevenness of the object
surface. In addition, the intensity of the reflected laser light
decreases and stationary noise occurs. Therefore, this paper
proposes a deep-learning-based speech enhancement method
for the sound acquired by the optical laser microphone.

Fig. 2. Acoustic measurement by LDV.

Fig. 3. Structures of dilated convolution.

III. CONVENTIONAL SPEECH ENHANCEMENT METHOD
BASED ON DNN

Conventional speech enhancement methods based on deep
learning mostly convert time waveforms to a frequency spec-
trum. First, the spectrum obtained by applying a Fourier
transform is separated into the power and phase components.
Then, the adjusted power spectrum can be calculated by the
trained DNN model. Finally, the waveform is reconstructed
by the inverse Fourier transform using the adjusted power
spectrum and unprocessed phase spectrum. However, since the
high-frequency component of the observed signal is missing,
if the phase spectrum of the deteriorated sound is used when
restoring the waveform, artifacts in the high-frequency band
will occur and the sound quality will be insufficient.

Wavenet is a typical network based on waveform processing
that uses the dilated convolution shown in Fig. 3 to obtain
a larger receptive field so that it is able to handle the time
series. The skip-connection structure is used to accelerate
the convergence. However, because of the various kinds of
deterioration, the accuracy of the results estimated by directly
modeling the waveform decreases.

Therefore, in this paper, a speech enhancement method with
multi-stage processing for the speech observed by the optical
laser microphone that has various distortions is proposed.

IV. SPEECH ENHANCEMENT FOR OPTICAL LASER
MICROPHONES

In this section, a speech enhancement method based on
waveform processing for the observed speech by the optical
laser microphone is proposed. The experimental results de-
scribed in the subsection C of section V shows that the CNN
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trained with mean square error (MSE) as the loss function has
a good performance in the low-frequency band components
of speech, yet it is not good in the high-frequency band
components (see Fig. 10 (d)). However, the reconstruction of
the high-frequency components depends on the accurate low-
frequency components because the high-frequency compo-
nents of the signal acquired by LDV are lacking. Since a single
network is difficult to handle the various kinds of distortion,
the proposed method consists of a noise suppression function
in the low-frequency band and a reconstruction function in the
high-frequency band. The processing diagram of the proposed
method is shown in Fig. 4.

A. Noise suppression process

Since there are no speech-specific structures in the high-
frequency component of the observed signal x (see Fig. 10
(a) and (b)), the high-frequency components are first removed
by downsampling to reduce the impact of the noise at high
frequency on the predict result. After that, the low-frequency
component xNB is processed with the noise suppression
DNN. Then, the noise suppressed signal x̂NB is upsampled
to match the length of the observed signal and quantized
by µ-law [11]. The wideband speech ŷWB is estimated by
the high-frequency bandwidth reconstruction DNN, and the
high-frequency components are extracted by the high-pass
filter. Finally, the enhanced speech is obtained by adding the
estimated high-frequency components to the processed low-
frequency components.

In the noise suppression processing, the DNN is composed
of l + 1 convolutional layers and activation function rectified
linear unit (ReLU) as shown in Fig. 5. First, the input feature
maps are extracted from the waveform of the low-frequency
component by

F(1) = max(0,W(1) ∗ xNB +B(1)), (5)

where W is the weights of the convolution kernel, B is the
bias, and the subscript 1 means the first layer of l+ 1 layers.
The middle layer is consisted of stacked convolutional layers
and calculates the mapping relationships between the F(1) and
the reconstruction feature maps F(l) by (6).

F(m) = max(0,W(m) ∗ F(m−1) +B(m)). (6)

Here, m is the layers index and m = [2, 3, ..., l]. The output
layer restores the output of last middle layer F(l) to the
waveform x̂NB = {x̂NB(0), ..., x̂NB(N − 1)} by

x̂NB = W(l+1) ∗ F(l) +B(l+1). (7)

When the noise suppression network is optimized by min-
imizing the MSE as the loss function, the gradient is always
updated along the direction of the minimum difference of
amplitude between the observed signal and the target signal.
Since the amplitude difference mainly depends on the low-
frequency components, it is effective for the processing of low-
frequency components. However, the structure of unvoiced
sound in the high-frequency band has characteristics similar to
noise, and it is difficult to extract features by the convolutional

Fig. 4. Block diagram of waveform-based DNN.

layer. Furthermore, it is difficult to estimate the details of high-
frequency components when training the network with MSE
[12]. Therefore, high-frequency components require additional
processing, which is described in the next subsection.

B. High-frequency bandwidth reconstruction process

In the high-frequency component reconstruction process, the
RNN is applied and cross entropy (CE) is chosen as the loss
function. In this stage, the waveform processed by the noise
suppression is first quantized into 8-bit integer values of 0-
255 by applying µ-law. As shown in Fig. 6, the network is
composed of two long short-term memory (LSTM) layers and
two fully-connected layers. The processing of the LSTM layer
at time step n is shown in

s(n) = G(s(n− 1), x̂WB(n)), (8)

where s is the output of the LSTM layer, x̂WB is the result
of the noise suppression process, and G(·) is the activation
function. The activation function of the last fully-connected
layer is softmax, which is used to output the probability of
each label. The output ŷWB

t of the time step n is calculated
by

p(ŷWB(n)|x̂WB(1), x̂WB(2), ..., x̂WB(n)) = FC(s(n)), (9)

where FC(·) is the output of the fully-connected layer. The
observed speech x̂WB obtained from the noise suppression
process and the clean speech y is used to optimize the network.

This stage of processing uses information up to time step
n to predict ŷWB(n) because the previous stage of processing
effectively reduces the interference of noise on prediction
results, thereby achieving a higher accuracy than conventional
methods.

V. EVALUATION EXPERIMENT

In this section, we carried out a recording experiment
using the optical laser microphone and compared the observed
speech, and evaluated the effectiveness of the proposed method
by an objective evaluation. The effectiveness of the proposed
method was compared with that of the conventional methods
[6] and [10].
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Fig. 5. Network for noise suppression.

Fig. 6. Process of high-frequency band reconstruction at time step n.

A. Training data setup

The speech data for the training network was recorded
using LDV. The experimental conditions are shown in Table
I, the equipment arrangement is shown in Fig. 7, and the
experimental landscape is shown in Fig. 8. An empty plastic
bottle with a volume of 0.5 liters was used as the measurement
object. As well as the material, the reverberation caused by the
air inside the empty bottle could also affect the results of the
recording experiment. 4620 speech files in the TIMIT Acoustic
Phonetic corpus [14] were recorded twice as the experimental
data. 9000 speech files (about 4 hours) were used for training
the network, and 240 speech files (about 12 minutes) were
used for evaluation.

B. Network setup

The network of noise suppression process is completely
composed of convolutional layer. In order to determine the

TABLE I
EXPERIMENTAL CONDITIONS.

Environment Sound-proof room
Ambient noise level 20.8 dB
Sampling frequency 16 kHz

Quantization bit rate 16 bits
Data TIMIT Acoustic Phonetic

Continuous Speech Corpus
9,000 files (4 hours) for training
240 files (12 minutes) for evaluation

Equipment Polytec NLV-2500-5
Vibrating object Pet-bottle

Fig. 7. Experimental arrangement.

Fig. 8. Experimental landscape.

size of the convolution kernel, a comparison experiment as
shown in Fig. 9 was conducted. Figure 9 shows the log spectral
distance (LSD) for the noise suppression results obtained by
the noise suppression DNN trained with different convolution
kernel sizes. The LSD decreases and the performance increases
in the frequency band of 0-4 kHz as the kernel size increases.
However, in the frequency band of 4-8 kHz, the LSD of the
restored waveform increases when the kernel size increases.
Therefore, in the noise suppression process, the speech data
was resampled at 8 kHz, and segmented into the length of
2048 samples each frame. The convolution kernel is set to
9×1, and the dilated factor was set to 2l−1, l = [1, 2, ..., 8]. The
high-frequency reconstruction DNN is consisted of two LSTM
layers and two fully-connected layers (see Fig. 6), and there
are 1024 units for both LSTM and fully-connected layers.
Backpropagation through time (BPTT) [15] was employed to
improve the efficiency of the model training, and the truncated
length was set to 480. For both the noise suppression DNN
and high-frequency reconstruction DNN, the optimizer Adam
[13] was applied.

Fig. 9. Result of enhanced speech at each frequency bandwidth with different
size convolution kernel.
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TABLE II
OBJECTIVE EVALUATION RESULTS OF EACH METHOD.

PESQ score LSD [dB] STOI score
(b) 1.76±0.40 1.62±0.10 0.85±0.04
(c) 2.18±0.49 1.09±0.09 0.90±0.02
(d) 2.00±0.30 1.21±0.09 0.93±0.03
(e) 2.35±0.50 1.11±0.08 0.94±0.03

(b),(c),(d),(e) are the observed speech, and the results of conven-
tional STFT-based DNN, conventional waveform-based DNN, proposed
waveform-based DNN

C. Experimental results

In order to prove the validity of the proposed method, the
proposed method is compared with two conventional methods.
One is the STFT-based DNN. It learned the relationship of the
power spectrum between the observed speech and the clean
speech, and used the phase of the observed speech in the
inverse Fourier transform. The other is the waveform-based
DNN, which used the same network as the noise suppression
process of the proposed method, except that it has not been
processed by high-frequency reconstruction. The observed
speech and the results of each method were compared by
objective evaluation experiments. The wideband perceptual
evaluation of speech quality (PESQ), LSD, and short-time
objective intelligibility (STOI) were adopted as objective mea-
surements. The spectrograms for each method are shown in
Fig. 10, and the results of the evaluation experiment are shown
in Table II.

Figure 10 shows that the proposed method performs better
in both noise suppression and high-frequency reconstruction
than the conventional methods. From Table II, for the PSEQ
and STOI scores, the proposed method achieved the best per-
formance on both evaluation standards. For LSD, the proposed
method is not as good as the conventional spectrum-based
DNN but it is still about 0.51 dB higher than the observed
speech. It can be concluded from Table II that the spectrum-
based DNN can well map the power spectrum relationship
between the observed signal and the target signal, but the
quality of the generated speech is degraded due to the artifacts
in the phase spectrum. Also, the DNN based on waveforms
cannot extract features well due to the various kinds of distor-
tion. The proposed method guarantees the phase information
of the speech, and it reduces the noise of low-frequency
components to improve the accuracy of the generated high-
frequency information.

VI. CONCLUSION

In this paper, we proposed a speech enhancement method
based on waveforms for the optical laser microphone. Since
the optical laser microphone uses laser light to measure vibra-
tions caused by sound waves, various kinds of distortion are
mixed due to the vibration characteristics of the measurement
object. However the conventional methods cannot adequately
reduce these distortions. In this paper, we proposed a method
based on a DNN with noise reduction and high-frequency band
reconstruction processing. Through objective evaluation exper-

(a) Clean speech (b) Observed speech

(c) Speech enhanced with conven-
tional STFT-based DNN

(d) Speech enhanced with conven-
tional waveform-based DNN

(e) Speech enhanced with proposed
waveform-based DNN

Fig. 10. Enhanced speech with each method

iments, we confirmed that the proposed method outperforms
the conventional method in PESQ, LSD, and STOI.

In the future, we will compare the effects of different loss
functions on the accuracy of the high-frequency reconstruction
to determine a suitable loss function. Also, we will study
speech enhancement for the optical laser microphone using
different measurement objects and attempt to increase the
distance between the LDV and object.
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