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Abstract—Musical beat tracking is one of the most investigated
tasks in music information retrieval (MIR). Research endeavors
on this task have mostly been focused on the modeling of audio
data representations. In contrast, beat tracking of symbolic music
contents (e.g., MIDI, score sheets) has been relatively overlooked
in the past years. In this paper, we revisit the task of symbolic
music beat tracking and present to solve this task with modern
deep learning approaches. To the extent of our knowledge, it is
the first time that utilizing deep learning approaches to track
beats and downbeats of symbolic music data. The proposed
symbolic beat tracking framework performs joint beat and
downbeat tracking in a multi-task learning (MTL) manner, and
we investigate various types of networks which are based on
the recurrent neural networks (RNN), such as bidirectional long
short-term memory (BLSTM) network, hierarchical multi-scale
(HM) LSTM, and BLSTM with the attention mechanism. In
the experiments, a systematic comparison of these networks and
state-of-art audio beat tracking methods are performed on the
MusicNet dataset. Experiment results show that the BLSTM
model trained specifically on symbolic data outperforms the state-
of-the-art beat tracking methods utilized on synthesized audio.
Such a comparison of performance also indicates the technical
challenges in symbolic music beat tracking.

I. INTRODUCTION

Human’s perception of beats creates the fundamental tempo-
ral structure of music. Beat tracking is the task of modeling the
periodicity and metrical accents within a naturally performed
rhythm. Automatic beat tracking of music has therefore been
one of the most widely investigated tasks in music information
retrieval (MIR) research [1]. Early discussions of this task,
most of which were made in the last century, were on symbolic
beat tracking, the beat tracking task on MIDI- or score-like
music data containing the onset, duration, and pitch values of
each note [2]. In the past two decades, tremendous research
efforts have been shifted to audio beat tracking, where real-
world performed audio rather than symbolic data are taken as
input [3]. Being a rapidly developed field, the approaches to
audio beat tracking have also undergone huge paradigm shifts,
as they range from audio features [4], dynamic programming
[5], state-space models [6], to today’s deep learning [7], [8].
Currently, most of the state-of-the-art beat tracking methods
and tools are designed for audio signals only. In contrast, sym-
bolic beat tracking is rarely discussed, with solutions outdated,
though it is never proven a solved task. Since symbolic beat
tracking is important as it represents a key portion of musical
language modeling (i.e. inferring the temporal structure from
a note sequence), and has various practical application such

as score parsing [9], automatic accompaniment [10], [11],
and music generation [12], it would therefore be of high
advantage to revisit the task of symbolic beat tracking under
the viewpoint of modern deep learning techniques.

This paper represents a revisit of symbolic beat and down-
beat tracking, as well as a first attempt to solve the symbolic
beat tracking problem with modern deep learning methods. We
argue that symbolic beat tracking is still a challenging task in
some aspects, but is highly overlooked in contrast to audio beat
tracking. Specifically, symbolic beat tracking is a task to infer
the beats without any information on human-performed music
accents and dynamics. Since state-of-the-art audio beat track-
ing models are mostly based on the recurrent neural networks
(RNN), we manage to solve the symbolic beat and downbeat
tracking problem with three models based on RNN, namely the
bidirectional long-short-term memory (BLSTM) RNN [13],
BLSTM RNN with the attention mechanism [14], and the
hierarchical multi-scale RNN (HM-RNN) [15]. To the best of
our knowledge, this is the first time that track symbolic music
beats through deep neural networks and compare the tracking
results systematically. The proposed models are constructed
with a multi-task learning (MTL) manner where beat and
downbeat are learned jointly. Results indicate that symbolic
beat tracking is far from being solved, while competitive
performance can be achieved by applying data-driven learning
approaches with recurrent neural networks.

II. RELATED WORK

Automatic beat tracking on the symbolic music data (such
as scores, MIDI note lists, and note onset sequences) has been
investigated for a much longer time than audio beat tracking.
Pioneer works in this direction are mostly based on rule-based
algorithms. Dixon proposed ruled-based tempo estimation and
beat tracking algorithms based on the clustering of inter onset
intervals (IOI) and a multi-agent beat testing framework [2].
This algorithm is used in pretty midi, which is one of the few
open-source packages for the MIR of symbolic music. Besides
this rule-based approach, Large used nonlinear oscillators to
perform beat tracking [16], and Desain and Honing proposed
a connectionist approach for the quantization of musical time
[17]. Temperley described the metrical, rhythm, and beat
structure of music jointly with the stream, harmony, and
note patterns in a Bayesian probability model [18]. Similar
approaches can also be seen in [19]. Tempo and beat inference
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of MIDI are highly related to the application of rendering
readable score sheets from human-performed MIDI. Grohganz
et al. dealt with this problem by analyzing the inconsistency
between the estimated tempo and the performance [9].

In contrast to symbolic music beat tracking, audio beat
tracking has caught wide attention in the past decade, where
various novel techniques were developed with efficient tools
published. Examples include Ellis’ dynamic programming
approach in the librosa library [5] and Boeck’s recurrent
neural network (RNN) for beat and downbeat tracking in the
madmom library [7], to name but a few. Audio beat tracking
has been the most evaluated task in the MIREX campaign.
Particularly, deep learning approaches have been proven to be
the state of the art in audio beat tracking and have achieved
over 95% of F1-scores on some standard evaluation datasets.
Utilizing neural networks on the beat tracking of symbolic
music data is, however, a rather unexplored task.

III. PROPOSED METHOD

This section describes the proposed beat and downbeat
tracking methods on symbolic music data. In our system, first,
symbolic data representations and labels are extracted from
the MIDI and score data. Second, neural network models are
trained on the extracted data representations and labels. The
individual blocks of this system will be described in more
detail in the following sections.

A. Data representation

The input data representation used in this work is directly
extracted from MIDI data. MIDI data are a list of notes, each
of which contains at least three attributes, namely onset time,
offset time (or note duration), and pitch value. Onset and offset
are recorded in seconds, and pitch values are represented in
terms of MIDI numbers. A 2-D piano roll P := {pt}Tt=1 is
extracted from a music clip, where T is the number of frames.
As shown in Figures 2 to 4, the ith frame of P , pt ∈ {0, 1}88,
is a multi-hot 88-D vector which represents pitch activation
indexed from A0 to C8: value 1 in pt represents activated
pitch and value 0 represents silence. The frame rate of the
piano roll is 100 Hz, that means, there are 100 frames per
second.

The data representation contains four parts: pitch profile,
onset profile, spectral flux, and inter-onset interval (IOI). The
pitch profile is simply the frame-level piano roll pt. Similarly,
the onset profile ot ∈ {0, 1}88 represents the onset events of
the activated pitches: value 1 represents an onset event of a
certain pitch index occurs, and value 0 represents that no onset
event is activated. Spectral flux1 st is the sum of the temporal
increments (i.e. positive) in P at the tth frame, and is therefore
defined as:

st := ‖ReLU(pt − pt−1)‖1 , (1)

where ReLU(·) is the rectified linear unit, defined as
ReLU(x) = x if x > 0, and 0 otherwise. ‖x‖1 represents the

1Though the data representation here is the flux of piano roll rather than
spectrum, we follow the literature and keep using the term “spectral flux.”

l1 norm of x, which is the sum over all the elements of x in
absolute value. The IOI it calculates the duration between the
onset time of the current note and the onset time of its previous
note. More specifically, if there is an onset event at t, and the
nearest onset event before t is at u, then it = t − u. If there
is no onset events at t, then it = 0. Both the spectral flux and
IOI are utilized to further enhance the onset information. The
above-mentioned four data representations are concatenated
into one vector [pt, ot, st, it] ∈ R178, and are then fed into the
neural network.

As the input of the neural network, each music clip is
segmented into an overlapped packed sequence with a length
of 12 seconds (i.e. 1,200 frames) and an overlap of 6 seconds.
It should be noted that in this study, the output labels are
represented without label extension. The beat and downbeat
annotations are labeled with linear interpolation over the given
note value data, as will be described in Section IV-B.

B. Recurrent Neural Network

The models applied to symbolic music beat tracking are
on the basis of the Recurrent Neural Network (RNN) [13],
which is a classical neural network that is used to analyze
sequential data prediction. Current state-of-art models on
audio beat tracking are also mostly based on RNN. In this
paper, variants of RNN with BLSTM cells are considered in
the modeling stage. The architecture of the basic BLSTM
RNN is shown in Figure 1(a). Given the entire input data
representation X := {pt, ot, st, it}Tt=1, the RNN-based model
aims at learning the relationship between the input units, and
the model predicts two desired outputs, bt ∈ [0, 1]

2 and
dt ∈ [0, 1]

2, which represent the probability of beat and
downbeat occurrence at time step t, respectively.

We consider three types of neural networks: the first is
the conventional bidirectional LSTM (BLSTM) network, the
second is the Hierarchical Multiscale RNN, and the third is the
BLSTM with attention mechanism. Since BLSTM is relatively
well-known in the field, in the following only the Hierarchical
Multiscale RNN and the BLSTM with an attention mechanism
are described in detail.

C. Hierarchical Multiscale RNN

The main idea of Hierarchical Multiscale RNN (HM-RNN)
is to capture the hierarchical structure with different time-scale
in sequential data. This model was originally proposed to cope
with natural language processing tasks, we consider this model
here since symbolic music data possess hierarchical structures
as well. The architecture of the HM-LSTM is shown in Figure
1(b). Each layer l in the Hierarchical Multiscale LSTM (HM-
LSTM) architecture computes:

hlt, c
l
t, z

l
t = F l(clt−1, h

l
t−1, h

l−1
t , hl+1

t , zlt−1, z
l−1
t ). (2)

where updated function F is served for HM-LSTM cell.
Three states above are h, c, and z represent hidden state,
cell state, and boundary state respectively, where the latest
one is introduced to divide a sequence into sub-sequences
and to create the hierarchical relationship among them. The
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(a) BLSTM network and outputs (b) HM-RNN (c) BLSTM with attention mechanism

Fig. 1: The network structures considered in this work.

major difference between the standard LSTM and HM-LSTM
is the latter provided three operations: UPDATE, COPY, and
FLUSH to for each cell state and hidden state at time step t.
A boundary will be conducted with the UPDATE operation,
while the COPY operation simply passes the hidden state and
cell state from the previous time step. If the end of a certain
sub-sequence is detected and the initialization of the next sub-
sequence is needed, the FLUSH operation will be executed.
An in-depth description of these operations can be found in
[15]. The selection of which operations should be performed
at each time step is controlled by the binary value of the
boundary state z = {0, 1}. In other words, with this boundary
checking mechanism, a hierarchical multi-scale architecture
can be formed automatically, which meets the hierarchical
character of the beats in music theory. In this paper, two hidden
layers (l = 2) are used. Both sizes of h state and c state are
set as 25.

D. Attention Mechanism

The architecture of the basic BLSTM with attention mech-
anism is shown in Figure 1(c). The idea of an attention
mechanism is to focus at each time step on certain elements
of the sequence data. It has been adopted to current neural
networks, and has shown improvement in learning long-term
dependencies. Accordingly, the attention mechanism leads to
better performances on various sequence-to-sequence learning
tasks. Since the beat tracking is a sequence-to-sequence learn-
ing task as well, we therefore consider an additional attention
layer to the BLSTM model in this paper. With the attention
mechanism, the modified BLSTM output Qo is computed as:

A = softmax(QiH
>H), (3)

Qo = tanh(W (A;Qi) + b). (4)

Here, the outputs of the forward and backward parts from
the last BLSTM layer are summed up, and the result is denoted
as Qi, whose dimension is (M,T,N), where M is the batch
size, T is the number of time steps, and N is the number
of hidden units. Since BLSTM contains two directions, the
concatenation of each time steps for l-layer BLSTM is denoted
as H in the shape of (2l,M,N). In this paper, we set l =
2, M = 8, and N = 25. In order to guide the model to
focus on information relevant to the labels, we multiply the
matrix Qi by H , where Qi contains features at each time
step, and H is the last time step that had passed through the
entire music clip. The resulting multiplication therefore is an
alignment score of Qi with respect to H . We then take softmax
on the alignment score, and multiply it by H to obtain the
attended feature A, which implies the influence of Qi on H .
The operation (A;Qi) in (4) represents the concatenation of
two given features: attended feature A and raw feature from
BLSTM Qi along the last dimension. The matrix W ∈ Rx×2x

is a learnable matrix in a fully connected layer.
In the following of this paper, the three models are denoted

as BLSTM, HM-LSTM, and BLSTM-Attn, respectively.

E. Network architecture
To stable the hidden state dynamics in recurrent neural

networks, we apply the layer normalization technique on the
training data. After normalization, variants of a two-layer (i.e.
l = 2) RNN-based network followed by fully-connected (FC)
layers are used. The variants of RNN can be either BLSTM or
HM-LSTM. Each RNN hidden layer has 25 units. In BLSTM-
Attn, the attention mechanism is embedded after RNN layers.
The outputs of RNN are fed into two separated FC layers
for beat and downbeat outputs, where both outputs have a
dimension of 2, one indicates the probability of beat/ downbeat
occurrence, and the other indicates the probability of non-beat/
non-downbeat occurrence. The sigmoid function σ is then
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used as the activation function for the outputs. The network is
trained with labeled ground truth b̂t ∈ {0, 1} and d̂t ∈ {0, 1}
for every time step t. The multi-task objective function L is
to minimize the binary cross entropy (BCE) between b̂t and
bt, and between d̂t and dt:

L :=
∑
t

(
BCE(bt, b̂t) + λ · BCE(dt, d̂t)

)
, (5)

where the value λ controls the weights of both BCE losses.
The implementation details can be found in our Github repos-
itory.2

IV. EXPERIMENT

A. Data

We evaluate our networks on the MusicNet dataset [20],
[21], which is a collection of 330 freely-licensed classical
music recordings, with over one million annotated labels for
each note in every recording. We adopted this dataset because
it provides not only audio recording and aligned MIDI events,
but also annotated values of start beat of each note. Here,
start beat refers to the note onset time in terms of beats. The
ground truths of beat and downbeat can be extracted from such
annotation. For example, a note starting from beat number 4 in
a music clip with meter 4/4 is on beat (and also on downbeat),
while another note starting from beat number 4.25 is not. The
term “meter” is a notational convention in music to specify
how many beats are contained in each bar. Beat/ downbeat
time can therefore be obtained from a linear interpolation
process if there is no note onset at the beat/ downbeat position.
For instance, given the start beat and onset time of two notes
by (B0, T0) and (B1, T1), the time t̄ at beat B (B ∈ N,
B0 ≤ B < B1) can be calculated from:

t̄ = T0 +
T1 − T0
B1 −B0

(B −B0) . (6)

We remove the recordings with too many staccato or
tremolo notes from experiments since we observed that the
annotations of both kinds of notes in the dataset are not precise
enough. After this data cleaning process, we come up with a
subset containing 155 recordings for our experiments. In this
subset, the training set consists of 111 songs, with the total
length being 12h 23m; the validation set consists of 12 songs,
with the total length being 1h 27m; and the testing set consists
of 31 songs, with the total length being 3h 16m.

B. Baseline

Since audio beat tracking has been a well-developed field,
the importance of symbolic beat tracking may be questioned:
symbolic music data could be synthesized to audio first, then
the symbolic beat tracking could be simply regarded as a sub-
problem of the audio beat tracking. To take a response to this
question and justify the importance of symbolic beat tracking,
we adopt previous works on both audio and symbolic beat
tracking as the baseline methods.

2https://github.com/chuang76/symbolic-beat-tracking

We compare the proposed methods with three state-
of-the-art open-source packages on either audio or sym-
bolic beat tracking, namely madmom library, librosa li-
brary, and pretty_midi library. The madmom library
predicts the beat positions with RNNs and a dynamic
Bayesian network approximated by a Hidden Markov Model
(HMM). That is, we acquire the beat activation function
via the RNNBeatProcessor function first, then we call
the DBNBeatTrackingProcessor function to obtain the
locations of the beats in seconds. The librosa library
computes onset envelope first, then uses dynamic program-
ming algorithm to perform beat tracking. It should be noted
that the librosa library only provides beat tracking. The
pretty_midi library predicts the beat positions according
to MIDI tempo changes. For compound meters, it returns every
third denominator note as beat positions. For all other meters,
it returns every denominator note as beat positions.

Since the madmom and librosa libraries only allow
audio inputs, we consider two scenarios for comparison:
1) evaluation of the original audio recordings (i.e. human
performance) in the MusicNet dataset, and 2) evaluate of
the audio data which are synthesized from the note event
annotation. In the second scenario, we first obtain MIDI tracks
rendered from note event annotation in the MusicNet dataset
with pretty_midi library, and set the constant velocity
(volume) for each note. Subsequently, with the given MIDI
tracks, the audio signals are synthesized through software
synthesizer fluidsynth. The synthesized audio signals are
mono-channel sampled at 44.1 kHz. In the following, we refer
to the first scenario as real and the second scenario as syn.

C. Experiment Setup

1) Training procedure: The weights and biases of the neu-
ral network are initialized with a uniform random distribution
in a range [-0.1, 0.1]. We train the network with stochastic
gradient descent (SGD) where the learning rate is 10−2 and
momentum is 0.9 to minimize binary cross-entropy loss for
beat and downbeat tracking tasks. The learning rate is reduced
by a factor of 10 every 20 epochs. We select the model whose
validation loss is the minimum value before 50 epochs as the
best model. With empirical tuning on the validation set, we
found that setting λ = 5 on the objective function (5) gives
optimal results on beat and downbeat tracking.

2) Thresholding: To obtain the predicted beat and downbeat
position, we apply thresholds on the activated outputs of the
neural network. The threshold values are obtained by fine-
tuning on the validation set. The tuning range is in [0, 1], and
0.1 is as a step. For BLSTM and BLSTM-attn, the optimal
threshold values of beat and downbeat tasks are 0.3 and 0.2,
respectively. For HM-LSTM, the optimal threshold values of
beat and downbeat tasks are 0.3 and 0.1, respectively.

3) Evaluation Measure: In line with most of the studies
on beat and downbeat tracking [7], we report the precision
(P ), recall (R), and F1-score (F ) with the tolerance window
of ±70 ms. The F1-score is defined as 2PR/(P + R). In
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TABLE I: Beat tracking results on the testing set.

Method Precision Recall F1-score

Proposed
BLSTM 0.520 0.724 0.605
BLSTM-Attn 0.522 0.715 0.603
HM-LSTM 0.513 0.675 0.583

Baseline

madmom (syn) 0.497 0.641 0.560
madmom (real) 0.427 0.547 0.480
librosa (syn) 0.388 0.600 0.471
librosa (real) 0.277 0.394 0.325
pretty midi 0.207 0.303 0.246

our experiments, the whole evaluation is conducted with the
mir_eval library.

TABLE II: Downbeat tracking results on the testing set.

Method Precision Recall F1-score

Proposed
BLSTM 0.262 0.448 0.331
BLSTM-Attn 0.264 0.466 0.337
HM-LSTM 0.198 0.643 0.303

Baseline
madmom (syn) 0.319 0.135 0.190
madmom (real) 0.286 0.138 0.186
pretty midi 0.067 0.078 0.072

D. Results

Table I lists the beat tracking results on the test set using
various models including BLSTM, BLSTM-Attn, HM-LSTM,
madmom (syn/ real), librosa (syn/ real), and pretty midi.
Comparing the F1-scores among the three proposed networks,
both BLSTM and BLSTM-Attn outperform HM-LSTM by
around 2%. The results of BLSTM and BLSTM-Attn are
almost the same. This implies that taking the hidden states
from all the time steps into account is of quite limited contribu-
tion, probably because the data representation in the symbolic
domain is not as rich as in the audio domain. Interestingly, the
F1-score of HM-LSTM is lower than BLSTM’s. One possible
reason is that HM-LSTM predicts beats in a parsimonious
manner: while BLSTM tends to predict both on-beat and off-
beat positions and gets a high recall, HM-LSTM tends to
predict only either on-beat or off-beat positions, where the
latter case could result in low precision and low recall.

We then compare the proposed system with baseline mod-
els. We observe that, first, in madmom and librosa, using
synthesized audio performs better than using real audio. The
improvement of synthesized audio over real audio is 8% for
madmom and 14.6% for librosa. This is to verify that when
performing on synthesized audio, these audio beat tracking
methods still work, at least better than on real audio, and can
be taken as reliable references to be compared with symbolic
beat tracking. Second, we observe that each of the proposed
model outperforms the baseline models. More specifically,
BLSTM, BLSTM-Attn, and HM-LSTM outperform madmom
(syn) by 4.5%, 4.3%, and 2.3%, respectively. This indicates
the importance of taking symbolic beat tracking as a specific
task independent from audio beat tracking, as state-of-the-
art audio beat tracking cannot replace the symbolic beat

Fig. 2: Beat tracking results on mm. 63-72 in Beethoven’s
String Quartet in A major No. 5, Op. 18 , II. Menuetto. The
time signature is 3/4, which means each bar contains three
quarter-note beats. Annotations are derived from 2481.csv
in the MusicNet dataset. From top to bottom: sheet music,
piano roll representation, and outputs of BLSTM, HM-LSTM,
madmom (syn), librosa (syn), and pretty midi. Ground truth
beats are marked in vertical red dashed lines.

tracking method in basic neural network models. Finally, the
proposed system also outperforms the symbolic beat tracking
library pretty midi, as pretty midi is rule-based and has less
generalizability on large-scale data.

Table II lists the results of downbeat tracking. It should
be noted that librosa does not support the downbeat tracking
task, therefore the downbeat tracking result of librosa is not
presented in the Table. A trend similar to Table I is observed;
BLSTM and BLSTM-Attn outperform HM-LSTM, and HM-
LSTM outperforms other baseline methods. BLSTM outper-
forms madmom (syn) by 14.1%, and outperforms pretty midi
by 25.9%. These results again show the challenges of symbolic
beat tracking, and the importance of data-driven approaches of
symbolic beat tracking.

E. Illustration

Figures 2 to 4 illustrate the beat tracking results of various
methods on three music samples. Figure 2 illustrates a string
quartet sample with regular speed and metrical structures. In
this case, the three baseline methods appear to successfully
predict all the beat positions, while BLSTM and HM-LSTM
miss a few beat positions. The advantage of the proposed
approach can be shown in Figure 3. It can be seen that
only the neural network models trained on MIDI data (i.e.
BLSTM and HM-LSTM) capture meter information correctly.
madmom predicts beat position in a stable manner but failed to
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Fig. 3: Beat tracking results on mm. 12-14 in Beethoven’s
Piano Sonata No. 14 (Moonlight) in C-sharp minor, Op. 27,
I. Adagio sostenuto. The time signature is 4/4, which means
each bar contains four quarter-note beats. Annotations are
derived from 2350.csv in the MusicNet dataset. From top
to bottom: sheet music, piano roll representation, and outputs
of BLSTM, HM-LSTM, madmom (syn), librosa (syn), and
pretty midi. Ground truth beats are marked in vertical red
dashed lines.

specify the boundary of the triplets by predicting a sequence
of doublet. In addition, the dynamic-programming-based li-
brosa and the rule-based pretty midi give rather conservative
predictions by taking every eighth note as a beat or every
0.5 second as a beat. Figure 4 presents a challenging case in
which most of the notes in the music are at off-beat positions.
Here, all the three baseline methods output only the off-beat
positions. In contrast, BLSTM outputs both on-beat and off-
beat positions, and HM-LSTM outputs off-beat positions and
some on-beat positions. As a result, BLSTM and HM-LSTM
outperform the baseline methods in this case. Finally, we can
also observe the different behaviors between BLSTM and HM-
LSTM: HM-LSTM mispredicts most of the beat position at
off-beat, only a few predicted beat positions are on-beat. Under
the same situation, BLSTM predicts both on-beat and off-
beat as beat positions, which leads to a higher F1-score. The
tracking results in Table I also demonstrate the performance
of BLSTM is better than HM-LSTM.

V. DISCUSSION

As the first attempt to tackle the symbolic beat tracking
problem with deep learning, the scope of this paper is limited
in technical aspects. The input data representations used in this
paper are just a preliminary event set. There is only one dataset
for model training; in comparison, state-of-the-art audio beat

Fig. 4: Beat tracking results on mm. 41-45 in Beethoven’s
Piano Sonata No. 10 in G Major, Op. 14, II. Andante. The
time signature is 4/4, which means each bar contains four
quarter-note beats. Annotations are derived from 2632.csv
in the MusicNet dataset. From top to bottom: sheet music,
piano roll representation, and outputs of BLSTM, HM-LSTM,
madmom (syn), librosa (syn), and pretty midi. Ground truth
beats are marked in vertical red dashed lines.

tracking adopted a much richer set of data for training [7].
Under such limited resources, the classic BLSTM outperforms
a more advanced model design, a counter-intuitive result.

Our experiment results however indicate a few open issues
for further study. First, symbolic beat tracking is demonstrated
far from a trivial problem. With the lack of timbre, energy, and
musical accent information in symbolic data, the features to
discriminate onset and beat, and the features to discriminate
beat and downbeat would be much more difficult to learn, in
comparison to the case of audio beat tracking. This might be
the reason why the models cannot distinguish between beat
and downbeat precisely in some cases. Second, the models
tend to ignore the beat predictions when there is a note whose
duration is much longer than its neighboring notes, such as
a full note at the end of a musical phrase. To address this
problem, the Dynamic Bayesian Network (DBN) [22] adopted
in madmom can be utilized as post-processing to infer to
missed beat positions. Third, we found that beat and downbeat
annotation of human-performed MIDI data is urgently needed,
but such annotation is also not easy to obtain. Finally, it
is still unknown whether the recent advance in sequential
models (e.g., autoregressive models [23], Transformers [24],
etc.) can further improve the performance. This direction is
worth investigating based on more delicate data representation
and richer sets of data.

VI. CONCLUSIONS

In this study, we present the joint beat and downbeat
tracking task on symbolic music and cope with this task
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with modern deep learning approaches. Our major conclusions
are two-fold. First, taking symbolic beat tracking as a task
independently from audio beat tracking and building a specific
model upon the symbolic data is necessary for the related
application. Second, experiment results demonstrate the per-
formances of BLSTM-based methods (BLSTM and BLSTM-
Attn) outperform HM-LSTM and other baseline methods.
This suggests that BLSTM-based methods can be adopted
in the application at the current stage. Future work includes
the design of input data representation, and more advance
sequence-to-sequence models such as autoregressive models
and Transformers for beat and downbeat tracking.
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[12] Jean-Pierre Briot, Gaëtan Hadjeres, and François-David Pachet, “Deep
learning techniques for music generation–a survey,” arXiv preprint
arXiv:1709.01620, 2017.

[13] Sepp Hochreiter and Jürgen Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[14] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio, “Neural
machine translation by jointly learning to align and translate,” arXiv
preprint arXiv:1409.0473, 2014.

[15] Junyoung Chung, Sungjin Ahn, and Yoshua Bengio, “Hierarchical
multiscale recurrent neural networks,” in 5th International Conference
on Learning Representations (ICLR), 2017.

[16] Edward W Large, “Modeling beat perception with a nonlinear oscilla-
tor,” in Proceedings of the eighteenth annual conference of the cognitive
science society, 1996, pp. 420–425.

[17] Peter Desain and Henkjan Honing, “The quantization of musical time:
A connectionist approach,” Computer Music Journal, vol. 13, no. 3, pp.
56–66, 1989.

[18] David Temperley, “A unified probabilistic model for polyphonic music
analysis,” Journal of New Music Research, vol. 38, no. 1, pp. 3–18,
2009.

[19] Andrew McLeod and Mark Steedman, “Meter detection and alignment
of midi performance.,” in ISMIR, 2018, pp. 113–119.

[20] John Thickstun, Zaid Harchaoui, Dean P. Foster, and Sham M. Kakade,
“Invariances and data augmentation for supervised music transcription,”
in International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), 2018.

[21] John Thickstun, Zaid Harchaoui, and Sham M. Kakade, “Learning
features of music from scratch,” in International Conference on Learning
Representations (ICLR), 2017.
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