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Abstract—In this paper, we present a novel model for building
end-to-end Japanese-dialect automatic speech recognition (ASR)
system. It is known that ASR systems modeling for the standard
Japanese language is not suitable for recognizing Japanese
dialects, which include accents and vocabulary different from
standard Japanese. Therefore, we aim to produce dialect-specific
end-to-end ASR systems for Japanese. Since it is difficult to
collect a massive amount of speech-to-text paired data for each
Japanese dialect, we utilize both dialect data and standard
Japanese language data for constructing the dialect-specific end-
to-end ASR systems. One primitive approach is a multi-condition
modeling that simply merges the dialect data with the standard-
language data. However, this simple multi-condition modeling
causes inadequate dialect-specific characteristics to be captured
because of a mismatch between the dialects and standard
language. Thus, to produce reliable dialect-specific end-to-end
ASR systems, we propose the dialect-aware modeling that utilizes
dialect labels as auxiliary features. The main strength of the
proposed method is that it effectively utilizes both dialect and
standard-language data while capturing adequate dialect-specific
characteristics. In our experiments using a home-made database
of Japanese dialects, the proposed dialect-aware modeling out-
performed the simple multi-condition modeling and achieved an
error reduction of 19.2%.

I. INTRODUCTION

Recently, deep learning has been in development in the field
of automatic speech recognition (ASR). As one of the state-
of-the-art deep learning-based ASR systems, end-to-end ASR
has been proposed [1,2]. End-to-end ASR consists of a single
network, and it directly maps acoustic features to characters.
Recent studies have proposed many advanced end-to-end ASR
models: sequence-to-sequence models with recurrent neural
network-based approaches [3, 4] and connectionist temporal
classification and attention-based approaches [5,6]. In particu-
lar, the performance of transformer-based approaches has been
amongst the most powerful [7–11]. However, it is known that
the performance of end-to-end ASR depends on the amount
of training data [12, 13].

There are many dialects across Japan. Each of them has
lots of dialect-specific accents and vocabulary. For examples,
even though a dialect includes the same words as the standard
Japanese language, the meaning of each can be completely
different. In other cases, although the meaning of a word is
the same between dialects and the standard language, the word
itself is absolutely different. Basically, training data for end-
to-end ASR consists of a large amount of standard-language
data. Therefore, it is known that ASR systems constructed

for a standard language are not suitable for recognizing its
dialects [14–16]. To design reliable speech recognizers for
each dialect, a large amount of dialect data is required. It is,
however, difficult to collect a large amount of speech-to-text
paired data for each dialect. One primitive approach to relaxing
this problem is a multi-condition modeling that simply merges
the dialect data with that of the standard language. How-
ever, this simple multi-condition modeling causes inadequate
dialect-specific characteristics to be captured because of a
mismatch between the dialects and standard language.

To produce reliable dialect-specific end-to-end ASR sys-
tems, we propose a dialect-aware modeling that utilizes dialect
labels as auxiliary features for a transformer-based end-to-
end ASR system. Introducing the labels to the transformer
decoder part of the proposed method can mitigate falling into
dialect-specific local optima [17]. The main strength of the
proposed method is that it effectively utilizes both dialect
and standard-language data while capturing adequate dialect-
specific characteristics. Hence, the proposed method improves
not only the recognition performance for dialects but also for
standard language. In our experiments, a home-made database
consisting of six Japanese dialects and a standard-Japanese
database were used for constructing a transformer-based end-
to-end ASR system. From the experimental results, we demon-
strate that the proposed dialect-aware modeling outperformed
the simple multi-condition modeling and achieved an error
reduction of 19.2%.

The paper is organized as follows. Section II describes
an end-to-end ASR system based on a transformer encoder-
decoder. Then, the proposed method is presented in Section I
II. Experimental conditions, the database, and results are
presented in Section IV. Section V concludes our work.

II. END-TO-END ASR SYSTEM BASED ON TRANSFORMER
ENCODER-DECODER

This section briefly describes end-to-end ASR using
a transformer-based auto-regressive generative model. This
model predicts the generation probability of text W =
{w1, ..., wN} given speech X = {x1, ...,xM}, where wn is
the n-th token in the text and xm is the m-th acoustic feature
in the speech. N is the number of tokens in the text and M
is the number of acoustic features in the speech. The auto-
regressive generative models define the generation probability
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of W as

P (W |X;Θ) =

N∏
n=1

P (wn|W 1:n−1,X;Θ), (1)

where Θ represents model parameter sets, and W 1:n−1 =
{w1, ..., wn−1}.

A. Network structure

In our transformer-based end-to-end ASR system,
P (wn|W 1:n−1,X;Θ) can be computed using a speech
encoder and a text decoder, both of which are composed of a
couple of transformer blocks. The model parameter sets are
split into those for the speech encoder θenc, and those for the
text decoder θdec.
Speech encoder: The speech encoder converts input acoustic
features into hidden representations H(I) using I transformer
encoder blocks. The i-th transformer encoder block composes
i-th hidden representations H(i) from the lower layer inputs
H(i−1) as indicated by

H(i) = TransformerEncoderBlock(H(i−1); θenc), (2)

where TransformerEncoderBlock() is a transformer encoder
block that consists of a scaled dot-product multi-head self-
attention layer and a position-wise feed-forward network. The
hidden representation H(0) = {h(0)

1 , ...,h
(0)
M ′} is produced by

h
(0)
m′ = AddPostionalEncoding(hm′), (3)

where AddPositionalEncoding() is a function that adds a
continuous vector in which position information is embedded.
H = {h1, ...,hM ′} is produced by

H = ConvolutionPooling(x1, ...,xM ′ ; θenc), (4)

where ConvolutionPooling() is a function composed of con-
volution layers and pooling layers. M ′ is the subsampled
sequence length, which depends on the function.
Text decoder: The text decoder computes the generation
probability of a token from preceding tokens and the hidden
representations of the speech. The predicted probabilities of
the n-th token wn are calculated as

P (wn|W 1:n−1,X;Θ) = Softmax(u
(J)
n−1; θdec), (5)

where Softmax() is a softmax layer with a linear transfor-
mation. The input hidden vector u

(J)
n−1 is computed from

J transformer decoder blocks. The j-th transformer decoder
block composes j-th hidden representation u

(j)
n−1 from the

lower inputs U
(j−1)
1:n−1 = {u(j−1)

1 , ...,u
(j−1)
n−1 } as

u
(j)
n−1 = TransformerDecoderBlock(U

(j−1)
1:n−1,H

(I); θdec),
(6)

where TransformerDecoderBlock() is a transformer decoder
block that consists of a scaled dot-product multi-head self-
attention layer, a scale dot product multi-head source-target
attention layer, and a position-wise feed-forward network. The
hidden representation U

(0)
1:n−1 = {u(0)

1 , ...,u
(0)
n−1} is produced

by
u
(0)
n−1 = AddPostionalEncoding(wn−1), (7)

wn−1 = Embedding(wn−1; θdec), (8)

where Embedding() is a linear layer that embeds an input token
into a continuous vector.

B. Supervised learning

In end-to-end ASR, a model parameter set can be optimized
from the utterance-level labeled data (speech-to-text paired
data) as

D = {(X1,W 1), ..., (XT ,W T )}, (9)

where T is the number of utterances in the training data
set. The objective function based on maximum likelihood
estimation is defined as

Lmle(θenc, θdec) = −
T∑

t=1

Nt∑
n=1

logP (wt
n|W

t
1:n−1,X

t; θenc, θdec),

(10)

where wt
n is the n-th token for the t-th utterance and

W t
1:n−1 = {wt

1, ..., w
t
n−1}. N t is the number of tokens in

the t-th utterance.

C. Challenges in Japanese dialect speech recognition

While the performance of transformer-based end-to-end
ASR has been amongst the most powerful, it is known that an
end-to-end ASR system constructed for a standard language is
not suitable for recognizing dialect. There are many dialects
across Japan. Each of them has lots of dialect-specific accents
and vocabulary. For examples, “very” in English translates into
“totemo” in the standard Japanese language, but in the case of
the dialect of the Aomori region, “very” translates into “tange.”
In this way, although the meaning of a word is the same
between the dialects and standard language, the pronunciation
is absolutely different. In other cases, even though a dialect
has the same word as the standard language, the meaning of
each can be completely different. Thus, a method is required
to compensate for the mismatch between dialects and standard
language.

Solving such a mismatch problem is similar to the tasks
of domain adaptation. Many domain adaptation methods have
been proposed to capture unseen information or mismatches
from original tasks [18,19]. One domain adaptation approach
focuses on the use of auxiliary features. So far, the approaches
have improved extremely in terms of performance [20,21]. Di-
alect speech recognition can be regarded as a similar problem
to domain adaptation. However, there has been no study that
has tried to recognize Japanese dialect speech using end-to-end
networks.

III. PROPOSED METHOD

This section describes our proposed dialect-aware modeling.
The proposed method constructs a transformer-based ASR
system using dialect labels as auxiliary features. In the method,
an output word sequence can be predicted by using a dialect
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Fig. 1. Transformer encoder-decoder model using dialect label as auxiliary
feature

label d and input speech. The generation probability of W is
defined as

P (W |X, d;Θ) =

N∏
n=1

P (wn|W 1:n−1, d,X;Θ). (11)

Figure 1 shows the structure of the proposed model. The left
side of Fig. 1 depicts a speech encoder part, and the right
side shows a text decoder part. The speech encoder adopts the
same modeling as equations (2) - (4). In the text decoder, the
predictive probability of the n-th token wn is calculated using
equation (5) and the dialect label d as

P (wn|W 1:n−1, d,X;Θ) = Softmax(u
(J)
n−1; θdec). (12)

Equations (6) and (8) are re-defined using the dialect label d
as

u
(j)
n−1 = TransformerDecoderBlock(U

(j−1)
1:n−1,H

I ; θdec),
(13)

U
(0)
1:n−1 = {d,u(0)

1 , · · · ,u(0)
n−1}, (14)

u
(0)
n−1 = AddPostionalEncoding(wn−1), (15)

u
(0)
n−1 = Embedding(wn−1; θdec), (16)

d = Embedding(d; θdec). (17)

By inputting the dialect label, the dialect-aware modeling
can be performed. The predicted probability is calculated
from the embedding layer using the dialect label d as shown
in equations (12) - (17). The model parameter sets can be
optimized from a set of speech, dialect label, and text as

D = {(X1, d1,W 1), ..., (XT , dT ,W T )}. (18)

The objective function used in the proposed method is defined
as

Lmle(θenc, θdec) = −
T∑

t=1

Nt∑
n=1

logP (wt
n|W

t
1:n−1, d

t,Xt; θenc, θdec).

(19)

TABLE I
NUMBER OF UTTERANCES FOR EACH DIALECT AND STANDARD

LANGUAGE

Region Training Validation Test All
Aomori 10,741 676 676 12,093
Hiroshima 18,670 566 567 19,803

Dialect Kumamoto 9,328 719 719 10,766
Nagoya 18,611 551 550 19,713
Sapporo 15,955 678 678 17,311
Sendai 16,512 535 535 17,582

Standard CSJ 162,243 1,292 2,573 166,108

TABLE II
NUMBERS OF MALE / FEMALE SPEAKERS FOR EACH DIALECT

Region Male Female
Aomori 34 36

Hiroshima 41 44
Kumamoto 31 41

Nagoya 38 43
Sapporo 42 44
Sendai 47 47

By optimizing with dialect labels, speech text, and obtaining
the generation probabilities, the information of each dialect is
enhanced, and the dialect-specific characteristics are clarified.

IV. EXPERIMENT

We conducted Japanese dialect ASR experiments to confirm
the effectiveness of the proposed method.

A. Database

A home-made speech database of Japanese dialects and a
database of standard Japanese were used in all experiments.
The dialect database consisted of six dialects: Aomori, Hi-
roshima, Kumamoto, Nagoya, Sapporo, and Sendai [22]. For
the standard language database, the Corpus of Spontaneous
Japanese (CSJ) [23] consisting of academic lectures and sim-
ulated public speeches was used. The numbers of utterances
for each dialect and CSJ are shown in Table I. CSJ contains
three test sets: Eval 1, Eval 2, and Eval 3. In the experiments,
Eval 2 was used as the development data, and Eval 1 and
Eval 3 were used as the test data. The content of these test
sets was academic lectures. As shown in Table II, the gender
ratios of the speakers in the dialect database were almost the
same for each dialect. Each dialect utterance was recorded
by using an iPhone 5 or an Xperia Z1. The length of each
dialect utterance was about 7 seconds, and the content of the
dialect database was daily conversations. All transcriptions of
the dialect database were hand-labeled. Both databases were
sampled at 16 kHz and quantized to 16 bit.

B. Experiment conditions

The transformer-based encoder-decoder modeling was per-
formed to construct end-to-end ASR systems. The transformer-
based network consisted of eight encoder blocks and six
decoder blocks. All functions used in the transformer networks
were implemented in accordance with [10]. Regarding the
composition of the transformer blocks, the dimension of the
continuous vector was 256, the dimension of inner outputs
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TABLE III
CERS (%) OF CONVENTIONAL AND PROPOSED METHODS FOR EACH

COMBINATION OF DATABASES FOR TRAINING AND TESTING

Test Data
Train Dialect Standard Dialect +
Data only only Standard

Dialect 52.9 100 ↑ 86.2only
Conventional Standard 52.5 14.3 35.4Method only

Dialect + 9.3 16.6 12.5Standard
Proposed Dialect + 7.1 13.8 10.1Method Standard

TABLE IV
CERS (%) AND RELATIVE IMPROVEMENT (%) FOR EACH DIALECT USING

CONVENTIONAL AND PROPOSED METHODS

Region Conventional Proposed Relative
Method Method Improvement

Aomori 5.9 2.7 54.2
Hiroshima 7.5 5.8 22.7
Kumamoto 4.0 2.2 45.0

Nagoya 10.8 8.7 19.4
Sapporo 17.3 16.0 7.5
Sendai 10.2 7.3 28.4

in the position-wise feed-forward networks was 2,048, and
the number of attention heads was set to 4. For the speech
encoder, we used 40-order log mel-scale filterbank coefficients
appended with delta and acceleration coefficients as acoustic
features. The frame length and the frame shift were 25 ms
and 10 ms, respectively. The acoustic features were down-
sampled to 1/4 along the time-axis via two convolutional
layers and max pooling ones with a stride of two. In the
text decoder, the dimension of word embeddings was 256,
and the optimizer used was the rectified Adam optimizer with
β1 = 0.9, β2 = 0.999, ε = 10−9 [24]. The mini-batch size
was set to 16 utterances. The dropout rate in the transformer
blocks was set to 0.1. For the ASR decoding, we used a beam
search algorithm in which the beam size was set to 20. In the
proposed method, the dialect labels of the six dialects of the
dialect database were used as the auxiliary features was set to
six dialect along the dialect database. The dialect label was
put in the embedding layer and treated as 256 dimensions.
Transformer-based end-to-end ASR without any dialect labels
was regarded as the conventional method. As the evaluation
index, the character error rate (CER) was used:

CER = (1− COR− INS

TOTAL
)× 100 (%), (20)

where COR and INS were the numbers of correct characters
and inserted characters, respectively. TOTAL was the total
number of characters.

C. Result

Table III shows the CERs of the conventional method and the
proposed one for each combination of databases for training
and testing. In the case of using only the dialect database for
testing, the CERs of the conventional method using dialect

only and standard language only were extremely high. This
means that there are two serious problems; each dialect data
was not enough to train the end-to-end ASR model. The
other problem was that the end-to-end ASR system constructed
with the standard language was not suitable for recognizing
the dialects. However, the conventional method using both
dialect and standard language obtained a much lower CER
than the conventional method with a single database. This
means that the multi-condition modeling was able to relax the
two problems. Furthermore, the CER of the proposed method
had the lowest value among the methods using only the dialect
database for testing. The results demonstrate that the proposed
modeling using dialect labels can compensate for the mismatch
between dialects and standard language adequately.

In the case of using only the standard-language database
for testing, the CER of the conventional method using dialect
only was over 100% due to the large number of insertion
errors. Compared with the conventional method using only
standard language with that using both databases, the CER
of the conventional method using only standard language was
lower. This indicates that the performance of simple multi-
condition modeling was insufficient because of mismatches
between the dialect and standard language. In contrast, the
proposed method had the lowest CER in this testing case
as well. These results demonstrate that the proposed method
can effectively use both the dialect database and the standard
language one. Consequently, in the case of using both for
testing, the proposed method achieved an error reduction of
19.2%, compared with the simple multi-condition modeling.

Table IV illustrates the CERs of simple multi-condition
modeling and the proposed method for each region. The
training condition was the same as in the case of using
only dialect data for testing, and both databases were used
for training. From the results, the CERs of the proposed
method for Aomori and Kumamoto showed an error reduction
of around 50%, compared with those of the simple multi-
condition modeling. On the other hand, the error reduction
rate for Sapporo was the smallest. To investigate the trend in
CERs for each region, additional experiments in which the
amount of training data for each region was the same were
performed. The results demonstrated that the trend in CERs
for each dialect was not dependent on the data amount.

V. CONCLUSION

In this paper, we proposed a dialect-aware modeling
method that utilizes dialect labels as auxiliary features for
a transformer-based end-to-end ASR system. The proposed
modeling could compensate for the mismatch between dialects
and standard language; thus, both types pf data were effec-
tively used for conducting the end-to-end ASR systems. The
experimental results showed that the proposed dialect-aware
modeling outperformed the simple multi-condition modeling.

As future work, we will investigate the trend in error
reductions for each region. Additionally, we will consider
estimating dialect labels automatically.
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