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Abstract—When people get stressed in nervous or unfamiliar
situations, their speaking styles or acoustic characteristics change.
These changes are particularly emphasized in certain regions
of speech, so a model that automatically computes temporal
weights for components of the speech signals that reflect stress-
related information can effectively capture the psychological state
of the speaker. In this paper, we propose an algorithm for
psychological stress detection from speech signals using a deep
spectral-temporal encoder and multi-head attention with domain
adversarial training. To detect long-term variations and spectral
relations in the speech under different stress conditions, we
build a network by concatenating a convolutional neural network
(CNN) and a recurrent neural network (RNN). Then, multi-
head attention is utilized to further emphasize stress-concentrated
regions. For speaker-invariant stress detection, the network is
trained with adversarial multi-task learning by adding a gradient
reversal layer. We show the robustness of our proposed algorithm
in stress classification tasks on the Multimodal Korean stress
database acquired in [1] and the authorized stress database
Speech Under Simulated and Actual Stress (SUSAS) [2]. In
addition, we demonstrate the effectiveness of multi-head attention
and domain adversarial training with visualized analysis using
the t-SNE method.

Index Terms—speaker-invariant stress detection, multi-head
attention, adversarial multi-task learning

I. INTRODUCTION

Stress is defined as the psychological and/or physical ten-
sion experienced when a person has difficulty in adapting to
new environments, which may cause anxiety or mental chal-
lenges [3] [4]. Stress detection is an important task because
it can allow for the provision of more appropriate services
to people by improving the understanding of their emotional
status. In general, psychological stress can be reliably detected
by measuring the changes in biological signals such as heart
rate and cortisol hormone levels [5] [6]. However, in daily
life, these approaches are difficult to apply because additional
devices and inconvenient procedures are needed to acquire the
aforementioned bio-signals. As an alternative, speech has been
proposed as a means to perform psychological state detection.
Notable advantages of speech include the fact that it can be
easily acquired by microphones in real environments and that
speech characteristics such as pitch or energy information tend
to vary depending on the mental state of the speaker [7] [8] [9].

Previous studies focused on modeling relationships be-
tween stress and speech characteristics using rule-based meth-
ods or statistical models such as Hidden Markov Mod-
els (HMMs) [10] [11] [12]. Recently, stress detection meth-

ods using deep learning-based algorithms have been pro-
posed [1] [13]. Deep learning-based approaches have shown
high detection performance since they can efficiently model
high-level relationships between stress labels and speech fea-
tures using a data-driven approach.

Han et al. [1] proposed a deep learning-based stress detec-
tion algorithm to extract stress features from speech utterances.
To train their model, they collected a database by recording
speech from individuals in both neutral and stressed situations,
making subjects perform simple script reading versus perform-
ing an interview in a foreign language without prior notice.
Their approach used a Long Short-Term Memory (LSTM)
network to model frame-wise stress-related features and used
mean-pooling to obtain stress features at the utterance-level.
Although this work showed that deep learning can be effec-
tively applied to stress detection, the relative simplicity of the
model implies that structural improvements can still be made.
Since stress may not be revealed in every speech segment
(i.e., it may be concentrated at particular parts of a word or
an utterance [14]), simply applying average pooling may not
be the optimal way to obtain utterance-wise representations
related to stress detection.

In this paper, we propose an advanced network architecture
that can detect psychological stress from speech signals. We
use a spectral-temporal encoder consisting of a convolution-
recurrent neural network (CRNN) for automated feature ex-
traction. The CNN layers capture the local relations between
adjacent time-frequency (T-F) bins in the acoustic features and
bi-directional LSTM (BLSTM) layers find the time-varying
global relationships among the CNN outputs. We apply a
multi-head attention (MHA) mechanism to efficiently integrate
the stress-related information of the encoded vectors extracted
at each analysis frame. Using these modules, we can obtain
an utterance-wise feature that effectively represents a psycho-
logical stress state. We also adopt a domain adversarial train-
ing (DAT) technique using a gradient reversal layer (GRL),
which provides a constraint to the network to focus on stress
detection but not have other domain capabilities such as
speaker-dependent discrimination. Experimental results on the
Multimodal Korean stress database (described in Section III.A)
and the SUSAS-corpus with the proposed architecture showed
much higher accuracy than those of previous works [1] [13].
In addition, by investigating the distribution of embeddings
in a low-dimensional space using t-SNE, we verify that the
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proposed method effectively captures the distinctive charac-
teristics of stressed and non-stressed speech.

The rest of this paper is organized as follows. Section II
explains the background of the proposed method. Section III
introduces the two databases used in this paper by describ-
ing the acquisition process of the Multimodal Korean stress
database and the SUSAS database widely used in other stress-
related research. Section IV describes the proposed algorithm
for stress detection specifically. The experiments and analysis
results of the attention mechanism and domain adversarial
learning are described in Section V. Finally, Section VI
concludes the paper.

II. BACKGROUND

A. Multi-head attention

A self-attention mechanism, proposed by Lin et al. [15],
finds the internal representations of encoded feature vectors
that are related to the specific task of the model by setting
key, query, and value, which are separately projected from the
same input sequence. To further find these internal features
in a more informative manner, the multi-head attention mech-
anism, proposed by Vaswani et al. [16], computes multiple
attention weights in parallel with self-attention layers. Since
each attention head captures different representations from the
encoded feature vectors, this approach can capture various
useful characteristics for the overall task. In our proposed
method, we use multi-head attention to find informative in-
ternal representations of the stress state of the speaker.

B. Domain adversarial training

Domain adversarial training (DAT), proposed by Ganin et
al. [17], is a learning strategy that aims to improve the feature
representations for a given target domain by reducing unde-
sirable variances between the source and the target domain
distributions.

To perform DAT, a network uses two classifiers: a label clas-
sifier for the main task and a domain classifier that determines
whether the input sample is from the source or target domain.
A gradient reversal layer (GRL) is employed in the domain
classifier to reverse the gradient during backpropagation in
the training step. By applying multi-task learning for the two
classifiers, latent representations are learned for the main task
in the target domain.

Since speech includes a wide variety of information that
can be applied to various tasks, we need to design an em-
bedding network that emphasizes stress-related factors but
de-emphasizes other factors such as phonetic or speaker-
related ones. The database that we collected includes common
phonetic information but strong speaker characteristic factors
in each speech sample. To deal with this, we apply DAT
by training the domain classifier on a speaker classification
task, which aids in making the latent embeddings effective
for stress state detection while reducing their capability for
distinguishing speaker characteristics.
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Fig. 1: Experiment procedure for the Multimodal Korean stress
database

TABLE I: Configuration of the Multimodal Korean stress
database

State Train Test Total
Non-stress 4.89 hr. 1.21 hr. 6.1 hr.
Stress 4.63 hr. 1.15 hr. 5.78 hr.

Total 9.52 hr. 2.36 hr. 11.88 hr.

III. DATASETS

A. Multimodal Korean stress database

Stressed and non-stressed speech were recorded as a subset
of the multi-modal stress detection database. A total of 91
native Korean speakers whose ages ranged from the 20s to
the 40s participated in the recording process. The database
acquisition process is described in detail in [1]; here, we
explain the recording process for collecting the stressed and
non-stressed speech portion of the database. Fig. 1 illustrates
the recording and collection process. Each participant first
went through a relaxation process by watching a calm video.
Afterwards, the participants read a given script written in
Korean without any external pressure. Then, an interviewer
came into the recording room and asked questions in English
about their personal status and daily life for 5 minutes. After
the English interview, participants were made to read the same
script that they read before the interview.

To evaluate the stress levels of each stage, at the end of the
experiment, participants evaluated their stress scores in each
stage on a scale from 1 (not stressful) to 5 (very stressful).
The average stress level score of each stage is shown in Fig. 1.
From the survey scores, the English interview stage was the
most stressful environment and the script reading after the
interview was the second most stressful. To focus solely on the
stress-related aspects without phonetic variation, the speech
recorded before the interview was labeled non-stress, and the
speech recorded after the interview was labeled stress. The
total dataset we recorded amounts to approximately 12 hours,
with about 8 minutes per speaker on average. All the speech
was sampled at a rate of 16 kHz. The database is divided into
training and evaluation sets in a 4-to-1 ratio for each speaker
when conducting the experiments. Table I demonstrates the
configuration of the database.
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B. SUSAS corpus

The Speech Under Simulated and Actual Stress (SUSAS)
corpus [2] is a database recorded in simulated and actual
stressful situations such as riding a roller coaster. It consists
of 16,000 brief utterances that are 1-2 seconds long, and
each sample contains a word from a male or female speaker
sampled at a rate of 8 kHz. Since the SUSAS database is
often used for analyzing speech under stress, it was adopted
as a reference to verify the performance of our proposed
model. We evaluate our approach on the same classification
tasks as described in [13] to show the robustness of our
proposed model. Specifically, three tasks were performed:
2-class (angry, neutral), 4-class (neutral, angry, soft, fast),
and 9-class (angry, clear, fast, Lombard effect, loud, neutral,
question, slow, soft) where all of the classes are spoken by 9
speakers.

IV. PROPOSED ALGORITHM

A. Feature extraction

To extract robust input features for training, several pre-
processing steps are applied to the recorded audio. First,
Wiener filtering is applied to remove undesired background
noise components. Then, a pre-emphasis filter, i.e., a low order
high pass filter, is applied to reduce the dynamic range of
the frequency spectrum by emphasizing the high frequency
regions. Speech segments are obtained from the pre-processed
audio by applying voice activity detection (VAD) [18], after
which they are converted into spectrograms by the short-time
Fourier transform (STFT) at 10 ms intervals with a 25 ms
Hann window. 40-dimensional log mel-spectrograms are then
computed and normalized to have zero mean and unit variance
to get robust features. We then segment the normalized mel-
spectrograms into fixed time lengths, taking into account the
different average utterance lengths of the two databases (2
seconds for SUSAS and 5 seconds for Multimodal).

B. Network architecture

Fig. 2 depicts a block diagram of the CRNN-Attention
architecture used in this work. It consists of a spectral analysis
module, a temporal modeling module, and an attention module
with two classifiers for adversarial multi-task learning.

1) Spectral-temporal embedding: The CRNN-based em-
bedding network encodes the input log mel-spectrogram X
into the latent embedding E to make it more interpretable for
stress detection. The convolutional neural network is used to
effectively capture the relationships of local time-frequency (T-
F) bins in the given log mel-spectrogram. For the convolution
block, we adopt the VGG-A model (VGG-11) usually used
for image classification [19] [20] because the model also
showed high performance in speech recognition tasks [21].
To effectively capture the non-linearity features in speech
signals, we use a 3x3 kernel with a very small receptive
field. We reduce the number of convolutional layers in the
original VGG-11 model from 11 to 7 to build a lighter model.
A batch normalization layer then follows after applying a
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Fig. 2: The proposed multi-task network architecture consists
of three components: 1) Spectral analysis; 2) Temporal mod-
eling; 3) Attention module; with two classifiers for stress and
speaker classification

rectified linear unit (ReLU) activation function and a max-
pooling layer.

The encoded feature from the CNN goes into the temporal
modeling module, which consists of two bi-directional LSTM
(BLSTM) layers with 256 hidden units each to model the
sequential properties of the speech signal. Batch normaliza-
tion is applied to improve the classification performance by
accelerating learning and improving the gradient flow through
the network [22]. The output of the temporal modeling module
is the latent embedding E.

2) Multi-head attention: In the attention layer, the last
hidden layer of the temporal modeling module is concatenated
with multiplicative multi-head self-attention weights. Although
the CRNN is able to extract stress-related features, directly
delivering them to the final classifier is not a good approach.
This is because even in stressed speech, stress levels are not
constant in every moment of the speech, but rather concen-
trated in certain moments. To efficiently handle this property,
we concatenate a multi-head attention mechanism with the
BLSTM, thus helping the network learn where to pay attention
in the frame-wise output of the BLSTM.

The query, key, and value of the i-th head are denoted
by Qi,Ki, Vi (i = 1, ..., r) with dimension dq/r, dk/r, dv/r,
where r denotes the number of heads. These matrices obtained
by the linear projection of the embedding E with different
weight matrices Wi

Q,Wi
K ,Wi

V . Then, each attention head
is computed as shown in Equation 1.

Hi = Softmax

(
QiKi

T√
dk/r

)
· Vi (1)

Finally, multi-head attention is computed by multiplying the
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TABLE II: Stress recognition performance achieved from
various structures of networks on the evaluation set of the
Multimodal database

Model structure Accuracy

LSTM-RNN [1] 65.76%

CRNN (5x5 Conv + LSTM) 66.55%

CRNN (3x3 Conv + LSTM) 70.73%

CRNN (3x3 Conv + BLSTM) 73.08%

CRNN (3x3 Conv + BLSTM) + Multi-Head 1 Att. 73.73%

CRNN (3x3 Conv + BLSTM) + Multi-Head 2 Att. 74.55%

CRNN (3x3 Conv + BLSTM) + Multi-Head 4 Att. 75.08%
CRNN (3x3 Conv + BLSTM) + Multi-Head 8 Att. 74.51%

concatenated heads with the learnable weight matrix as shown
in Equation 2.

MHA = Concat(H1, H2, ...,Hn) ·Wo (2)

After applying the multi-head attention, the output is con-
nected to a binary classifier with a softmax function to
determine whether the input speech is stressed or not.

C. Speaker-invariant learning strategy

Although every speech segment is normalized, latent fea-
tures learned by using only binary cross-entropy loss are also
significantly affected by speaker characteristics, as shown in
Fig. 3 (a), (b). These characteristics can detract from the stress
detection performance in the inference stage. Therefore, we
put an additional speaker classifier with a gradient reversal
layer to the multi-head attention output and applied adversarial
multi-task training to disentangle the speaker and stress-related
characteristics.

L = (1− λ)Lstress − λLspeaker (3)

As shown in Equation 3, the loss function is defined as the
weighted sum of binary cross-entropy loss Lstress for the
stress classifier and categorical cross-entropy loss Lspeaker for
the speaker classifier with a negative coefficient for gradient
reversal. The relative weights of the stress classification and
speaker classification losses are controlled by the weight λ.

V. EXPERIMENTS

To show the effectiveness of the proposed method, we
conducted stress detection and classification experiments on
the Multimodal database and SUSAS database. We set 20%
of the total data for evaluation and the rest of the samples
for training. From the training data, 20% was set aside to
be used as a validation set. We investigated the performance
of various network setups to determine the best model in
terms of accuracy on the Multimodal database. We also
evaluated the performance of the domain adversarial learning
by adjusting the weights between the two losses and applying
dropout to find the optimal controlling parameter. We used He
initialization [23] and Adam as the optimizer with a learning
rate of 10−4.

TABLE III: Stress recognition performance achieved from
various loss weights of DAT on the evaluation set

λ
Dropout

prob.
Multimodal

DB
SUSAS-corpus

2-class 4-class 9-class

- - 75.08% 96.82% 82.53% 72.83%

0.05 - 76.44% 97.61% 89.48% 93.26%
0.01 - 76.55% 96.82% 91.07% 93.21%

0.005 - 75.55% 96.42% 91.51% 92.47%

0.003 - 76.48% 96.42% 90.27% 92.70%

0.001 - 75.76% 94.84% 92.41% 93.08%

0.05 0.2 76.12% 96.82% 90.52% 92.92%

0.01 0.2 76.37% 95.63% 90.87% 93.02%

0.005 0.2 75.66% 96.82% 90.87% 93.04%

0.003 0.2 77.30% 98.01% 90.82% 92.89%

0.001 0.2 76.91% 96.03% 90.17% 92.96%

A. Comparison of network architectures

To find the most effective CRNN architecture, we investi-
gated the impact of various factors such as the kernel size
of the convolutional layer (5x5 vs. 3x3) and the recurrent
layer structure (LSTM vs. BLSTM) at the spectral-temporal
embedding stage. We also evaluated the performance of the
multi-head attention mechanism with varying numbers of
heads. Table II summarizes the stress detection performance
depending on the network structure. All implemented CRNN
structures achieved higher accuracies than the conventional
two-layers LSTM-RNN network [1]. The model with 3x3
kernel size and BLSTM exhibited better performance than
ones using a 5x5 kernel or LSTM. For the multi-head attention
module, using 4 heads resulted in the best performance,
achieving 75.08% stress recognition accuracy. All the rest of
the experiments in the paper are based on this architecture.

B. Comparison of various settings of DAT

We explored the appropriate controlling loss weight λ of
adversarial multi-task training for the proposed model on the
Multimodal database and the SUSAS database. The results
are shown in Table III. When the model was trained on the
Multimodal database, DAT led to a relative improvement of
0.63-2.95% over a proposed network without it. The model
achieved the best performance of 77.30% in the stress recog-
nition task when λ value was set to 0.003 with a dropout
probability of 0.2.

We also evaluated our proposed model on the SUSAS
database. Here, the network trained with only stress classi-
fication loss achieved a recognition performance of 96.82%
(2-class), 82.53% (4-class), 72.83% (9-class) for each task on
evaluation set. It is clear from the results that it outperforms
the previous research [13], which obtained results of 76% (2-
class), 71% (4-class), and 70% (9-class). Using DAT resulted
in significant further improvements on every task resulting in
accuracies of 98.01% (2-class), 92.41% (4-class), and 93.26%
(9-class).
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(a) before MHA (b) after MHA

(c) before MHA (with DAT) (d) after MHA (with DAT)

Fig. 3: t-SNE visualizations of high-dimensional non-stress
embedding (blue dot) and stress embedding (red dot) from
the proposed model on randomly chosen 20 speakers from the
evaluation set in the Multimodal database; i) trained without
DAT: (a), (b); ii) trained with DAT (λ = 0.003) and dropout:
(c), (d)

C. Analysis of stress embeddings

To evaluate the representations learned by the proposed
algorithm, we analyzed the embedding vectors obtained by
our network. Figure 3 shows t-SNE visualizations of the high-
dimensional stress embeddings extracted from the proposed
architecture. (a) and (b) show stress embeddings before and
after the attention layer, respectively. (c) and (d) are stress
embeddings before and after the attention layer when speaker-
domain adversarial training is applied. By comparing (a) with
(b) and (c) with (d), we can observe that multi-head attention
separates the embedding vectors more distinctly.

We also checked the effect that DAT had on reducing
the inclusion of speaker information in the embeddings by
comparing (b) and (d). Without DAT (Figure 3 (b)), the
extracted embeddings appear to display speaker information,
forming many small clusters within each class. However, when
DAT is applied, the class dots are scattered widely and less
likely to express speaker information.

To further verify the effect of DAT, we measured the
cosine distance between non-stress embeddings and stress
embeddings. The cosine distance dcos in an n-dimensional
space can be obtained via the following equation:

dcos = 1− u · v
||u||||v|| (4)

where u and v denote embeddings from non-stressed and
stressed speech, respectively. To obtain the overall distance
between two classes, we calculated and averaged the distance
of all possible pairs between the two classes. We obtained
cosine distances of 1.006 for (b) and 1.319 for (d). From this
result, we can infer that the model can extract more distinctive
stress-related features when DAT is applied.

VI. CONCLUSION

In this work, we proposed a deep learning approach to
detect and classify stressful conditions from speech, using the
Multimodal Korean stress database and the SUSAS database.
The proposed network consists of CRNN and a multi-head
attention mechanism to find and utilize stress-related infor-
mation from each analysis frame. Our model successfully
outperformed the baseline LSTM-based model due to more
efficient modeling of spectral and temporal information from
the acoustic features and effectively captured information
related to a speaker’s psychological stress state. In addition,
by applying domain adversarial training with a gradient re-
versal layer, we were able to enhance the stress recognition
performance while reducing factors related to other speech
characteristics.
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