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Abstract— In this paper, we proposed Mini-SegNet, a simpli-

fied encoder-decoder SegNet model to capture deep semantic 

information in sound events.  The semantic information can ef-

fectively discriminate the acoustic segments in different scenes.  

We also applied spectrum correction to combat mismatched 

frequency response.  In order to prevent over-fitting, we adopted 

mixup augmentation, ImageDataGenerator and temporal crop 

augmentation for data augmentation.  Our best single system 

achieved an average accuracy of 65.15% on different devices in 

the DCASE2020 Development dataset, more than 10% im-

provement over the baseline system.  The results indicate that 

our approach can achieve good classification performance, with-

out use of any supplementary data from outside the official chal-

lenge dataset.   

I. INTRODUCTION 

Sounds carry a great deal of information about our envi-

ronment, from individual physical events to sound scenes as a 

whole.  The problem of sensing and understanding the envi-

ronment in which a sound is known as Acoustic Scene Classi-

fication (ASC) [1].  It is a multi-class classification task rec-

ognizing the recorded environment sounds specific acoustic 

scenes that characterize either the location or situation such as 

park, metro station, tram, etc.  ASC has been applied in many 

fields, such as context-aware [2], surveillance [3], and robotic 

navigation [4].  For example, if a self-driving automobile 

“hears” children yelling from blind spot, it can slow down to 

avoid a possible accident.  Intelligent Bluetooth headset can 

automatically reduce noise and adjust the volume of headset 

according to the environment of users. 

Acoustic Scene Classification is one of the core research 

problems in the field of Computational Sound Scene Analysis.  

It has been a major task in the IEEE Audio and Acoustic Sig-

nal processing (AASP) Challenge on Detection and Classifi-

cation of Acoustic Scenes and Events (DCASE) since 2013.  

In the 2013 DCASE Challenge [5], the organizer established 

and released the open datasets, and provided the benchmark to 

evaluate different approaches for acoustic scene classification, 

which motivating researchers to further work in this area.  
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Subsequently, many methods have been applied to acoustic 

scene classification, such as signal processing and machine 

learning, including dictionary learning [6], matrix factoriza-

tion [7][8], wavelet filterbanks [9].  And recently popular 

deep learning, such as Convolutional Neural Networks (CNNs) 

[10], Gated Recurrent Neural Networks (GRNN) [11], Con-

volutional Recurrent Neural Networks (CRNN) [12], and At-

tention-based Atrous Convolutional Neural Networks [13].  

As one of the substantial tasks, acoustic scene classification 

has been extensively practiced in every challenge.  In the past 

few years, the audio data of acoustic scene classification came 

from a kind of high-quality acquisition equipment.  In this 

case, we call it regular acoustic scene classification.  However, 

in real life, environmental sound is mostly collected by differ-

ent recording devices.  In order to study acoustic scene classi-

fication more widely, DCASE 2018 and 2019 proposed the 

mismatch in different recording devices A, B, C and D. 

DCASE 2020 [14], ASC challenge consists of 2 subtasks, 

Acoustic Scene Classification with Multiple Devices, and 

Low-complexity Acoustic Scene Classification.  In this paper, 

we focus on the first subtask.  This task contains 10 classes of 

sounds recorded with multiple devices.  The dataset contains a 

certain amount of examples from a high quality devices (re-

ferred to as A), but only a limited number from the targeted 

low quality devices (referred to as B and C) and simulated 

devices (referred to as S1-S6).  Especially, a part of the evalu-

ation dataset is a compressed version of recorded audio data 

from device D and simulated devices S7-S11.  This brings 

ASC closer to real-world conditions, but also presents a huge 

challenge. 

The general framework of regular acoustic scene classifica-

tion usually contains two steps.  Firstly, obtain 2D time-

frequency representation of audio data, and extracting rele-

vant features.  Second employ these features to learn and 

achieve classification.  And the different features are used in 

acoustic scene classification, such as log-mel energies, their 

nearest neighbor filtered version [15], mel-spectrograms from 

harmonic percussive source separation (HPSS) audio [16][17], 

and spectrograms of Gammatone filters and Constant Q 

Transform (CQT) [18].  After computing the 2D time-

frequency representation, some methods based on CNNs have 

achieved good performance for acoustic scene classification.  
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Mun et al. [19] addressed the problem of data insufficiency 

and proposed to use the Generative Adversarial Network 

(GAN) to augment training data.  Phaye et al. [20] used sub-

spectrograms by giving intuitive and statistical analyses, de-

veloped a sub-spectrogram based on CNN architecture for 

ASC.  McDonnell [21] proposed deep residual network with 

late fusion of separated high and low frequency paths.  Even 

though the previous methods have improved performance a 

lot, there are still a lot of basic problems worth exploring.  For 

example, many scenes are quite confusing between each other 

and have high similarity in time.  Moreover, CNN-based ap-

proaches are hard to capture the correlation of sound events in 

different scenes. 

Compared with the regular acoustic scene classification, the 

acoustic scene classification with multiple devices still need 

some processing to adjust the different recording devices.  For 

this response, spectrum correction [22], aggressive regulariza-

tion and augmentation [23], domain adaption [24] and feature 

transform [25] are gradually used in acoustic scene classifica-

tion with multiple devices.  

In this paper, we propose a concept of semantic segmenta-

tion for acoustic scene classification.  Therefore, we designed 

encoder-decoder network similar to SegNet [26] for acoustic 

scene semantic segmentation, which we term Mini-SegNet.  

And, to evaluate our network model, we participated in 

DACSE 2020 task1a: Acoustic Scene Classification with 

Multiple Devices.  To deal with mismatched data, we learn 

from the work of Michal Kosmider et al. [22], try to apply 

spectrum correction to adjust the varying frequency response 

of the recording devices.  Our system consists of two im-

portant stages.  Firstly, mono audio signals are converted to 

time-frequency representations, scaled by spectrum correction, 

and zero mean and unit variance normalization.  Secondly, the 

log-mel feature are fed to Mini-SegNet models for feature 

learning.  Besides, we adopted mixup, ImageDataGenerator 

and temporal crop augmentation for data augmentation.  

The rest of the paper is organized as follows.  Section Ⅱ 

presents the proposed ASC systems, including audio prepro-

cessing and spectrum correction, the convolutional neural 

networks, and data augmentation.  Section Ⅲ provides exper-

iments and the performance of the proposed approach.  Sec-

tion Ⅳ discussion the experimental in detail.  Finally, conclu-

sion is provided in Section Ⅴ. 

II. THE SYSTEM 

This section introduces the proposed audio preprocessing 

methods.  It also describes the details utilized process flow 

and model architecture. 

A. Audio preprocessing and spectrum correction 

The spectrum correction can scale the frequency response 

of the recording devices, which was descried and demon-

strated in [22].  It is mainly implemented in two steps.  First, 

the correction coefficients are calculated from the spectrum of 

n aligned pairs of recordings.  Second, all recordings are then 

transformed using the calculated coefficients.  In view of our 

experimental comparison, we only use 750 samples of data 

from each device A, B, C to determine the reference spectrum 

and the coefficients of each device.  The spectrum coefficients 

are expressed as vectors, i.e. one coefficient per frequency bin.  

Then use the corresponding coefficient to scale the spectrum 

bin of each device.  The correction is applied by multiplying 

the Short Time Fourier Transform of the signal by the correc-

tion coefficients on the frequency axis of each time point.  

After spectrum correction, further present the spectrum in 

the log-mel domain.  The data are mono audio files with 44.1 

kHz sample rate.  We transformed them into power spectro-

gram by skipping every 1024 samples with 2048 length Han-

ning window.  A spectrum of 431 frames was yields from 10 

seconds audio file, and each spectrum was compressed into 

128 bins of mel frequency scale.  Then, zero mean and unit 

variance normalization is applied to the log-mel feature.  

Therefore, we extract the log-mel energy of 128 frequency 

bins and 431 temporal frames per segment. 

B. Proposed Model 

CNNs have powerful feature extraction capabilities, which 

realizes feature extraction and dimensionality reduction 

through operations such as convolutional and pooling.  The 

previous classification methods only used lasted feature map, 

the feature map followed by some Fully Connected layers 

(FC).  It not only has a large number of parameters, but also 

has a large amount of calculation.  In image classification, 

using the last feature map’s information only, can achieve 

great performance.  But in our case, its performance is not 

satisfactory.  

In the field of target detection, some researchers proposed 

semantic pixel-wise segmentation of images, such as SegNet 

[26], using multi-scale feature mapping to improve detection 

performance.  The key component of SegNet is the decoder 

network, which consists of a decoder layer corresponding to 

each encoder.  Of these, the appropriate decoder performs 

nonlinear up sampling on its input feature map using the max-

pooling index received from the corresponding encoder.  We 

think that the acoustic scene is composed of some basic units 

(acoustic events), just as language governs the syntax of pho-

nemes and words.  We know that bird chirping sound is 

recorded in the park, the sound of aircraft engines is rec-

orded in the airport.  Bird chirping and aircraft engines are 

what we call acoustic events.  These acoustic events contain 

some semantic information, which has a certain internal rela-

tionship with the discrimination of acoustic scene.  CNN-

based models have been widely utilized to encode complicat-

ed scene utterances into high-level semantics representations.  

Inspired by these ideas, we use an encoder/decoder architec-

ture to learn the acoustic scene to events mapping.  

Therefore, we like to test the idea of Mini-SegNet and use 

pooling indices to inform the up-sampling layers to extract 

acoustic features by the pooling layers in the encoding pro-

cess.  This makes it easier for the decoder to localize the 

acoustic events in frequency.  In our work, we modified the 

original SegNet to extract the multi-granularity abstract fea-

tures, as shown in Fig. 1.  In encoder module, convolution and 

pooling are used to extract features and reduce dimensions.  
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In the decoding process, the position and frequency band in-

formation are recovered by convolution of the corresponding 

encoding module sampled on up-sampling to make up for the 

missing pixel information.  This method makes full use of the 

semantic information of sound events in the acoustic scene 

through the encoding and decoding process, and uses the rules 

of “acoustic scene based on sound events” to provide a pre-

liminary basis for future work.  We give more details of the 

network below. 
 

 
 

Fig. 1:   Illustrate how to extract the multi-scale features 

 

C. Mini-SegNet for ASC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2:   Details of the Mini-SegNet model for ASC 
 

The design of the encoder-decoder network represents the 

key technical contribution of this paper.  The details of Mini-

SegNet as shown in Fig. 2, it describes the acoustic scene 

classification under Mini-SegNet model.  In this network, we 

use a simpler and smaller convolution/de-convolution.  In the 

SegNet, the final decoder output is fed to a multi-class soft-

max classifier to produce class probabilities for each pixel 

independently.  In our modified Mini-SegNet, we first change 

the FC to the global-average pooling.  Because FC has many 

parameters, this reduces the number of parameters and can 

reduce the occurrence of over fitting.  And use the softmax 

layer to achieve acoustic scene classification. 

As shown in Fig. 2, it is mainly composed of encoder and 

decoder module.  The number maps in decoder are 64, 128, 

and 196.  The number of features maps in the decoder are 196, 

128, and 64.  In the encoder module, consists of three Conv 

block.  Each block contains two Convolutional layers whose 

convolution kernel is 3 × 3, followed by a batch normalization, 

a ReLU non-linearity, and a maxpooling.  The output of the 

encoder is taken as the input of the decoder module.  The de-

coder module consists of three DeCov block and similar to 

encoder.  Each DeConv block, up-samping is performed first, 

then followed by Convolutional layers, batch normalization, 

ReLU.  Finally, global max pooling is applied, and two dense 

layers are utilized to output final predictions. 

D. Data augmentation 

In order to prevent over-fitting, we combined mixup [27], 

ImageDataGenerator and temporal crop augmentation. 

In mixup, we randomly select a pair of samples from train-

ing data.  Let ,  be the features, and ,  be the one-hot 

labels respectively, the data is mixed as follows: 
 

                             (1) 
 

                             (2) 
 

where the parameter  is a random variable with Beta distri-

bution B (0.4, 0.4).  

In addition, we tried to use ImageDataGenerator in this task.  

It is an image generator, mainly used in image classification.  

At the same time, it can also enhance the data in batch, ex-

pand the size of data set, and enhance the generalization abil-

ity of the model.  In our work, it is implemented with width 

shift, height shift. We additionally used crop augmentation in 

the temporal axis: each of the two samples combined using 

mixup were first cropped independently and randomly from 

431 dimensions down to 400.  In our work, data augmentation 

does improve performance, and we make a detailed compari-

son in next section. 

III. EXPERIMENT 

A. Experiment setup 

All trainings were done on GPU, with a batch size of 32, 

with the cross-entropy loss function, and with stochastic gra-

dient descent with momentum of 0.9 for the optimizer.  At the 

same time, we using a warm restart learning rate schedule, its 

maximum value of 0.1 after 2, 6, 14, 30, 126 and 254 epochs, 

and then decays according to a cosine pattern to 1 × 10-5.  In 

our work, each network has trained for 510 epochs.  Experi-

ments show that this method can improve the accuracy of 

acoustic scene classification. 

B. Dataset 

To evaluate our system, we use the task1a data from the of-

ficial dataset of TAU Urban Acoustic Scene 2020 Mobile 

Development dataset.  The dataset consists of 10 acoustic 

scenes: airport, park, metro, street_pedestrian, street_traffic, 

tram, metro_station, bus, public_square, shopping_mall.  The 
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development set contains data from 10 cities and 9 devices: 3 

real devices (A, B, C) and 6 simulated devices (S1-S6).  The 

total amount of audio in the development set is 64 hours. 

The development dataset comprises 40 hours of data from 

device A, and smaller amounts from the other devices.  Audio 

is provided in single channel 44.1 kHz 24-bit format, and 

were split into 10s segments that are provided in individual 

files.  As shown in Table Ⅰ, the development dataset is provid-

ed with a train/test in which 70% of the data for each device is 

included for training, 30% for testing.  Some simulated devic-

es (S4, S5, S6) appear only in the test subset. 

 
Table Ⅰ 

TAU Urban Acoustic Scenes 2020 Mobile Development dataset 
 

Device 
 

Total segments 
 

Train segments 
 

Test segments 
 

A 
 

14400 
 

10215 
 

330 
 

B, C 
 

1080 
 

750 
 

330 
 

S1, S2, S3 
 

1080 
 

750 
 

330 
 

S4, S5, S6 
 

1080 
__  

330 

 

C. Comparison with baseline 

The DCASE2020 Task1A challenge [14] is evaluated using 

accuracy calculated as the average of the class-wise accuracy, 

also known as “macro-average accuracy”.  Because the data 

sets come from different devices, as shown in the Table Ⅰ.  

Our experimental results are mainly evaluated by the average 

accuracy, that is, the average accuracy of scene classification 

under various devices.  
 

Table Ⅱ：Details parameters and results (All-accuracy: %, train/test) of 

the SegNet in various configurations.  All of these, trained with same data 
augmentation and no spectrum correction, with 254 epochs. 

 

SegNet 
 

Mini-SegNet 

  

Original 
 

Smaller 
 

Our proposed 

Encoder 
 

 

 

 

Decoder 

(64*2, 128*2, 

256*3, 512*3, 

512*3) 
 

(512*3, 512*3, 

256*3, 64*2, 
64*2) 

(64*2, 

128*2, 

256*3) 
 

(256*3, 

128*2, 
64*2) 

(64*2, 

128*2, 

196*2) 
 

(196*2, 

128*2, 
64*2) 

 

Train params 
 

31, 803, 338 
 

4, 063, 178 
 

2, 086, 954 
 

Time(s)/Epoch 
 

387s 
 

295s 
 

198s 
 

All-accuracy 
 

56.63%/93.21% 
 

62.89%/92.68% 
 

63.97%/91.89% 

 

In our work, we first change the final decoder output layer 

of SegNet to the global-average pooling.  Then on this basis, 

we tested the original SegNet network and other architectures.  

In Table Ⅱ, we show some of our configuration parameters 

and results.  In order to save the training time, we only set 254 

epochs.  In Table Ⅱ, 64 * 2 means two convolution layers 

with 64 output maps.  The original SegNet, each encoder net-

work has a corresponding decoder layer and hence the encod-

er network has 13 convolutional layers.  The train parameters 

are 31, 803, 338, and the training time of each epoch is 387 

seconds.  The train parameters (Train params) are big and the 

train time (Times(s)/Epoch) is too long.  The all-accuracy is 

93.21% on the train set and 56.63% on the test set.  The re-

sults show that its performance is poor, especially in the train 

set and test set there is a large over-fitting.  The main reason 

is that original SegNet has a deep network depth, which can-

not be fully used when our data is limited.  Therefore, we 

have made many attempts to modify it from the depth of the 

network.  As shown in Table Ⅱ, after adjusting the network 

depth and making some parameters comparison, we propose 

the Mini-SegNet.  Compared with others structures, the Mini-

SegNet has a better accuracy, and less train parameters and 

less train time, and over-fitting has also been alleviated. 

We report the performance of our system using this train-

test setup in order to allow comparison of different system on 

the development dataset.  First, repeat the baseline system, it 

is a modification of the baselines from previous DCASE chal-

lenge editions of acoustic scene classification, built on the 

same skeleton.  It replaces use of mel energies with use of 

OpenL3 embeddings and replaces the CNN network architec-

ture with two fully-connected feed-forward layers (size 512 

and 128) as in the original OpenL3 publication [28].  In 

DCASE 2020 Task1A baseline system, OpenL3 as audio em-

beddings, two fully connected layers as classifier.  The base-

line system has an average accuracy of 54.1% (+-1.4) on dif-

ferent devices in the development dataset.  Compared with the 

baseline system, our proposed method achieves a relative im-

provement or more than 10% on task1a.   

 
Fig. 3:   Accuracy of proposed system with warm restart learning rate 

schedule (510 epochs) 

 

Our proposed system achieved of 65.14% on the different 

devices in the development dataset.  As shown in Fig. 3, we 

proposed system with warm restart learning rate schedule 

achieve a high performance in the train-set, but only 65.14% 

accuracy in the validation-set.  We chose the average accura-

cy under various recording devices (all-accuracy) as the main 

indicator because the task targets generalization properties of 

systems across a number of different devices.  It is found that 

the system has a certain degree of over fitting, which is main 

due to the data inconsistency in various recording devices, as 

well as the unbalanced distribution of data on the training set 
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and the validation set.  It also reminds us that we have a lot of 

work to do in the future. 

IV. RESULTS AND DISCUSSION 

A. Validation Results of Mini-SegNet 

Because the official evaluation set does not provide real 

scene category labels, our performance evaluation can only be 

conducted on the development set at present.  In our work, we 

proposed a new Mini-SegNet network for acoustic scene clas-

sification.  In addition, we applied spectrum correction pro-

cessing and various data enhancement for different recording 

equipment.  And in Table Ⅲ, shows results for Mini-SegNet 

trained in various configurations using the official test-train 

split.  Every configuration tested on both architectures.  
 
Table Ⅲ: Accuracy on the development dataset with and without spectrum 

correction, mixup, ImageDataGenerator and temporal crop. 

Correction 

Mixup 

ImageDataGenerator 

Temporal crop 

Yes              No             Yes             Yes             

Yes             Yes             Yes             Yes              

Yes             Yes             No             Yes             

Yes            Yes             Yes             No              

All-accuracy 65.15%      64.41%     61.35%      63.53%     

 

We do a variety of comparative experiments on whether 

spectrum correction, data augmentation or not.  It can be seen 

from Table Ⅲ that spectrum correction can improve perfor-

mance, but the effect is not very good.  Compared with tem-

poral crop, ImageDataGenerator does have a good perfor-

mance in acoustic scene classification. 

B. Discussion  

For this task, the best model we train is based on spectrum 

correction and various data augmentation.  As shown in Table 

Ⅳ, we calculated the classification accuracy of various acous-

tic scenes of various devices under the prediction of the model.  

We observe from our best validation results that device-wise 

accuracy, and find that our model has good generalization 

performance.  Devices-wise accuracy are generally higher 

than that of the baseline system.  Especially under a high-

quality device A, the accuracy reaches 79.09%.  At the same 

time, in the low-quality recording devices B and C, 70.91% 

and 73.64% respectively are achieved.  The generalization 

ability of some classes is better, but very poorly on the same 

others.  Such as, airport is being classified as shopping_mall, 

metro_station as metro and public_square as park or 

street_pedestrian.  In the future work, we will analyze these 

acoustic scenes which are wrongly classified.  

In addition, our accuracy is higher than that of simulated 

devices S1-S6 in the baseline system.  According to the accu-

racy of device S6 with poor results, the baseline system accu-

racy is 39.6%, while our accuracy is 52.73%.  This shows that 

our system has good generalization ability on unknown data.  

However, compared with the real equipment, the accuracy of 

acoustic scene classification is still very poor.  This might be 

attribute to the simulated data itself, such as the audio quality 

is not clear, and typical representative sounds in acoustic 

scenes are not significant.  In our understanding, the acoustic 

scene is composed of some sound events.  Through the se-

mantic sound segmentation of different acoustic scenes, we 

can locate the frequency, location and other information of 

sound events, so as to classify different acoustic scenes.  

However, the classification accuracy of simulated equipment 

is poor, which may be due to the addition of some mixed and 

confused audio in synthesis.  This also suggests that the high 

recognition accuracy of acoustic scene has certain require-

ments on the quality of audio data.  In the future, our work 

will focus on this part of the simulated data and a more robust 

system will be construct on the basis of this work. 

Table Ⅳ:   Detail results of the best Mini-SegNet on different devices accuracy (%) 

Scene Accuracy Dev. A Dev. B Dev. C Dev. S1 Dev. S2 Dev. S3 Dev. S4 Dev. S5 Dev. S6 

airport 55.22 72.73 57.57 75.76 45.45 63.64 54.54 60.61 45.45 21.21 

bus 78.79 93.94 84.85 90.91 69.69 72.73 75.76 72.27 57.57 90.91 

metro 70.71 81.82 69.70 63.63 66.67 66.67 63.64 78.79 75.76 69.67 

metro_station 68.01 84.85 81.82 54.55 72.73 63.63 75.76 54.54 72.73 51.51 

park 77.78 87.88 87.87 81.82 78.78 75.76 78.79 75.76 63.63 69.70 

public_square 54.88 63.64 51.51 69.70 51.51 54.54 72.73 48.48 51.51 30.30 

shopping_mall 53.20 66.67 66.67 72.73 36.36 42.42 51.51 48.48 45.54 48.48 

street_pedestrian 49.83 75.76 69.70 57.58 51.52 48.48 39.39 36.36 21.21 48.48 

street_traffic 80.80 87.89 84.85 87.89 87.89 78.78 84.85 87.88 72.73 54.54 

tram 63.29 75.76 54.54 81.82 87.88 42.42 75.76 42.42 57.57 42.42 

Average 65.15 79.09 70.91 73.64 64.85 60.91 67.27 60.61 56.36 52.73 
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V. CONCLUSIONS 

Based on the composition of sound events in acoustic 

scenes, we propose a semantic segmentation encoder-decoder 

network Mini-SegNet for acoustic scene classification (ASC).  

It is effective in addressing the multiple devices in the ASC 

task provided by DCASE 2020.  In this task, we used spec-

trum correction to combat mismatched frequency responses.  

And, we proposed Mini-SegNet to extract multi-granularity 

abstract features of sound events in acoustic scenes.  Our ex-

periments verify that our approach achieves good perfor-

mance under single system and no data expansion.  Besides, 

we also demonstrate that spectrum correction is able to im-

prove the classification accuracy of multiple devices, but the 

effect is not very good.  In closing, the DCASE 2020 task1a 

confirm that our proposed encoder-decoder network Mini-

SegNet is useful in acoustic scene classification.  
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