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Abstract—We propose energy-based multiple source localiza-
tion using sound power sensors called Blinkies that we have
recently developed. A Blinky consists of a microphone, LEDs,
a microcontroller, and a battery. The intensity of the LED is
varied by sound power. Namely, Blinkies work as sound-to-light
conversion sensors. They are easy to distribute over a large area,
and thus, sound power information can be obtained by capturing
the Blinky signals with a video camera. When multiple sources
are present, their sounds are mixed, and Blinky signals also reflect
the power of the mixture. The idea of the proposed source local-
ization is to decompose a multiple-sources localization problem
into “single source localization” problems. More specifically, the
Blinky signals can be factorized into transfer function gains and
temporal activations by non-negative matrix factorization. Each
obtained gain vector is used for estimating each source location.
We conduct numerical simulations to evaluate the performance
of this method in indoor space like a meeting room. The
experimental results show that the proposed framework using
Blinkies is effective.

I. INTRODUCTION

Sound source localization is one of the most important
tasks in array signal processing for audio/speech processing
systems. A typical approach for the sound source localization
is to use a microphone array. The microphone array techniques
have been developed for a long time [1] and have become
essential for source localization [2], speech enhancement [3]
via beamforming, and source separation [4], [5]. In general,
having more microphones over a large area gives us more
spatial sound information. However, it causes more technical
challenges, i.e., cable connection with wired communication
or network bandwidth limitation through wireless communi-
cation. In this paper, we consider an alternative to traditional
arrays providing a trade-off between ease of sensor distribution
and spatial sound information.

In many practical situations, a video camera is available
in addition to the microphones, e.g., in smartphones, tele-
conference rooms, etc. It is thus possible to purposefully
embed sound side information in a video using specially
made sensors. One way to embed acoustic information in
video frames is sound-to-light conversion. This technique has
a long history, i.e., visualization for acoustic holography [6]
and communication for acoustic imaging [7]. Recently, it has
also been used for the study of frog chorus in the field [8].
Inspired by these ideas to capture acoustic information with
a video camera, we also developed sound-to-light conversion
sensors called Blinkies [9], [10] (see Fig. 1 left). These sensors
measure sound power by a microphone. The sound power is
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Fig. 1. Left: picture of an actual Blinky sensor. Right: illustration of acoustic
sensing system with Blinkies. Blinkies closer to sound source are brighter due
to larger sound power. Light signals from all Blinkies are captured by using
video camera synchronously.

used to modulate the intensity of an on-board light-emitting
diode (LED). Finally, a video camera is used to capture
the measurements from all Blinkies synchronously. Because
Blinkies are battery-powered and do not require cables or
wireless networks, they can be easily distributed over a large
area. This system is showed in Fig. 1 right.

In previous work, we proposed energy-based single source
localization to use a hundred-and-one Blinkies to provide
sound power distribution of a single source. We showed how
it could be used to perform a live source localization [9], [10].
This method results in precise localization in an environment
with high reverberation time and shows the usefulness of
sound-to-light conversion. However, when several sources are
present, it is not easy to provide sound power distribution of
individual target sources because the sound power of their
mixture is measured.

In this paper, we propose the energy-based source localiza-
tion based on the sound power separation in the presence of
multiple sources. In this situation, we previously proposed a
sound power separation algorithm [11], [12]. A sound power
matrix is approximately low-rank and can be factorized into a
transfer function matrix and a source activity matrix by non-
negative matrix factorization (NMF) [13]. Because the transfer
function matrix is expected to consist of the transfer function
gains of individual sources, they can be used for estimating
the location of each source. In other words, the sound power
separation decomposes a multiple-source localization problem
into single-source localization problems. A mapping from
transfer function gains to a location of a single sound source
is learned by a neural network.

The performance of the proposed source-localization
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method is evaluated by an experiment on simulated signals. We
compare this method to a baseline algorithm. The results show
that the performance of the proposed method for two-source
localization is on par with that for single-source localization.
This indicates that the proposed multiple-source localization
using Blinkies is effective.

The rest of the paper is organized as follows. Section II
describes the details of acoustic sensing with Blinkies and the
video camera and how to recover sound power from the video
camera measurements. Section III describes the sound power
separation algorithm and its application to the source location.
Experiments are discussed in Section IV. Section V concludes
this paper.

II. ACOUSTIC SENSING WITH BLINKIES AND VIDEO
CAMERA

Acoustic sensing with Blinkies and a video camera con-
sists of three parts: sound-to-light conversion in each Blinky,
capturing Blinkies’ LED light by a video camera, and sound
power estimation from video camera measurements. In this
section, we first briefly summarise the acoustic sensing proce-
dure. After that, we explain a problem statement in this work.

A. Sound-to-light Conversion

We now explain how the measured sound power is trans-
formed to light intensity by Blinkies. Let n be a discrete time
index. A sound power measurement u[n| is computed from
a microphone signal z[n] and limited to a range including
ambient sound levels. The measured value u[n] is subsequently
mapped in a non-linear way to a 12-bit duty cycle of the pulse
width modulation (PWM) driving the LEDs. This non-linearity
is necessary because of the discrepancy between the dynamic
range of natural sounds, over 60 dB, and 8-bit pixel values
measured by a video camera. In addition, the function mapping
PWM duty cycle to pixel values measured by the video camera
was found to be approximately logarithmic. Taking all this
into account, we designed a non-linear function ¢(-) which
preserves information including small amplitude components
of speech [10].

The sound power measurement u[n] is converted into the
B-bit PWM duty cycle, £[n] € 0,---,2% — 1, by the non-
linear function ¢(-). Then, the actual emitted light intensity
I[n] is given by

I) = gL, (] = gala)), (D)

2B —
where .« is the intensity of the LED driven continuously.

B. Capturing Blinkies’ Light by Video Camera

After the sound-to-light conversion, LED light from
Blinkies propagates in air and it will be captured by a video
camera. The LED light intensity at the camera is affected by
attenuation « depending on the angle and distance between
the LED and the video camera. In addition to this attenuation,
ambient light is added to the light intensity as a positive bias
f3. For these reason, the light intensity v[n] at the video camera
is calculated by using attenuation « and bias 3 as
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Fig. 2. Top: model of transmission channel from sound event to video file.
Bottom left: processing internal to Blinky. Bottom right: channel effects
impacting light transmission from Blinkies” LED to video camera.

v[n] = al[n] + B. )

Note that, we assume the attenuation and bias are constants.
These assumptions mean that Blinkies and the camera are
located at fixed positions and the ambient light intensity is
time invariant, respectively.

An imaging sensor on the camera capture the light inten-
sity and the camera encodes it as a video file. Consumer
cameras generally process sensor outputs into pixel values,
but industrial cameras usually provide raw video frames that
directly store sensor output. One of the typical processing
is Gamma correction. It converts sensor output v[n] so that
pln] = (v[n])*/” with v = 2.2. To avoid the non-linear
transform, we utilize an industrial camera for capturing signal
v[n]. Hence, we can assume p[n] = v[n].

C. Sound Power Estimation

Due to the non-linear mapping in (1), the propagation in (2),
and the video processing such as Gamma correction, captured
pixel value p[n] differs from the actual sound power u[n]
measured by a Blinky. To reconstruct u[n] from p[n], it is
necessary to estimate both v and 3. Here, we explain how to
reconstruct u[n| from p[n].

There are several ways to attain the calibration depending
on having the Blinky transmit a known pilot signal. We now
describe a general way to use a second auxiliary LED for
calibration. Fig. 2 summarizes the propagation model from
sound power to pixel values.

Let /giz and £,ef are the PWM duty cycles of the signal and
calibration LEDs, respectively. We assume the two LEDs are
sufficiently close so that the values of « and [ are the same.
Then, from (1) and (2), the light intensities obtained by the
video camera are

f ig [T si
poslr] = gl = a2 1G9 45, )
Pref-lo = VUref-lo = 67 (€]
l
Pref-hi = Uref-hi = O‘%ISZQ + ﬁv (5)

where vg;g is the signal LED, and vyef.1o and vyef.pi are low and
high levels of the calibration LED, respectively. From (1)—(5),
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the estimated «, 3, and sound power i, are where a,,, is the room transfer function from k-th source

9B _ 1 1 to m-th Blinky, s; is the k-th source signal, and f €
@ = (Pref-hi — pref—lo)w ; (6) {1,2,---,F} denotes a frequency. Note that, in practice, this
Imax fref com . . . . . .
putation is carried out in the time domain.
B = Pret-1o, (7 Assuming that the room transfer function is frequency flat,

sources are statistically uncorrelated, and the STFT frame
) length is longer than the reverberation time. We obtain the

ﬁsig [TL] = 9971 (Ksig[n})

f
—1 psig [TL} — Pref-lo ]rggx)

= 410 (Si )Zref
Pref-hi — Pref-lo Imagx

(8) following approximation from (9):
r 2
Note that, due to frame rate limitation of the video camera, fre- Um[n] = Z

quancy information on the original signal cannot be recoverd. e

K
amk [f1skf, ]

k

F
Z |amk[f]|2 |sklf, n”2
1f=1

D. Problem Statement

In this paper, we aim to localize K target sound sources
by using M Blinkies for M > K. In other words, our aim
is to obtain location r;:) €ER3 k=12 K, of the k-
th sound source from estimated sound power measurement
G [n] of the m-th Blinky at r{¥) € R3, m = 1,2,---, M.
We consider a scenario where Blinkies are distributed in the
room, and a video camera records a scene. We assume that
Blinkies are placed far enough apart, and their LED lights are
independently captured at different pixels.

For sound source localization, an energy-based localization
method, e.g., Chen et al. [2] has been proposed. The sound
power is approximately inversely proportional to the distance
from a sound source. This is a basis in the energy-based local-
ization. However, when several sources are active at the same
time, it is not easy to obtain the sound power of each target
source because the sound of sources are mixed and the sound
power u,,[n] is then the power of the mixture. In this situation,
we cannot directly apply the energy-based localization method
to multiple source localization. For solving this problem, we
propose using NMF for separating the sound power of each
source.

I 2
M= T[>

F K
Gk Y skl n)* = gmihaln],  (10)
f=1 k=1

k=1

where gmr = |ami[f]|? and hy[n] = Z?Zl |sk[f,n]|? are
the transfer function gain and source activity, respectively.
Therefore, in according with this model, the sound power
matrix U having rank K can be separated into the non-
negative transfer function matrix G' and source activity matrix
H as a NMF model

U~ GH,

where (U)mn = um[n]a (G)mk = Imk> (H)kn = hk[n]

Since U is only approximately low-rank, we find the
factorization minimizing a well-chosen distance function. In
general, Euclidean (EUC) distance, Kulback-Leibler (KL),
and Itakura-Saito (IS) divergences are used and multiplicative
update rules striking a good compromise between speed and
ease of implementation are applied to solve these optimization
problems [13]-[15]. The update rules of G and H for the EUC
distance are given by

an

III. MULTIPLE SOURCE LOCALIZATION WITH BLINKIES

A. ' G'U)pn
Overview o (H)in < (H)in éTGI_}k 7 (12)
The proposed source-localization method based on sound ( Jkn
power separation treats a multiple source localization problem (UH )y,
. . . . (G)bk < (G)bki—r . (13)
as single source localization problems. A sound power matrix (GHH ),

that has measurements [n] as elements can be separated into a
non-negative matrix that denotes a room transfer function gain
and another non-negative matrix that means source activity
by NMF. The transfer function gain has features of distance
from sound source to Blinkies and provides a sound power
distribution in space. Hence, using the transfer function gains
obtained via NMF estimates each source location with energy-
based source localization algorithm.

Similar update rules exist for the KL and IS divergences.

Note that, additivity of sources in the power domain will be
required for NMFE. Due to the non-linearity described in II-A,
the source signals are not additive when measured as pixel
values by the video camera. Hence, to reconstruct correct
sound power measurement, sound power estimation in (8) is
needed. A similar technique has been previously suggested for
far noise reduction in microphone arrays [16].

B. Sound Power Separation Using NMF C. Multiple Source Localization

In the short-time Fourier transform (STFT) domain, we

. . We will now describe how to use the transfer function gain
suppose that the m-th Blinky measurement u,,[n] is the sum

gmi obtained from NMF for sound source localization. Our

of the sound power over frequency at its location

approach is to learn a mapping ¢ from transfer function gain

Fo| K 2 gmi to sound source location rg,li). We trained neural networks
U [n] = Z Zamk[f Ise[f.n]| 9 so that they model ¢. We compare a performance of fully
f=11k=1 connected neural network (FCNN) and FCNN with residual
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Fig. 3. System flow of proposed source-localization method based on sound
power separation. Top: training stage with a single source. A neural network
model is trained to learn a mapping from transfer function gains to a source
location. Bottom: estimate stage with multiple sources. Source locations are
estimated by inputting each transfer function gain into the trained model.

j
o
S
a
*

kies

EECEENCEE —p NMF —»
Sound power

inl

#Blinkies
4444444
#B1

connection (FCNN w/ RC) [17]. FCNN is simply consists
of five layers. FCNN w/ RC consists of three bottleneck
architecture linked by residual connection sandwiched between
input and output fully connected layers. The input layer is
followed by 10% dropout for regularization [18]. Rectified
linear units (ReLU) are used for activations. The optimizer
is the Adam [19]. The loss function is the mean absolute
error (MAE) defined as

1
MAE:};

where |[|-||; denotes ¢1-norm, and t,’ is the estimate of the
k-th source location. A flow diagram of the proposed multiple
source localization is shown in Fig. 3.

f'](:) . 1‘5:)

) (14)
1

(s)
k

IV. EXPERIMENTS
A. Simulation setup

We simulated a 5 m x 6 m x 2.5 m room with reverberation
time of about 300 ms by using Pyroomacoustics [20]. Twenty
Blinkies were simulated by placing microphones on an approx-
imate 4 x 5 grid filling the 4 m X 5 m rectangular area with
lower left corner at [1.0, 1.0]. Their height was 1.0 m. We
assumed Blinky measurements could be perfectly estimated
from pixel values captured by a video camera.

We placed one or two target sources inside this grid at least
0.1 m away from any Blinkies. In the training stage and one
of the test conditions, an interfering source was also placed in
the same way. Their height was 1.2 m. An illustration of the
setup is shown in Fig 4.

The simulation was conducted at a sampling frequency of
16 kHz. Before simulating propagation, the variances of target
sources were fixed to a,% =1 at these sources. The signal-to-
interference-and-noise ratio (SINR) was defined as

K 2

SINR = Lfﬂ ok (15)
Ui + Un

where 02 and o2 are the variances of the interfering source

and uncorrelated white noise, respectively. We set them so

that SINR = 60, 10,5 dB in training data and SINR = 60 dB

in evaluation data. We expect that adding an interference to

training data affects the robustness of errors of NMF. Here, we
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Fig. 4. Illustration of a room geometry and locations of sources and Blinkies
in the experiments.

TABLE I
THE NETWORK STRUCTURES OF FCNN AND FCNN w/ RC,
RESPECTIVELY.

FCNN FCNN w/ RC
layers 20-15-10-5-3  20-20-{bottleneck }-20-3
bottleneck architecture - 20-3-20
number of bottleneck - 3
dropout - 0.1

used speech signals as sound source signals. All the speech
samples of approximately 20 s were made by concatenating
samples from the CMU ARCTIC [21]. The experiment was
repeated 1100 times for different attributions of number of
sources, speech samples and source locations.

According to the results from previous work [12], we used
the EUC distance cost function for NMF. In this experiment,
the number of NMF basis vectors was set to the exact number
of sources. When the number of sources is unknown, we
could determine the number of basis vectors by the number
of larger singular values of the sound power matrix U. The
NMF updates ran for 100 iterations. The number of training
and validation data were 1000 and 100 examples, respectively.
The neural network was trained with Pytorch [22] for 1000
epochs and with a mini-batch size of 16. Table. I shows details
of neural network structure.

The localization algorithms using FCNN and FCNN w/ RC
were compared with a baseline method that estimates the k-th
source location f'? as the location r,(Lb ) of the brightest Blinky,
namely,

R (16)
where
[ = arg max gmk- 17)

m

The ground-truth signals of separation were obtained by
simulating each source separately. We tested three conditions:
1 source, 1 source plus 1 interference with same SINR for
training (for example, when SINR at training was 10 dB, that
at test was also 10 dB.), and 2 sources, and compared them
in order to verify whether the NMF works appropriately.
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Fig. 5. Box-plot of root mean square error (RMSE) of estimated source locations for 1 source, 1 source plus 1 interference with same SINR for training, and
2 sources, respectively, from left to right. Source localization algorithms are shown on horizontal axis. The signal-to-interference-and-noise ratio (SINR) in
the training stage is shown in legend. Boxes span from first to third quartile, referred to as @1 and @3, and whiskers show maximum and minimum values
in range of [Q1 — 1.5(Q3 — Q1), Q3 + 1.5(Q3 — Q1)]. Band inside boxes indicates median.

B. Results

We evaluated the localization error respect to the root mean
square error (RMSE). The lower the RMSE, the closer the
estimated location are to ground-truth. The distribution of
RMSE of validation dataset is illustrated as box-plots in Fig. 5.

Overall, the error range of the training-based algorithm
is much more compact than that of the baseline algorithm
in all conditions. In the case of one-source localization, the
difference in SINR at training did not affect the performance.
However, the results in the one-source plus one interference
and two sources show that the training with adding inter-
ference, especially at low SINR, much reduces the errors.
Among them, FCNN w/ RC shows the best performance,
and in this case, the performance of the proposed method for
two-sources localization is on par with that for single-source
localization. This means that the proposed source-localization
can treat multiple source localization as single-source local-
ization. From these results, we confirm that multiple source
localization with Blinkies is effective.

V. CONCLUSION

We proposed energy-based multiple source localization to
estimate target sources using Blinkies and a video camera.
Since Blinkies can be distributed over a large area, they
provide spatial information of sound. The idea of the proposed
source localization is to decompose a multiple-source localiza-
tion problem into single-source localization problems based on
the NMF. Using transfer function gains of individual sources
obtained via NMF, we estimated each source location with a
neural network. We evaluated the performance of the source
localization in simulations and confirmed the effectiveness of
the proposed method, particularly when the neural network is
trained in a low SINR condition.

Our future work will focus on evaluating the performance
of the proposed method for real-recorded data in reverberant

conditions.
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