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Abstract—The accuracy of binaural sound source localization
is faced with the challenge of localizing azimuth and elevation
simultaneously in noisy and reverberant environments. In this
work, a full-sphere binaural sound source localization system
is proposed using convolutional neural network and multi-task
neural network connected to learn the localization features. The
log-magnitudes and interaural phase difference (IPD) of binaural
signals are used as inputs to a two-branch convolutional neural
network, from which interaural and monaural cues are extracted
and combined. Then, the full-sphere localization is formulated
as two subtasks of estimating azimuth and elevation separately
using multi-task neural network. To reduce reverberation effects,
the interaural coherence based pre-processing is used to select
the direct-path dominated time-frequency bins for localization.
The proposed system is evaluated at a variety of noise and re-
verberation conditions, in comparison with two baseline systems.
The results indicate that the proposed system achieves better
localization performance, especially for elevation estimation, at
low SNR and strong reverberation conditions.

I. INTRODUCTION

Binaural sound source localization (SSL) aims at achiev-
ing the same ability to humans, i.e., identifying the spatial
positions of sound sources using two acoustic sensors, by
mimicking binaural hearing principles. Comparing with many
localisation systems deployed in the audio, radar, and sonar
applications, which rely on large arrays of sensors, the major
advantages of a two-sensor array are its small size, fast
response time and easy calibration. Therefore, SSL in binaural
systems, such as in hearing aids, personal sound amplification
products (intended to amplify sounds for people who are not
hearing impaired) and humanoid robots, has received consider-
able attention from the audio signal processing community [1],
[2], [3], [4], [5].

Humans can achieve source localization in a three-
dimensional space mainly by using interaural cues and spectral
cues from the signals received at the two ears, known as
binaural hearing [6]. Interaural cues refer to interaural time
or level difference (ITD/ILD) between signals at the left and
right ear and they are used to determine the lateral direction
(left, front, right, or frontal horizontal plane) [7]. Spectral
cues, caused by scattering and diffraction of sound waves
in the pinnae and around human body, are mainly used for
localizing the elevation or distinguishing front-back [8]. The
head-related transfer function (HRTF) is an acoustic transfer

function defined for describing sound propagation from a
specific point to the listener’s ear and a pair of HRTFs for
two ears capture all the localization cues [9].

Early work of binaural SSL focused primarily on azimuth
localization, and can be classified into (i) cross-correlation
techniques that estimate interaural cues (ITD/ILD) from two
microphone signals and by comparing the estimates with the
stored dataset to estimate the source azimuth [1], [10], and
(ii) model based algorithms that exploit statistics of ITD/ILD
through probabilistic models and apply maximum-likelihood
estimation for source localisation [2], [11], [12]. While humans
actually achieve elevation estimation from the perception of
spectral peaks and notches of certain frequencies [13], the
method based on spectral differences between the received
binaural signals and HRTF data, with spectral pre-processing
to remove rapid fluctuations in HRTF data and the spectrum of
the sound, has been proposed [5]. Recently, a few systems have
been proposed for full-sphere binaural SSL [5], [14], [15].
However, it is still not clear how to combine the interaural
and spectral cues in a systematic way for the best results in
complex environments.

With the rise of machine learning, neural network based
methods have been widely used to solve binaural SSL. HRTFs
of 45 subjects in CIPIC [16] database have been analyzed
using convolutional neural network (CNN) to exploit the
binaural localization cues [3]. Experimental results indicated
that CNN can be trained to achieve classification performance
comparable to that of humans in a simple sound localization
task [17], [18]. The end-to-end system has also been used for
binaural SSL [4]. However, when employed in complex envi-
ronments, binaural SSL still faces a variety of challenges, such
as elevation/distance ambiguity, reverberation and interfering
sources.

In this work, we develop a full-sphere binaural SSL system
as illustrated in Fig. 1. The log-magnitudes and IPD of the
binaural signals are used as inputs to two parallel CNNs, from
which the interaural and monaural localization cues are ex-
tracted. The full-sphere SSL is formulated as two subtasks, i.e.,
estimating the azimuth and elevation separately using multi-
task neural network (MNN). The interaural coherence (IC)
based pre-processing stage is used to select the time-frequency
bins that are dominated by the direct path, so that reverberation
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Fig. 1. The proposed full-sphere binaural sound source localization system.

effects can be reduced. The proposed system has been trained
at different noise and reverberation conditions, and tested
under both trained and untrained conditions. Compared with
two baseline systems, the propose system demonstrates more
accurate localization results especially in noisy and reverberant
environments.

II. BINAURAL SOUND SOURCE LOCALIZATION PROBLEM

This paper assumes that a single source signal is captured
by two microphones, i.e., the left and right ear microphones
of a binaural system, in a noisy and reverberant environment.
The captured signals at each time-frequency (TF) bin in the
short-time Fourier transform domain are written as

Yl(t, f) = S(t, f)×Bl(f,Θ) +Nl(t, f)

Yr(t, f) = S(t, f)×Br(f,Θ) +Nr(t, f), (1)

where t and f indicate time and frequency indices, respec-
tively. Y (t, f), S(t, f), and N(t, f) denote the received bin-
aural signals, the source signal, and the additive noise at a
TF point, with l and r representing the left and right ear,
respectively. Bl(f,Θ) and Br(f,Θ) are the binaural room
transfer functions (BRTFs) of the source position Θ ≡ {ϕ, θ},
which can be modelled as a summation of the source position
HRTFs, the HRTFs corresponding to the image sources of
early reflections, and the acoustic transfer function (ATF) of
the late reverberant part. In other words, the BRTFs reduce to
the HRTFs, i.e, Hl(f,Θ) and Hr(f,Θ), only when it is in a
non-reverberant environment, such as in an anechoic chamber.
While it is widely adopted to learn or model the HRTF data
for binaural SSL, the problem becomes challenging in noisy
and reverberant environments.

III. PROPOSED APPROACH

A. Localization Feature Extraction by CNN

The log-magnitudes and IPD of binaural signals are used
as inputs fed to two parallel convolutional neural networks

to extract localization features. That is, the input data of one
branch are log-magnitudes of binaural signals,

El(t, f) = 20 log10 |Yl(t, f)|
Er(t, f) = 20 log10 |Yr(t, f)|, (2)

and the other branch is fed by the IPD of binaural signals

IPD(t, f) = ∠ Yl(t, f)

Yr(t, f)
. (3)

In this work, the signals are sampled at 16 kHz and the
window length is 100 ms with 50 ms overlap. The log-
magnitude features are extracted as 801 samples in each frame,
which represent the frequencies up to 8 kHz.

For the IPD feature, early studies have shown that IPD is
more dependable for frequency below 1.5 kHz due to the phase
wrapping in high frequency [6], while some recent work has
proven that high-frequency IPD cues will contribute to more
accurate full-sphere localization results [14]. Therefore, two
different frequency range schemes for IPD are investigated in
this work. The model that uses only low-frequency IPD is
called the LIPD model, which contains 82 samples of the IPD
feature for frequency below 1.5 kHz. A second model that uses
full-frequency IPD is called the FIPD model, which contains
801 samples of the IPD feature for the full frequency band.
In each frame, the left-ear and right-ear log-magnitudes are
stacked together to form the magnitude input matrix of size
801×2, and the IPD form another input matrix of size 82×1
or 801× 1.

Two independent CNNs are adopted to find the localization
features from log-magnitudes and IPD for full-sphere sound
localization. As shown in Fig. 1, the IPD are followed by
layers of 32 kernels of shape 3×1 to extract interaural features,
and log-magnitudes are followed by layers of 32 2D kernels
of shape 3×2 to extract interaural and monaural features from
inputs simultaneously.

In each branch, the first convolutional layer is followed
by 2×1 max pooling, and four more convolutional layers are
employed to search for features suitable for localization. The
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first two of the four layers use 64 kernels of size 3×1. And the
last two use 128 kernels of size 3×1. The first two layers are
followed by 2×1 max pooling and all convolutional layers are
followed by batch normalization (BN) operations with rectified
linear unit (ReLU) activation function respectively.

Finally, the outputs of the two branches are flattened and
concatenated together to unite the magnitude feature and IPD
feature, and the united feature is fed into two fully-connected
hidden layers with 8192 and 4096 units, respectively, to
generate the shared feature for the following multi-task sound
source localization.

B. Full-sphere Localization by Multi-task Neural Network

In NN-based learning, the typical way of solving a problem
is to build a single model for a particular task and optimize the
parameters of this model based on certain criterion. However,
given only optimized for a single task, the network cannot
achieve optimality when several related tasks need to be
completed simultaneously.

One appropriate method is to use the shared representations
between several related tasks, thus the entire model can be
trained together and give the optimal performance for each
single task. This kind of approach is called multi-task learn-
ing (MTL) [19], which has been used successfully in many
applications including sound localization [15], [20].

In the architecture of the proposed multi-task neural network
(MNN) as shown in Fig. 1, a hard-parameter sharing strategy
has been used. There are two branches in this MNN represent-
ing the azimuth and elevation estimation, respectively. Each
branch has five fully-connected layers and two parallel output
layers with softmax activation.

The cross-entropy loss function for a single azimuth estima-
tion or elevation estimation task is used to train the network.
The total loss function L for full-sphere source localization
network is designed by the weighted sum of the azimuth loss
function La and elevation loss function Le, that is

L = αLa + (1− α)Le, (4)

where α represents the weight with the value ranging from
[0, 1]. In this way, the two single-task branches are trained
simultaneously by minimizing the total loss function L.

C. Interaural Coherence Pre-Processing

As stated, binaural SSL in reverberant environments is
challenging because the signals received at two ears are
contaminated by early reflections and late reverberation, which
leads to a decrease in the coherence of received binaural
signals.

In this work, we adopt interaural coherence based (IC-
based) pre-processing to select TF-bins that are dominated by
the direct path. The IC is defined as follows

Γ(t, f) =
Φl,r(t, f)√

Φl,l(t, f)× Φr,r(t, f)
, (5)

where Φl,r(t, f) represents the cross-power spectral densi-
ty (CPSD), Φl,l(t, f) andΦr,r(t, f) represent the auto-power

spectral density (APSD) of the time aligned signals received
at the left and right ear, respectively. A recursive smoothing is
applied to estimate the CPSD and APSDs from the received
binaural signals processed in frames as in [21], that is

Φl,l(t, f) = βΦl,l(t− 1, f) + (1− β)|Yl(t, f)|2

Φl,r(t, f) = βΦl,r(t− 1, f)

+ (1− β)Yl(t, f)× Yr(t, f),

(6)

where β represents the smoothing parameter. Φr,r(t, f) is
obtained in a similar way of calculating Φl,l(t, f).

IV. EXPERIMENTS AND ANALYSES

A. Experimental Setup

Binaural signals are simulated by convolving the binaural
room impulse response (BRIR) with the speech signals from
the DARPA TIMIT database [22]. The BRIRs are generated
using the HRTF of subject 003 in CIPIC database and the
room impulse responses (RIR) [23] simulated with the image-
source method. A simulated room of size 5 m × 5 m ×
3 m is created and the subject head is located at the room
center, i.e., (2.5, 2.5, 1.5) m. The sound source is positioned
at 1250 directions on the sphere around the subject, i.e., 25
azimuth angles ranging from −80◦ to 80◦ and 50 elevation
angles ranging from −45◦ to 230.625◦, which is the same
position scheme as used in the CIPIC database.

At each direction, the training dataset is obtained by se-
lecting randomly 24 different speech signals from the TIMIT
train set, while another 6 different speech signals form the
validation dataset and 10 more speech sentences are selected
to create the test dataset.

The model is trained at a variety of reverberation and
noise conditions, and tested under both trained and untrained
conditions. In the reverberation test, the corresponding T60

varies from 200 to 500 ms approximately by manipulating
the absorption coefficients of the walls. As for the noise
test, additive white gaussian noise is used to generate data
with SNRs varying from 10 to 30 dB. Multi-conditional
Training (MCT) is applied to allow the network to learn the
various features and enhance the performance under different
conditions. The data with T60 of 150, 250, 350, 450 ms and
SNRs of 5, 15, 25, 35 dB are used for training, and the data
with T60 of 200, 300, 400, 500 ms and SNRs of 10, 20, 30
dB are used for validation and test.

The adam optimizer and a decreasing learning rate initial-
ized at 1e-3 are adopted for training the network. If the error on
the validation set does not decrease in 2 epochs, the learning
rate is multiplied by 0.5. The early stopping is applied after
at least 5 epochs. The weight α for MNN is set to 0.5.

The performance of the proposed system is compared with
two state-of-the-art baselines. One uses the composites feature
vector of the IPD and ILD that are selected based on the
analysis of mutual information to improve the 3D localization
performance in complex conditions [14]. The other system
uses IPD and ILD directly as inputs to a time-frequency
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TABLE I
COMPARISON OF AZIMUTH AND ELEVATION ESTIMATION ACCURACY [%] AT DIFFERENT SNRS.

(a) Azimuth Accuracy Comparison

SNR No Noise 35dB 30dB 25dB 20dB 15dB 10dB 5dB

[14] 99.44 - 98.88 - 97.20 - 94.40 -
[15] 98.08 97.87 97.46 96.88 95.57 93.05 88.48 79.87

Proposed-LIPD (without IC) 98.07 98.03 98.01 97.98 97.83 97.27 94.99 86.24
Proposed-LIPD 97.91 97.86 97.80 97.71 97.45 96.47 93.02 82.38

Proposed-FIPD (without IC) 98.10 98.10 98.10 98.10 98.09 98.07 97.94 96.95
Proposed-FIPD 98.03 98.02 98.02 98.01 97.99 97.96 97.75 96.44

(b) Elevation Accuracy Comparison

SNR No Noise 35dB 30dB 25dB 20dB 15dB 10dB 5dB

[14] 96.08 - 89.60 - 72.64 - 37.04 -
[15] 100 97.67 95.73 92.42 86.93 78.37 65.77 48.47

Proposed-LIPD (without IC) 92.87 91.24 90.43 89.10 86.69 81.44 70.33 50.02
Proposed-LIPD 92.37 90.52 89.47 87.78 84.55 78.10 64.91 43.50

Proposed-FIPD (without IC) 99.21 98.83 98.63 98.28 97.59 96.17 93.06 85.25
Proposed-FIPD 99.18 98.71 98.45 98.02 97.26 95.75 92.42 84.56

TABLE II
COMPARISON OF AZIMUTH AND ELEVATION ESTIMATION ACCURACY [%] AT DIFFERENT REVERBERATION TIMES (T60).

(a) Azimuth Accuracy Comparison

T60 150ms 200ms 250ms 300ms 350ms 400ms 450ms 500ms

[14] - 94.32 - 91.44 - 89.44 - 78.88
[15] 99.05 95.95 96.19 91.60 92.12 87.44 90.40 83.64

Proposed-LIPD (without IC) 96.37 95.38 96.18 94.04 95.43 91.67 94.09 87.48
Proposed-LIPD 96.91 96.30 96.98 95.58 96.58 93.94 95.37 90.34

Proposed-FIPD (without IC) 97.26 95.53 96.21 94.23 95.77 92.57 94.98 90.02
Proposed-FIPD 98.83 97.47 98.23 97.06 98.17 96.18 97.70 94.45

(b) Elevation Accuracy Comparison

T60 150ms 200ms 250ms 300ms 350ms 400ms 450ms 500ms

[14] - 75.84 - 68.48 - 55.52 - 42.64
[15] 99.06 96.26 95.96 91.76 91.73 86.93 89.57 81.70

Proposed-LIPD (without IC) 95.56 94.75 96.37 93.21 95.51 90.14 93.89 84.61
Proposed-LIPD 96.89 96.47 97.68 95.76 97.18 93.44 95.70 88.49

Proposed-FIPD (without IC) 95.00 94.32 95.34 93.09 95.08 91.13 94.43 87.47
Proposed-FIPD 98.66 98.46 98.91 97.99 98.73 96.69 98.28 93.87

convolutional neural network for full-sphere binaural SSL.
[15]. In order to test the performance of this system in different
reverberant conditions, the same MCT setting is used to train
the network. The same descending learning rate scheme is
used for training, while other parameters are consistent with
the original paper. The performance measure is the localization
accuracy with the angular error tolerance of 0◦.

B. Results and Discussion
Table I and II show the performance comparisons between

the proposed method and baseline systems in different noise
and reverberation conditions. In each table, (a) represents the
azimuth localization results and (b) represents the elevation
localization results, respectively. Compared with two baseline
systems, the proposed method achieves the best performance
under most conditions, especially for low SNR (SNR≤ 25 dB)
and strong reverberation (T60 ≥ 200 ms) conditions. Note

that the proposed system has roughly the same localization
accuracy over the 1250 points on the full sphere, however to be
consistent with results of the baseline systems, only horizontal-
plane azimuth estimation results and median-plane elevation
estimation results are shown here.

In the proposed system, the log-magnitudes and IPD of the
binaural signals, which include both the interaural cues and
monaural cues, are fed into the CNN for feature selection.
This operation leads to more accurate source localization,
especially in terms of elevation estimation under noisy and
reverberant conditions, as shown in Table I and II. The two
baseline systems perform better only at high SNR and low
reverberation conditions. As shown in Table II, the baseline
system of [14] is severely contaminated by reverberation.
Compared with the approach using the same methodology of
MNN for full-sphere localization [15], the proposed method
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maintains reasonably accurate estimations even without the
IC pre-processing step for T60 ≥ 250 ms. These experimental
results confirm that when employed in complex environments,
using binaural magnitudes rather than using the interaural
magnitudes can more accurately preserve localization cues.
The IC-based pre-processing that are used to select the direct-
path dominated TF bins can bring further improvement for
localization in reverberant environments as shown in Table II.

As for the two proposed IPD models, the FIPD model,
which uses the full frequency range IPD information, demon-
strate better localization performance than that of the LIPD
model, which only uses IPD for frequency below 1.5k Hz.
These results indicate that there are some key localization
cues in the high-frequency IPD spectrum for full-sphere SSL,
which should be included to achieve more accurate localization
results.

V. CONCLUSIONS

This paper proposed a full-sphere binaural sound localiza-
tion system that uses the log-magnitudes and IPD of binaural
signals as inputs and combines two parallel cascades of
CNNs with a multi-task neural network to learn the shared
localization features. The full-sphere localization problem is
formulated as two subtasks of estimating azimuth and eleva-
tion localization in the MNN, with an IC-based pre-processing
to reduce reverberation influence. The proposed system are
validated in a variety of noise and reverberation conditions,
and demonstrated significant improvement of localization ac-
curacy compared with two baseline systems.
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