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Abstract—Generally, emotional speech recognition is consid-
ered more difficult than non-emotional speech recognition. This
is because the acoustic features of emotional speech are different
from those of non-emotional speech, and these features vary
greatly depending on the emotion type and intensity. In addition,
it is difficult to recognize colloquial expressions included in
emotional utterances using a language model trained on a corpus
such as lecture speech. We have been studying emotional speech
recognition for an emotional speech corpus, Japanese Twitter-
based emotional speech (JTES). This corpus consists of tweets on
Twitter with an emotional label assigned to each sentence. In this
study, we aim to improve the performance of emotional speech
recognition for the JTES through language model adaptation,
which will require a text corpus containing emotional expressions
and colloquial expressions. However, there is no such large-
scale Japanese corpus. To solve this problem, we propose a
language model adaptation using tweet data. Expectedly, tweet
data contains many emotional and colloquial expressions. The
sentences used for adaptation were extracted from the collected
tweet data based on some rules. Following filtering based on these
specified rules, a large amount of tweet data of 25.86M words
could be obtained. In the recognition experiments, the baseline
word error rate was 36.11%, whereas that of the language model
adaptation was 25.68%. In addition, that of the combined use
of the acoustic model adaptation and language model adaptation
was 17.77%. These results established the effectiveness of the
proposed method.

I. INTRODUCTION

In recent years, speech recognition technology has improved
significantly, and high performance has been reported, espe-
cially in the recognition of natural speech such as conference
lectures and conversational speech. However, it is generally
difficult to recognize emotional speech, because its acoustic
features differ from those of ordinary speech. Further, the
acoustic characteristics and duration vary greatly, depending
on the emotion type and intensity. Several emotional speech
corpora that can be used for such research have been con-
structed (e.g. [1–5] ).

Recently, a Japanese Twitter-based emotional speech
(JTES), which consists of phonetically and prosodically bal-
anced utterance sets, was proposed in [6]. We developed an
emotional speech recognition system for the JTES in [7]. First,
we used a deep neural network-hidden Markov model (DNN-
HMM) acoustic model trained on speech data in the Corpus
of Spontaneous Japanese (CSJ) [8]; however, thus far, we
have achieved limited recognition accuracy. This is because
although the CSJ is the largest speech corpus in Japan, it
contains almost no emotional speech. To solve this problem,

we used an acoustic model adaptation.
Another problem is the mismatch of the language model

(LM) between the CSJ and JTES. The CSJ consists of lecture
speeches. There are two types of lecture speech, the speech
of lectures at academic conferences and simulated lectures
on various topics. These speech data do not contain much
emotional expression. On the other hand, the JTES, a corpus
based on tweets on Twitter, contains many emotional expres-
sions, which were extracted to create the emotion corpus. To
solve this problem, we examined a LM adaptation using a
small amount of emotional texts, and evaluated it on emotional
speech recognition tasks [9]. A total of 1,960 sentences,
consisting of 490 sentences for each emotion, were used to
adapt the LM. As a result, the performance of the system only
improved minimally. This is because there were few adaptation
data. It is necessary to examine and select the content of the
data to equalize the number of data for each emotion; however,
these steps are time-consuming.

The purpose of this work is to improve the performance of
the emotional speech recognition on the JTES by adapting a
LM using a large amount of tweet data. In constructing the
LM, it is important to use a large amount of training data.
Because tweet data is believed to be suffused with emotional
expression, we conducted the LM adaptation using a large
amount of tweet data without considering the types of emo-
tions. Although many LM adaptations have been investigated
so far, they have been mainly concerned with adaptation to
specific topics [10–12]. On the other hand, LM adaptation
for emotional speech recognition is rarely performed. This is
because there is not much emotional data transcribed as text.
In this work, we try to solve the problem by using tweet data
instead of the transcription data.

Like the LM, the acoustic model (AM) is an important factor
in speech recognition. This paper also examines the combined
use of the LM adaptation and the AM adaptation similar to
[7].

The remainder of this paper is organized as follows: Section
II introduces the emotional speech corpus, the JTES. Section
III describes the process of collecting tweet data and the details
of the subsequent processing. Section IV describes the LM
adaptation method. Section V describes the acoustic model
adaptation. Section VI describes the set-up of the speech
recognition experiments. Section VII describes the results of
the speech recognition experiments. Section VIII presents our
conclusions.
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II. EMOTIONAL SPEECH CORPORA

In this study, we used two emotional speech corpora: JTES
and online gaming voice chat corpus with emotional label
(OGVC) [4]. The JTES is based on tweets on Twitter, and
comprises speech utterances by 50 males and 50 females
[6]. As tweets contain many emotional expressions, it is
possible to collect speech utterances with various emotions
by reading out the contents emotionally. The tweets were
classified into four emotion classes: joy, anger, sadness, and
neutral. Phonetically and prosodically balanced sentences were
selected using a sentence selection algorithm based on entropy.
Finally, 50 sentences corresponding to each emotion were
selected, and the emotional utterances were recorded using
these sentences. The total number of utterances in the JTES
is 20,000. Furthermore, 500 sentences corresponding to each
of the four emotions were prepared before extracting the
sentences using entropy. In our previous work, we used 1,960
of these sentences as the LM adaptation data.

In the evaluation experiments, to examine the versatility
of the proposed LM, experiments were also conducted with
a corpus other than JTES. The OGVC is one of the typical
Japanese emotional corpora. The OGVC uses game players’
voices as they play a massive multiplayer online role-playing
game (MMOPRG). In an MMOPRG, players play online
games and talk to each other. While concentrating on the game
they utter speech containing various emotions. The OGVC
is comprised of two types of speech: spontaneous and acted.
The former involves recording conversations during games. In
the latter, professional actors read out the transcripts of 17
dialogues extracted from gameplay conversations. When they
read them, the emotion type and intensity are specified. There
are eight types of emotion in the OGVC; we used the four
types corresponding to those in the JTES in the experiments.
There are four levels of emotional intensity from 0 to 3,
wherein Level 3 is the strongest emotional expression and
Level 0 indicates non-emotional expression. We used the acted
speech set in the experiments.

III. COLLECTING TWEET DATA

In this section, we will explain the outline of tweet data
collection using Twitter API. The data used in this experiment
were tweets posted to Twitter over the course of 51 days in
May, June, and October, 2019; Japanese tweet data, excluding
retweets and tweets from bots, were randomly collected. In
addition, the collected tweet data included symbols such as
pictograms and emoticons, and typographical errors; therefore,
it was difficult to use them as they were. Accordingly, they
were converted to an appropriate data format through the
following process.

• URLs, hash tags, line feeds, and reply destination’s
”@account name” were replaced with blank.

• Assuming that punctuation marks were sentence breaks,
text split was performed at those points.

• Texts with more than three words and less than 20 words
were extracted from the results of the MeCab segmen-

tation. MeCab is a Japanese morphological analysis tool
[13].

The reason for limiting the number of words in each sentence
was to match the characteristics of the JTES, which consists
of independent short utterances with an average of 17 words.
Furthermore, during the extraction of each text, the value of
the bigram perplexity was calculated by the CSJ-based LM
to select natural sentences as Japanese. Through the above
process, a large amount of tweet data consisting of 25.86
million words could be obtained.

IV. LANGUAGE MODEL ADAPTATION

A two-pass decoder was used in this study as the speech
recognition system, where a bigram and trigram were used
for the first and second passes, respectively. These are a type
of n-gram LM. In recent years, many highly expressive LMs
using deep learning, such as the long short-term memory
[10] and recurrent neural network [11], have been proposed.
Because the purpose of this work is to verify the effectiveness
of emotional utterance data for LM adaptation, the use of
these LMs is a subject for further study. We used a mixed
n-gram as the LM adaptation method [14]. In this method, the
mixed n-gram was created through the addition of an n-gram
count calculated from the baseline data (nbase

i ) and another,
calculated from an adaptation data (nadapt

i ). The occurrence
probability of the word wi in the adapted LM was calculated
as follows:

p(wi) =
w · nadapt

i + nbase
i

w ·Nadapt +N base
, (1)

where w is the weight for adjusting the imbalance between the
amount of the baseline and adaptation data. N base and Nadapt

are the total number of the n-gram counts of the baseline and
adaptation data, respectively.

V. ACOUSTIC MODEL ADAPTATION

In the recognition experiments, we also attempted to com-
bine the AM and LM adaptations. For the AM adaptation,
we used the method described in our previous work [7].
In the experiments, we conducted a supervised adaptation,
on the premise that each utterance was correctly labeled.
The backpropagation algorithm was used for adaptation, and
early stopping was introduced to automatically determine the
number of epochs [15].

In the recognition step, we used the output probability com-
pensation method [7]. In the output probability calculation,
there is a problem that the occurrence probability of the state
becomes extremely high with some phonemes such as silence.
To solve this problem, the output probability was compensated
in the recognition step. The output probability of the DNN-
HMM was calculated as

p(x|si) =
p(si|x)p(x)

p(si)
, (2)

where p(x), the occurrence probability of an input feature x,
was omitted, because it did not affect the recognition result.
p(si) was the occurrence probability of the state si. This
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value depended on the appearance frequency of a phoneme
in the training data. Because phonemes, such as silence,
frequently appeared in the training data, p(si) became high.
By limiting this value, the output probability can be prevented
from decreasing drastically. The specific method is as follows.
When p(si) exceeded the upper limit θ, it was replaced with
θ. The value θ was determined by setting the limiting rate α
in (3).

α =

∑
i∈D{p(si)− θ}∑I

i=1 p(si)
, (3)

where I is the total number of the states, and D is the set of
i that satisfies p(si) > θ. This method is effective, especially
when the adaptation data is small.

VI. EXPERIMENTAL CONDITION

The experimental conditions are described in this section, in
which we first describe our recognition system. In the speech
analysis module, a speech signal was digitized at a sampling
frequency of 16 kHz with a quantization size of 16 bits. The
length of the analysis frame was 25 ms, and the frame period
was set to 8 ms. A 25-dimensional feature, which comprises
the log mel-filter bank features and the log power, was derived
from the digitized samples for each frame. Moreover, the
delta and delta-delta features were calculated from the 25-
dimensional feature; hence, the total number of dimensions
was 75 per frame. A two-pass search decoder with a bigram
and trigram was used for recognition. In the first pass, a word
graph was generated using the DNN-HMM and the bigram
LM. Decoding was performed using a one-pass algorithm that
incorporated a frame-synchronous beam search and a tree-
structured lexicon. In the second pass, the trigram LM was
deployed to re-score the word graph, and the recognition result
was obtained.

The input layer of the DNN used 75 coefficients, with a
temporal context of 11 frames, making a total of 825 input
features. The DNN had seven hidden layers, each containing
2048 hidden units. The total number of states for the shared-
state triphone is 3003. The final output layer had 3003 units,
corresponding to the total number of states. The speech data
of 963 lectures in the CSJ were used to train the DNN-HMM.
The total length of speech was approximately 203 h. The DNN
was trained as follows. In the pre-training step, the restricted
Boltzmann machine was used as the method of training in the
unsupervised mode. In the fine-tuning step, a class label was
assigned to each frame, and the backpropagation algorithm
with stochastic gradient descent was used. The cross entropy
was used as the loss function. Other conditions for the DNN
training are shown in Table I.

The bigram and trigram models were used as the LMs. The
baseline models were trained on a textual data containing 2668
lectures from the CSJ, and the total number of words was
6.68 million. We used two adaptation LMs, to compare the
effectiveness of the amount of training data. One was a LM
adapted using a large amount of tweet data (25.86 million
words), and the other LM was adapted using the small amount

TABLE I
TRAINING CONDITIONS FOR DNN

Pre-training
#epochs 10 (20, only for the first layer)

Mimi-batch size 1024
Momentum 0.9

L2 regularization factor 0.0002
Fine-tuning

#epochs The process terminates when the frame
accuracy increase by less than 0.1%.

Mini-batch size 512

TABLE II
TEST SET PERPLEXITY WITH SMALL-SCALE LM

Weight 10 30 50 100 150 200
Bigram 995.69 901.67 869.84 849.22 854.74 869.12
Trigram 931.60 907.14 915.17 960.64 1014.71 1070.22

TABLE III
TEST SET PERPLEXITY WITH LARGE-SCALE LM

Weighgt 0.1 0.5 1 2 3 4
Bigram 328.76 293.81 291.19 271.77 274.07 276.95
Trigram 312.17 250.83 242.24 224.10 228.96 276.23

of data (17,711 words) introduced in the previous work [9].
In the remainder of this paper, we will refer to the former
as large-scale LM and the later as small-scale LM. Using the
adaptation method described in Section IV, w was set to 100
for the bigram, and 30 for the trigram for small-scale LM,
and two for each for the large-scale LM. These values were
determined based on the test set perplexity criterion. Table II
and Table III show the test set perplexity of the evaluation data
using the small-scale LM and the large-scale LM, respectively.
The test set perplexity is greatly improved by using the large-
scale LM, but it is still high.

A lexicon was created based on the words that appeared
in the CSJ corpus. To eliminate unknown words, 44 words
that appeared only in the evaluation data were added to the
lexicon.

The AM adaptation was conducted to adapt the corpus.
Specifically, the AM was adapted to the acoustic environment
of the JTES corpus. The DNN was adapted using a backprop-
agation algorithm such as fine-tuning. The detailed conditions
of the DNN adaptation are shown in Table IV. We used 14,400
(40 utterances × 4 emotions × 90 speakers) data to adapt the
AM to the JTES.

The evaluation data, which were different from the adap-
tation data, comprised 400 utterances (10 utterances × 4
emotions × 10 speakers) from the JTES. All the experiments
on the JTES were performed using these evaluation data. In
the evaluation of the OGVC, utterances of 0 and 3 intensities
were used. For each intensity, 448 utterances (112 utterances
× 4 speakers) were used.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

373



TABLE IV
ADAPTATION CONDITIONS FOR DNN

Mini-batch size 2048
Momentum 0.0

L2 regularization factor 0.0002
#epochs The process terminates when the frame

accuracy increase by less than 0.5%
for early stopping experiments.

VII. RECOGNITION EXPERIMENTS

The recognition experiments were conducted using only
the LM adaptation and the simultaneous adaptation of the
LM and AM. The results for the LM adaptation with an
unadapted AM is shown in Table V. In the experiments,
we compared the baseline LM trained on the CSJ with the
small-scale LM and large-scale LM. It can be seen that the
large-scale LM yielded the best results. For the large-scale
LM, the types and presence/absence of emotions were not
considered in collecting the adaptation data. Nevertheless, the
large-scale LM outperformed the small-scale LM in which
emotions were considered. This suggested that the amount of
data was important.

The results for the simultaneous adaptation of the LM
and AM are shown in Table VI. Overall, we can see that
the results, as shown in Table VI, were better than those
shown in Table V. This demonstrates the effectiveness of the
simultaneous adaptation. Compared with the results of the
AM adaptation alone, the performance of the large-scale LM
adaptation was slightly higher. The word error rate (WER) of
the former was 26.91%, and that of the latter was 25.68%.
Finally, the simultaneous adaptations yielded the best result
of 17.77%. The fact that simultaneously adapting the AM and
LM improved the performance significantly suggested that the
adaptations of the AM and LM had different characteristics.

Next, we describe the analysis of the recognition results.
Table VII shows the difference between the recognition re-
sults of the small-scale LM and large-scale LM. In the first
example, a consonant /Q/ was missing in the small-scale LM
condition. /Q/ is a geminate stop consonant expressed by a
one-mora pause; it is a consonant peculiar to Japanese. In
this case, although this consonant does not appear in typical
vocalization, it tends to appear when emotions are being
emphasized. In the next example, a postpositional particle ga
was inserted, in the case of the small-scale LM. Postpositional
particles are parts of speech unique to Japanese. In Japanese
grammar, ga occupies this position. However, postpositional
particles are often dropped when colloquial expressions are
used with emotion. Based on the above points, the large-
scale LM is thought to express emotions and the colloquial
style effectively. In the last example, an auxiliary verb na was
missing in the small-scale LM condition. In addition, due to
the elimination of na, a morphological analysis error occurred.
The word ni and komi are merged into one word.

Specifically, it is difficult to recognize fillers in the col-

TABLE V
WORD ERROR RATE FOR EACH EMOTION USING BASELINE AM AND

VARIOUS LMS (%)

Baseline Small-scale Large-scale
LM LM LM

Ang 40.97 36.26 28.61
Joy 41.23 31.19 30.31
Neu 23.13 20.60 16.39
Sad 39.09 35.77 27.42
Ave 36.11 30.95 25.68

TABLE VI
WORD ERROR RATE FOR EACH EMOTION, USING CORPUS-ADAPTED AM

AND VARIOUS LMS (%)

Baseline Small-scale Large-scale
LM LM LM

Ang 28.21 28.29 20.70
Joy 32.62 24.24 21.85
Neu 19.88 18.26 12.65
Sad 26.52 25.82 15.91
Ave 26.91 24.15 17.77

loquial style. In Japanese, fillers are often articulated as
long vowels. Recognition errors related to them were often
not improved by the large-scale LM. The frequency of this
kind of error depended on the speaker. The factors that
caused differences in the recognition results, depending on
the speakers, were considered to be mainly the individual’s
acoustical characteristics. Therefore, these errors were thought
to be caused by the AM, rather than the LM. In emotional
speech, these long vowels as fillers are often devocalized. To
recognize these pronunciations successfully, it is necessary to
correctly recognize the unvoiced information. As a solution,
for example, a recognition method that prepares multiple AMs
based on the emotion type and intensity can be considered.

In the experiments described above, both AM and LM were
adapted by the JTES data. Although the environment for each
evaluation utterance is open, we were concerned that these
models may have adapted to the wording of the tweet data
rather than to emotions. In consideration of this possibility, an
additional evaluation was performed using the OGVC to vary
the emotional conditions entirely. The results of the LM only
adaptation are shown in Table VIII, and those of the LM and
AM’s simultaneous adaptation are shown in Table IX. From
the results it appears that the performance improvement in the
small-scale LM is limited; however, sufficient improvement is
seen in the large-scale LM. Although the OGVC consists of in-
game utterances and is dissimilar to the JTES, the results show
significant improvements. This suggests that the proposed LM
is versatile in identifying emotions. From the comparison of
Table VIII and Table IX, it is confirmed that the AM adapted
by the JTES is effective for the OGVC.
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TABLE VII
EXAMPLE OF DIFFERENCES IN RECOGNITION RESULTS BY VARIOUS LMS.

SYSTEM USED ADAPTED AM. /Q/ IS A GEMINATE STOP CONSONANT.

Correct kore baQkari
Meaning Only this

Small-sacle LM kore bakari
Large-scale LM kore baQkari

Correct zikan aru toki
Meaning When you have time

Small-scale LM zikan ga aru toki
Large-scale LM zikan aru toki

Correct heizitsu na no ni komi sugi
Meaning It’s too crowded on weekdays

Small Adapt heizitsu no nikomi sugi
Tweet Adapt heizitsu na no ni komi sugi

TABLE VIII
WORD ERROR RATE FOR OGVC USING BASELINE AM AND VARIOUS LMS

(%)

Intensity level Baseline Small-scale Large-scale
LM LM LM

0 32.61 31.99 24.39
3 52.97 51.73 46.81

TABLE IX
WORD ERROR RATE FOR OGVC USING CORPUS-ADAPTED AM AND

VARIOUS LMS (%)

Intensity level Baseline Small-scale Large-scale
LM LM LM

0 28.02 27.56 21.10
3 43.12 43.33 37.30

VIII. CONCLUSIONS

In this study, we investigated the possibility of improv-
ing speech recognition accuracy for the JTES (an emo-
tional speech corpus) using LM adaptation. To improve the
recognition performance through LM adaptation, a large-scale
textual data containing emotional expressions and colloquial
expression was required. Accordingly, we proposed an LM
adaptation using tweet data. From the recognition experiments,
both the LM and AM adaptations yielded good results. Fi-
nally, the baseline WER was 36.11%, whereas that of the
simultaneous AM and LM adaptation was 17.77%. Based
on these results, the effectiveness of the proposed method
was established. In addition, the proposed LM demonstrated
a performance improvement even in a dissimilar emotional
environment thereby confirming its versatility.

As a future task, we will examine emotion adaptation further
by investigating the AM adaptation in relation to emotion
intensity, rather than by simply creating emotion-dependent
models. For the LM adaptation, we will attempt to use a
neural network (NN)-based LM, instead of the n-gram model,
because the use of the NN-based LMs is expected to improve
the performance. In addition, we plan to improve the emotion

recognition system that is being developed in our laboratory
using the speech recognition outputs examined in this work.
Furthermore, we are considering introducing this recognition
system into the multimodal dialogue system [17].
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