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Abstract— In spoken multiple-choice question answering 

(SMCQA) task, given a passage, a question, and multiple choices 

all in the form of speech, the machine needs to pick the correct 

choice to answer the question. A common strategy is to employ an 

automatic speech recognition (ASR) system to translate speech 

contents into auto-transcribed text. Therefore, a SMCQA task is 

reduced to a classic MCQA task. Under the strategy,  bidirectional 

encoder representations from transformers (BERT) can achieve a 

certain level of performance despite ASR errors. However, 

previous studies have evidenced that acoustic-level statistics can 

compensate for text inaccuracies caused by ASR systems, thereby 

improving the performance of a SMCQA system. Accordingly, we 

concentrate on designing a BERT-based SMCQA framework, 

which not only inherits the advantages of contextualized language 

representations learned by BERT, but integrates acoustic-level 

information with text-level information in a systematic and 

theoretical way. Considering temporal characteristics of speech, 

we first formulate multi-turn audio-extracter hierarchical 

convolutional neural networks (MA-HCNNs), which encode 

acoustic-level features under various temporal scopes. Based on 

MA-HCNNs, we propose a multi-turn audio-extracter BERT-

based (MA-BERT) framework for SMCQA task. A series of 

experiments demonstrates remarkable improvements in accuracy 

over selected baselines and SOTA systems on a published Chinese 

SMCQA dataset. 

I. INTRODUCTION 

The arising popularity of audio sharing websites and social 

networks have led to significant growth in spoken content 

nowadays. Apart from that, the development of multimedia 

technology has promoted the popularity of voice assistant 

applications, which are now frequently installed in a variety of 

mobile phones, home devices, and so on. Therefore, spoken 

question answering (SQA) has been an emergent challenge in 

recent years. Especially, the machine comprehension of spoken 

contents is an important technology in need. To solve the 

related tasks, a common strategy is to employ an automatic 

speech recognition (ASR) system to decode speech contents 

into auto-transcribed text. In this way, an SQA task is reduced 

into a classic text-based QA task. Although various text-based 

methods can be easily applied to the auto-transcribed text, it is 

inevitable that ASR errors will harm the performance of the 

simple strategy. Owing to the natural relationship between 

spoken contents and auto-transcribed text, we believe the 

acoustic-level information in the speech may provide 

additional cues to compensate for ASR errors. In other words, 

if we can find some ways to distill and leverage the acoustic-

level information, we may enhance the performance of SQA. 

In this study, we focus on the spoken multiple-choice 

question answering (SMCQA) task, where passages, questions, 

and choices are all given in the form of speech. The major 

contributions are at least twofold. First, in order to distill 

suitable cues from speech, we propose a novel framework, 

multi-turn audio-extracter hierarchical convolutional neural 

networks (MA-HCNNs), which encodes acoustic-level 

features under various temporal scopes. Second, inspired from 

the success of the bidirectional encoder representations from 

transformers (BERT) [1], the paper strives to develop an 

effective SMCQA framework based on BERT. To fully utilize 

the great potential of BERT, we propose a multi-turn audio-

extracter BERT-based (MA-BERT) framework, which crossly 

assembles the acoustic-level information extracted from speech 

by MA-HCNNs and the text-level information inferred by each 

transformer layer in BERT. Evaluated on the data of “Formosa 

Grand Challenge – Talk to AI”, a Mandarin Chinese SMCQA 

contest held in 2018, the proposed MA-BERT framework can 

outperform various SOTA systems by a large margin. 

II. RELATED WORK 

A. The Language Representation Methods 

Because of the impressive successes in many NLP-related 

tasks, language representations have become a popular 

research recently. Generally speaking, the research spectrum 

can be classified into two main schools according to the usages 

for the downstream tasks [1]: (1) feature-based models and (2) 

fine-tuning methods. 

The most representative and well-practiced feature-based 

models are the word embedding methods. The neural network 

language model [2] is the most-known seminal study, which 

mainly concentrates on estimating an n-gram language model 

while inducing word embeddings as a by-product. Follow-up 

extensions develop similar methods for probing syntactic 

regularities and latent semantic in the representation of words. 

The learned word embeddings are usually treated as feature 

vectors for various downstream tasks. Representative methods 

include continuous bag-of-words model [3], skipgram model 

[3], global vector model [4], and ELMo model [5]. 

In the latter school, the leading fine-tuning methods include 

OpenAI GPT [6], BERT [1], XLNet [7], RoBERTa [8], and 

ALBERT [9]. The fine-tuning methods usually consist of two 

parts: pretraining and task-specific parameters finetuning. 

Formally, such a school of methods usually leverage a self-
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supervised objective to obtain a pretrained model, and then a 

minimal set of task-specific parameters is introduced. After 

that, all (or only the task-specific) of the model parameters are 

trained toward the objective of the downstream task [6]. 

B. The Multiple-choice Question Answering 

In a text-based multiple-choice question answering (MCQA) 

task [10–14], the input to the model includes a passage, a 

question, and several answer choices. The passage usually 

consists of several sentences, while the question and each 

answer choice are almost a single sentence. A question 

answering model is designed to select a correct answer from 

multiple choices based on the information given in the passage 

and question. Previous studies usually concentrated on 

utilizing lexical and syntactic information in the passage to 

infer the answer [15–18], while recent research has turned to 

present various MCQA models based on neural networks [11–

14]. Classic methods include hierarchical attention-based CNN 

[19], parallel-hierarchical neural model [20], and hierarchical 

attention flow model [21], to name just a few. Although several 

elaborative mechanisms have been proposed based on deep 

neural networks, query-based attention CNN (QACNN) model 

[13] can be considered as a representative. Specifically, 

QACNN first computes the similarity matrices between 

passage and question, also passage and choice. Then, a CNN 

layer with query-based attention mechanism is employed to 

learn the location relationship pattern from the similarity 

matrices. Thus, the model crossly compares through passage, 

question and choice, and eventually decide an answer choice. 

Opposite to the conventional MCQA task, passage, question, 

and choices are all in the form of speech in a spoken multiple-

choice question answering (SMCQA) task. A naïve but easy 

solution is to first transcribe these speech utterances into text 

using an ASR system. Thereafter, a text-based method (e.g., 

QACNN) can be readily applied to the auto-transcribed text. 

Such a strategy only considers text-level information, while it 

is obvious that the audio may contain useful cues for answer 

prediction. Hence, several studies have been proposed to cope 

with the SMCQA task by considering both text-level and 

acoustic-level features. CNN-based hierarchical multistage 

mutimodal (HMM) framework [22] and SpeechBERT [23] 

model are representatives. The former tries to explore both the 

text-level and the acoustic-level relationships between a pair of 

passage and choice as well as a pair of passage and question by 

CNN-based attention mechanism. The latter assumes that the 

passage is given in the form of speech, while the question is in 

the form of manual transcription (i.e., without recognition 

errors). A concatenation of question and passage can then be 

fed into a BERT model, which makes it possible to explore the 

relationship between acoustic-level and text-level cues with the 

self-attention [24] mechanism. Although the HMM model 

seems to equip comprehensive ability for SMCQA task, it 

doesn’t leverage the merits in recent language representation 

models (e.g., BERT). On the other hand, SpeechBERT, which 

takes acoustic features as additional inputs to the BERT model, 

may suffer from the input length limitation of BERT so as to 

downgrade the performance and make the model inflexible. 

III. METHODOLOGY 

A. Vanilla BERT method 

Recently, BERT [1] has attracted much interest due to its 

superior performances in several NLP-related tasks [25–27], 

including question answering task [28]. When BERT comes to 

the MCQA task, a naïve but effective way is employing BERT 

to encode a concatenation token sequence of a passage, a 

question, and one of choices (a PQC pair). Then, a classifier is 

introduced to predict which choice is the correct answer to the 

question, as shown in Fig. 1.  

A SMCQA task is a MCQA task while all PQC pairs are 

given in the form of speech. Since BERT is only capable of 

encoding texts, a common strategy is to take auto-transcribed 

text of PQC pairs as its input. Formally, we build a 

concatenation sequence 𝑋𝑠  from the wordpiece token 

sequences of passage 𝑃 = {𝑃1, 𝑃2, … , 𝑃|𝑃|} , question 𝑄 =

{𝑄1, 𝑄2, … , 𝑄|𝑄|}, and 𝑠th choice 𝐶𝑠 = {𝐶1, 𝐶2, … , 𝐶|𝐶𝑠|}:  

 

          𝑋𝑠 = {[𝐶𝐿𝑆], 𝑃, [𝑆𝐸𝑃], 𝑄, 𝐶𝑠, [𝑆𝐸𝑃]},  (1) 

 

where “[CLS]” is a special token used for feature extraction 

and “[SEP]” is a separator token. |𝑃|, |𝑄|, and |𝐶𝑠| denote the 

token sequence lengths of 𝑃, 𝑄 and 𝐶𝑠, respectively. 

Next, the concatenation token sequence 𝑋𝑠 is embedded as 

𝐸𝑠
𝑡𝑜𝑘𝑒𝑛 ∈ ℝℎ×|𝑋𝑠|, where ℎ is the hidden size of BERT. On top 

of 𝐸𝑠
𝑡𝑜𝑘𝑒𝑛, we add the position embeddings 𝐸𝑠

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
∈ ℝℎ×|𝑋𝑠| 

and the segment embeddings 𝐸𝑠
𝑠𝑒𝑔𝑚𝑒𝑛𝑡

∈ ℝℎ×|𝑋𝑠| . Thus, we 

obtain 𝐻𝑠
0 ∈ ℝℎ×|𝑋𝑠|:  

 

          𝐻𝑠
0 = 𝐸𝑠

𝑡𝑜𝑘𝑒𝑛 + 𝐸𝑠
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

+ 𝐸𝑠
𝑠𝑒𝑔𝑚𝑒𝑛𝑡

.  (2) 

 

After that, we pass 𝐻𝑠
0  through 𝑈  transformer layers of 

BERT. For the 𝑢th transformer layer, we retrieve 𝐻𝑠
𝑢 ∈ ℝℎ×|𝑋𝑠|: 

 

  𝐻𝑠
𝑢 = 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟𝑒𝑛𝑐𝑜𝑑𝑒𝑟 (𝐻𝑠

𝑢−1) ∀𝑢 ∈ [1, 𝑈]. (3) 

 

Then, we extract the vector corresponding to the “[CLS]” 

token from 𝐻𝑠
𝑈 , and pass it through a fully-connected feed-

forward layer with parameters 𝑊1
𝐹𝐶 ∈ ℝ1×ℎ and 𝑏1

𝐹𝐶 ∈ ℝ1×ℎ . 

By doing so, a relevance score 𝑟𝑠  for the 𝑠th  choice can be 

obtained: 

 

      𝑟𝑠 = 𝑊1
𝐹𝐶𝐻𝑠

𝑈[𝐶𝐿𝑆] + 𝑏1
𝐹𝐶 .  (4) 

 

 

Fig. 1   A Vanilla BERT SMCQA system. 
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Finally, the training objective of the Vanilla BERT model is 

to maximize the likelihood of the correct choices by stacking a 

softmax function upon all the relevance scores of 𝑆 candidate 

choices: 

 

      𝑃(𝐶𝑠) =
𝑒𝑥𝑝(𝑟𝑠)

∑ 𝑒𝑥𝑝(𝑟𝑠′)𝑆
𝑠′=1

.   (5) 

 

For testing, the candidate choice with the highest relevance 

score (i.e., 𝑟𝑠) will be selected as the answer. 

B. Multi-turn Audio-extracter Hierarchical  

Convolutional Neural Networks (MA-HCNNs) 

In a SMCQA task, text inaccuracies caused by the ASR 

system could degrade the performance of a text-based system. 

To compensate for the ASR errors, a hierarchical multistage 

multimodal (HMM) framework [22], which incorporates 

acoustic features with a CNN-based MCQA model has been 

proposed. Though BERT has a large number of parameters and 

a deep network architecture, it was not designed to blend 

acoustic-level and text-level information. To make BERT fully 

utilize acoustic features, we propose multi-turn audio-extracter 

hierarchical convolutional neural networks (MA-HCNNs), 

which stack multiple layers of CNNs to extract acoustic 

features in various temporal scopes. 

In the same way of the Vanilla BERT method, we first 

tokenize auto-transcribed texts into wordpiece token sequences 

of passage 𝑃 , question 𝑄 , and 𝑠th  choice 𝐶𝑠 . At the pre-

processing stage, we first segment the speech to align with 

these tokens. Then, we compute the acoustic features (e.g. 

MFCCs) of the segmented speech. Hence, for each PQC pair 

{𝑃, 𝑄, 𝐶𝑠} , we retrieve their acoustic features 𝐴𝑃 =

{𝐴1
𝑃 , 𝐴2

𝑃, … , 𝐴
|𝐴𝑃|
𝑃 } , 𝐴𝑄 = {𝐴1

𝑄, 𝐴2
𝑄 , … , 𝐴

|𝐴𝑄|

𝑄
} , and 𝐴𝐶𝑠 =

{𝐴1
𝐶𝑠 , 𝐴2

𝐶𝑠 , … , 𝐴
|𝐴𝐶𝑠|

𝐶𝑠 }. We take {𝐴𝑃, 𝐴𝑄, 𝐴𝐶𝑠′}𝑠′  as the input of 

MA-HCNNs, and predict the correct answers based on encoded 

acoustic features, as shown in Fig. 2. 

Next, we pass {𝐴𝑃, 𝐴𝑄 , 𝐴𝐶𝑠} through a CNN layer and a max 

pooling layer to obtain the critical temporal features 

{𝐸𝑃
𝐴, 𝐸𝑄

𝐴 , 𝐸𝐶𝑠
𝐴 }: 

 

    𝐸𝑃
𝐴 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑊0

𝐶𝑁𝑁 ⊗ 𝐴𝑃) ∈ ℝℎ×|𝐴𝑃|,  (6) 

    𝐸𝑄
𝐴 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑊0

𝐶𝑁𝑁 ⊗ 𝐴𝑄) ∈ ℝℎ×|𝐴𝑄|, (7) 

    𝐸𝐶𝑠
𝐴 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑊0

𝐶𝑁𝑁 ⊗ 𝐴𝐶𝑠) ∈ ℝℎ×|𝐴𝐶𝑠|. (8) 

 

where ⊗ means the convolution operation, 𝑊0
𝐶𝑁𝑁  is the 

parameter of the CNN layer, and ℎ is the number of output 

channels of the CNN layer. 

Similar to the Vanilla BERT, we concatenate the features 

{𝐸𝑃
𝐴, 𝐸𝑄

𝐴 , 𝐸𝐶𝑠
𝐴 } to obtain 𝐺𝑠

0 ∈ ℝℎ×(|𝐴𝑃|+|𝐴𝑄|+|𝐴𝐶𝑠|):  

 

      𝐺𝑠
0 = [𝐸𝑃

𝐴; 𝐸𝑄
𝐴; 𝐸𝐶𝑠

𝐴 ].   (9) 

 

Then, we pass 𝐺𝑠
0  through 𝑈 layers of CNNs. For the 𝑢th 

CNN layer, we obtain 𝐺𝑠
𝑢 ∈ ℝℎ×(|𝐴𝑃|+|𝐴𝑄|+|𝐴𝐶𝑠|): 

 

𝐺𝑠
𝑢 = 𝑊𝑢

𝐶𝑁𝑁 ⊗ 𝐺𝑠
𝑢−1 ∀𝑢 ∈ [1, 𝑈],  (10) 

 

where 𝑊𝑢
𝐶𝑁𝑁  is the parameter of the 𝑢th CNN layer, and the 

dimension of inputs and outputs of CNNs are kept unchanged 

using the padding mechanism. 

Likewise, we pass 𝐺𝑠
𝑢 through a max pooling layer to obtain 

the critical features 𝐹𝑠
𝑢 ∈ ℝℎ: 

 

𝐹𝑠
𝑢 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐺𝑠

𝑢) ∀𝑢 ∈ [0, 𝑈].  (11) 

 

Finally, we pass 𝐹𝑠
𝑈 through a fully-connected feed-forward 

layer with parameters 𝑊2
𝐹𝐶 ∈ ℝ1×ℎ and 𝑏2

𝐹𝐶 ∈ ℝ1×ℎ. By doing 

so, a relevance score 𝑟𝑠 for the 𝑠th choice can be obtained 

 

      𝑟𝑠 = 𝑊2
𝐹𝐶𝐻𝑠

𝑈[𝐶𝐿𝑆] + 𝑏2
𝐹𝐶 ,  (12) 

 

Following the same training and testing approach of the 

Vanilla BERT method, we stack a softmax function upon all 

the relevance scores of 𝑆 candidate choices: 

 

      𝑃(𝑐𝑠) =
𝑒𝑥𝑝(𝑟𝑠)

∑ 𝑒𝑥𝑝(𝑟𝑠′)𝑆
𝑠′=1

.   (13) 

 

C. BERT-RNN 

The Vanilla BERT method generates a sequence of reading 

comprehension vectors 𝐻𝑠
𝑢 for each transformer layer in BERT, 

as stated in (3). However, only the vectors 𝐻𝑠
𝑈, generated by 

the last transformer layer in BERT, is utilized to predict the 

relevance score 𝑟𝑠 . Since each transformer layer in BERT 

encodes the contextual information in different scopes, it may 

be beneficial to utilize the outputs vectors from all transformer 

layers in BERT. Hence, we propose BERT-RNN, which uses a 

gated recurrent unit (GRU) [29] to further encode the output 

vectors of all transformer layers in BERT, as shown in Fig. 3. 

 

Fig. 2   The SMCQA framework of multi-turn audio-extracter 

hierarchical convolutional neural networks (MA-HCNNs). 
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First, we extract the vector corresponding to the “[CLS]” 

token from 𝐻𝑠
𝑢 for each transformer layer. Next, we pass the 

extracted vector through a GRU layer to obtain 𝑣𝑠
𝑢 ∈ ℝℎ: 

 

      𝑣𝑠
𝑢 = 𝐺𝑅𝑈(𝑣𝑠

𝑢−1, 𝐻𝑠
𝑢[𝐶𝐿𝑆]) ∀𝑢 ∈ [0, 𝑈],  (14) 

 

where ℎ is the hidden size of the GRU layer. 

Then, we pass 𝑣𝑠
𝑈  through a fully-connected feed-forward 

layer with parameters 𝑊3
𝐹𝐶 ∈ ℝ1×ℎ and 𝑏3

𝐹𝐶 ∈ ℝ1×ℎ to obtain. 

a relevance score 𝑟𝑠  for the 𝑠th  choice. Following the same 

training and testing approach of the Vanilla BERT method, we 

stack a softmax function upon all the relevance scores of 𝑆 

candidate choices: 

 

        𝑟𝑠 = 𝑊3
𝐹𝐶𝑣𝑠

𝑈 + 𝑏3
𝐹𝐶 ,   (15) 

        𝑃(𝑐𝑠) =
𝑒𝑥𝑝(𝑟𝑠)

∑ 𝑒𝑥𝑝(𝑟𝑠′)𝑆
𝑠′=1

.   (16) 

 

D. Multi-turn Audio-extracter BERT (MA-BERT) 

We have introduced MA-HCNNs and BERT-RNN in 

previous sections. In this section, we want to further induce the 

SMCQA model to learn the natural relationship between text-

level and acoustic-level information. To achieve the goal, we 

propose a multi-turn audio-extracter BERT-based (MA-BERT) 

framework, which fuses MA-HCNNs and BERT together with 

three GRUs, as shown in Fig. 4. Owing to the property of the 

recurrent neural network (RNN), the text-level information 

encoded by BERT and the acoustic-level information encoded 

by MA-HCNNs can be crossly combined across various 

temporal scopes, hence decrease the impact of ASR errors. 

First, the wordpiece tokens of a PQC pair {𝑇𝑃, 𝑇𝑄 , 𝑇𝐶𝑠} are 

passed through BERT. For each transformer layer in BERT, we 

retrieve its output vectors 𝐻𝑠
𝑢, as stated in (3). Then, we extract 

all the vectors corresponding to the “[CLS]” token from 𝐻𝑠
𝑢, 

and stack these vectors as 𝑅𝑠
𝑇 , which represents the text-level 

reading comprehension vectors. Likewise, the acoustic features 

of a PQC pair {𝐴𝑃, 𝐴𝑄, 𝐴𝐶𝑠} are passed through MA-HCNNs. 

For each CNN layer in MA-HCNNs, we retrieve its max-

pooled output vector 𝐹𝑠
𝑢, as stated in (11). Then, we stack these 

vectors as 𝑅𝑠
𝐴 , which represents the acoustic-level reading 

comprehension vectors. 

 

          𝑅𝑠
𝑇 = {𝐻𝑠

𝑢[𝐶𝐿𝑆]}𝑢=1
𝑈 ,  (17) 

          𝑅𝑠
𝐴 = {𝐹𝑠

𝑢}𝑢=1
𝑈 .   (18) 

 

We employ two separate GRUs to encode the text-level and 

acoustic-level reading comprehension vectors (i.e., 𝑅𝑠
𝑇  and 𝑅𝑠

𝐴). 

As the result, we obtain 𝑣𝑇𝑠
𝑢 and 𝑣𝐴𝑠

𝑢: 

 

        𝑣𝑇𝑠
𝑢 = 𝐺𝑅𝑈𝑇{𝑣𝑇𝑠

𝑢−1, 𝑅𝑠
𝑇[𝑢]} ∀𝑢 ∈ [0, 𝑈], (19) 

        𝑣𝐴𝑠
𝑢 = 𝐺𝑅𝑈𝐴{𝑣𝐴𝑠

𝑢−1, 𝑅𝑠
𝐴[𝑢]} ∀𝑢 ∈ [0, 𝑈]. (20) 

 

Fig. 3  The SMCQA framework of BERT-RNN. 

 

Fig. 4   The SMCQA framework of multi-turn audio-extracter BERT (MA-BERT). 
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Next, we concatenate 𝑣𝑇𝑠
𝑢 and 𝑣𝐴𝑠

𝑢 to obtain 𝑥𝑠
𝑢, and pass it 

through a third GRU, which encodes both text-level and 

acoustic-level information. As the result, we obtain 𝑣𝑠
𝑢: 

 

𝑥𝑠
𝑢 = [𝑣𝑇𝑠

𝑢; 𝑣𝐴𝑠
𝑢],    (21) 

𝑣𝑠
𝑢 = 𝐺𝑅𝑈{𝑣𝑠

𝑢−1, 𝑥𝑠
𝑢} ∀𝑢 ∈ [0, 𝑈].  (22) 

 

Finally, we take the last output vector 𝑣𝑠
𝑈 from the GRU, and 

pass it through a fully-connected feed-forward layer with 

parameters 𝑊4
𝐹𝐶 ∈ ℝ1×ℎ and 𝑏4

𝐹𝐶 ∈ ℝ1×ℎ to obtain a relevance 

score 𝑟𝑠  for the 𝑠th  choice. Following the same training and 

testing approach of the Vanilla BERT method, we stack a 

softmax function upon all the relevance scores of 𝑆 candidate 

choices: 

 

        𝑟𝑠 = 𝑊4
𝐹𝐶𝑣𝑠

𝑈 + 𝑏4
𝐹𝐶 ,   (23) 

        𝑃(𝑐𝑠) =
𝑒𝑥𝑝(𝑟𝑠)

∑ 𝑒𝑥𝑝(𝑟𝑠′)𝑆
𝑠′=1

.   (24) 

 

IV. EXPERIMENTAL SETUP 

A. Dataset 

We evaluated the proposed frameworks on the “2018 

Formosa Grand Challenge – Talk to AI1” (FGC) dataset, which 

is a spoken multiple-choice question answering task in 

Mandarin Chinese, in the experiments. Each passage-question-

choices (PQC) sets contains a passage, a question, and 4 

choices, among which only one choice is the correct answer. 

The domain of the FGC dataset is very diverse, including 

science, news, and literature, to name a few. The training set 

consists of 7,072 PQC examplers, and there are 1,500 PQC 

examplers for development. An elementary and an advanced 

test sets were investigated in this study, and both of them 

contains 1,000 PQC examplers. It is worthy to mentioned that 

questions in the advanced test set require deep understandings 

for choosing correct answers. 

B. ASR 

Our ASR system was built up using the Kaldi toolkit [30], 

where the acoustic model was trained based on TDNN-F with 

lattice-free MMI [31, 32], followed by model refinement with 

sMBR [33], with 461 hours of TV and radio broadcasting 

speech. In audio processing, spectral analysis was applied to a 

25 ms frame of speech waveform every 10 ms. For each 

acoustic frame, 40 MFCCs derived from 40 FBANKs, plus 3 

pitch features, were used for ASR and for our proposed HMM 

framework. Utterance-based mean subtraction was applied to 

these features. The lexicon contained 91,573 Chinese words. 

The word-based trigram language model was trained with 

Kneser-Ney backoff smoothing using the SRILM toolkit [34]. 

The recurrent neural network language model (RNNLM) was 

used for lattice rescoring [35]. The training corpus was 

compiled from PTT2 articles (2018) and CNA news stories 

                                                           
1 Formosa Grand Challenge - Talk to AI: https://fgc.stpi. 

narl.org.tw/activity/techai2018 

(2006 ˜ 2010) [36]. The character error rate (CER) of our ASR 

system is about 7.79%. 

C. Implementation Details 

The proposed frameworks were implemented by PyTorch 

[37], and we used the BERT model (bert-base-chinese) in the 

Huggingface’s Transformers library [38]. Parameters of MA-

HCNNs were optimized by stochastic gradient descent (SGD), 

while the rest were optimized by the AdamW method [39]. The 

hidden size of the three GRUs are set to {768, 32, 800}, 

respectively for encoding text-level/audio-level/both reading 

comprehension vectors, as stated in (19), (20), and (22). The 

hyperparameters: {kernel size, padding size, number of filters} 

of CNN layers in MA-HCNNs are set to {3, 1, 64} for 𝑊0
𝐶𝑁𝑁, 

and set to {7, 3, 768} for 𝑊𝑢
𝐶𝑁𝑁 ∀𝑢 ∈ [1, 𝑈]. 

V. EXPERIMENTAL RESULT 

In the first set of experiments, we evaluate various baseline 

systems, and the results are listed in Table 1. Systems 

compared in this study include a naïve baseline, a word 

embedding-based method and three recently proposed neural-

based SOTA MCQA methods. The most naïve baseline is to 

choose the longest choice or the shortest choice as the answer 

(denoted by “Choice Length”). This method could be even 

worse than a random guess. In addition to the naïve baseline 

system, a simple strategy based on the word embeddings is 

investigated. The method employs the pretrained word 

embeddings to represent a passage-question-choice pair by 

averaging the embeddings of all the words in the passage-

question-choice pair. Then, we can select the choice with the 

largest cosine similarity with the passage or the question to be 

the answer. The word embeddings used in this study are trained 

by fasttext [40] on the same corpus for ASR language model 

training. The dimension of the word embedding was set to 300. 

The results, as denoted by “Choice Similarity” in Table 1, 

indicate that the relationship between the question and the 

choice is more effective than the relationship between the 

passage and the choice. Next, the recently proposed neural-

based methods are also compared in this study, including 

QACNN [13], HMM [22], and the Vanilla BERT method. It is 

worthy to note that both QACNN and the Vanilla BERT 

models only leverage auto-transcribed text for answer 

prediction, while HMM uses both text-level and acoustic-level 

information for the SMCQA task. 

Valuable observations can be drawn from the results in Table 

1. First, as expected, QACNN, HMM and the Vanilla BERT 

models performed much better than the “Choice Length” and 

“Choice Similarity” methods, which also reveal the ability and 

the potential of the neural-based methods for SMCQA task. 

Next, we can observe that HMM outperforms QACNN in all 

cases. The reason should be that the HMM model integrates 

both text-level and acoustic-level information for answer 

prediction, while the QACNN model only leverages the text-

2 PTT: https://www.ptt.cc/index.html 
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level information. Moreover, the Vanilla BERT can achieve the 

best results in all baselines, which witnesses again the giant 

successes of the research on language representations. 

In the second set of experiments, we make a step forward to 

compare the proposed frameworks with all of the baseline 

systems, and the experimental results are also presented in 

Table 1. Based on the results, several worthwhile observations 

can be made from the comparisons. First, MA-HCNNs can 

achieve a certain level of performance using acoustic-level 

statics only, which indicates the potential benefit of utilizing 

acoustic-level information in SMCQA. Second, we find that 

MA-BERT outperforms all of the baseline systems in all cases, 

which signals that it can indeed make use of both acoustic-level 

and text-level statistics in a systematic and theoretical way for 

SMCQA. Third, it is definitely helpful to take advantage of the 

contextual information encoded in all transformer layers in 

BERT, since results for BERT-RNN are better than results for 

Vanilla BERT in all cases. Fourth, results for the advanced test 

set are worse than results for the elementary test set in almost 

all cases, which reveal that questions in the advanced test set 

require deep understandings for choosing correct answers. 

Fifth, thanks to the large-scale pretraining of BERT models, the 

Vanilla BERT and the proposed BERT-RNN and MA-BERT 

can absolutely outperform other neural-based methods (i.e., 

QACNN and HMM), especially in the test sets. To sum up, by 

subtly manipulating both text-level and acoustic-level 

information, the proposed MA-BERT framework is the 

affirmative choice for the SMCQA task. 

At the last stage, in order to exam the effect caused by the 

ASR errors for SMCQA task, we take Vanilla BERT, which 

only considers text-level information for answer prediction, as 

a subject. As the upper bound, the Vanilla BERT model is 

trained on manual-transcribed PQC sets, and the development 

and test sets are also in the form of manual-transcribed text. 

Orthogonal to the upper bound system, a model trained with 

erroneous transcripts by the ASR system is obtained, and the 

performances of the MCQA task with recognition errors are 

evaluated. All of the results are summarized in Table 2. The 

results indicate a significant performance gap between the 

upper bound system and the system based on auto-transcribed 

text, which shows that the recognition errors inevitably mislead 

the predictions for the Vanilla BERT model so as to degrade 

the MCQA performance. Accordingly, the analysis suggests 

that extra information, besides auto-transcribed text, should be 

explored to improve the SMCQA system. In summary, the 

proposed MA-BERT is a preferable vehicle for utilizing 

acoustic-level and text-level characteristics in the SMCQA task. 

VI. CONCLUSION 

In this paper, we have presented a multi-turn audio-extracter 

BERT (MA-BERT) framework, which jointly considers the 

acoustic-level and text-level statistics for the SMCQA task. 

The proposed framework has been evaluated on the 2018 

Formosa Grand Challenge (FGC) dataset. The experimental 

results demonstrate its remarkable superiority than other strong 

baselines compared in the paper, thereby indicating the 

potential of the framework.  
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