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Abstract—Image segmentation plays a very important role
in many applications. At present, the most difficult problem
of image segmentation is segmenting intensity inhomogeneous
images, some hybrid methods have better segmentation results
than the traditional methods. In this paper, a new hybrid
level set method based on fractional-varying-order differential
curvature is proposed. We define a new curve evolution curvature
calculated by fractional-varying-order differential according to
the gradient of the level set function, so that the diverse order
differential can be used in a whole curve evolution at the same
time, which can describe the image edge more accurately. The
energy functional for the proposed model consists of three terms:
local term, length term and penalty term. The evolution of
the level set function is the gradient flow that minimizes the
overall energy functional. Experimental results for both synthetic
and real images show desirable performance of our method.
The Dice similarity coefficient are employed as the comparative
quantitative measures for the segmented results.

I. INTRODUCTION

The existing image segmentation methods can be clas-
sified into four categories: the clustering-based methods[1],
[2], the graph-cut-based methods[3], [4], neural-network-
based methods[5], [6] and active-based methods[7], [8]. The
clustering-based methods assume each pixel as a sample
and pixels belonging to the same class are subject to a
specific distribution, then the image is segmented by clustering
methods like K-means and fuzzy C-means. The clustering
methods have high efficiency while they are sensitive to
initial clustering centers. Besides, the clustering number needs
to be set manually. The graph-cut-based methods take the
correlations between pixels into consideration and transform
the segmentation problem into a graph partition problem, then
a cut energy model is built and the cut which minimizes the en-
ergy is chosen to be the segmentation curve. The main shortage
of the graph-cut-based methods is that it is difficult to construct
accurate weights for the correlations between pixels, which
often leads to under-segmentation or over-segmentation in
complicated regions. Recently, neural-network-based methods
have been developed to perform a variety of tasks including the
semantic segmentation, and shows a vast range of prospects.
However, it needs lots of images to train the network and
the output often gives a rough but not fine segmentation in
tiny area, while fine details are crucial in medical image
analysis. Another branch of methods are based on the active
contour model. Since the active contour model can give closed

boundaries and performs stably, it has been used to develop
new algorithms. Until now the active-contour-based models are
still effective and prevalent. Generally speaking, the existing
active contour methods can be classified into two types: edge-
based models and region-based models. Each of them has
its own advantage and disadvantage. Edge-based model uses
image gradient information to guide curve evolution. The
method detects the boundary of different regions, which can
locate the edge accurately, but weak edge can not be detected
and it depends on location of initial curve. So the detected
edge can not be closed and it is sensitive to noise. One of
them is the famous geodesic active contour model[9] , which is
derived from the snake model[10] and defines a gradient-based
edge detector function. Because of the local limitation, this
models are sensitive to noise and have difficulty in detecting
weak boundary. Region based active contour model does not
utilize image gradient, but uses local information of image
to evolve curve, which can better detect weak edges. The
initial contour can start anywhere in the image, and the interior
contours can be automatically detected. One of the most
popular region-based models is the CV model[11], which has
been successfully used in binary phase segmentation with the
assumption that each image region is statistically homoge-
neous. However, the CV model does not work well for the
images with intensity inhomogeneity, because it assumes that
each region is statistically homogeneous and the intensities
within the area of foreground and background always maintain
constant, respectively. To overcome this defect, many methods
have been proposed to overcome the difficulty of segmenting
intensity inhomogeneity images. For example, Vese and Chan
[12] and Tsai et al.[13] proposed piece-wise smooth (PS) mod-
els by minimizing the MS functional[14], which replaced the
piece-wise constant intensity by piece-wise smooth intensity.
Although these PS models have certain capability of handling
the intensity inhomogeneity, they are computationally expen-
sive and the gain in segmentation accuracy is limited. Then
Li et al.[15] proposed a LBF model by incorporating a kernel
function to define local binary fitting energy in a variational
formulation. Zhang et al.[16] exploited local image region
statistics to present a level set method for segmenting images
with intensity inhomogeneity. Liu and Peng [17] proposed a
local region-based CV model by considering the image local
characteristics. Wang et al.[18] proposed an alternative LCV
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model by utilizing the difference image information.
The fractional-order PDE is an important branch of the

PDEs. The main advantage of this method is to han-
dle the topological changes automatically which is gener-
ally impossible for the traditional parametric active contour
model. Cuesta[19] proposed fractional-order linear integral-
differential equations, which interpolated heat equations and
wave equations using the Riemann-Liouville fractional deriva-
tive. Mathieu et al.[20] used fractional derivative to detect the
image edges. Ren [21] present a new adaptive active contour
model based on fractional order differentiation. Chen et al.[22]
proposed an adaptive-weighting active contour model, which
incorporates image gradient, local environment and global
information into a framework. On the basis of fractional
differential, we proposed fractional-varying-order differential
by matrix operation, the differential orders of different parts
of the image can be variable. Thus, we can gain more detailed
image information so that we can process it conveniently.

In summary, we present a new active contour model based
on fractional-varying-order differential. The energy functional
for the proposed model consists of three terms: local term,
length term and penalty term. We use a new curve evolution
curvature calculated by the fractional-varying-order differ-
ential to form a novel length term and penalty term. By
incorporating the local term, the length term and penalty term
this model can describe the original image more accurately,
and be robustness to noise. In order to ensure stable evolution
of the level set function, a penalty term[23] is added into the
proposed model. The evolution of the level set function is
the gradient flow that minimizes the overall energy functional.
Experimental results for both synthetic and real images show
desirable performance of our method.

The remainder of this paper is organized as follows. In
Section 2, we present a brief introduction of several related
works. We describe the proposed active contour model in
details in Section 3. Section 4 presents the experimental
results and comparisons on real and synthetic images. Finally,
conclusions are drawn in Section 5.

II. THE RELATED MODELS AND BACKGROUND

A. CV Model

By simplifying the Mumford-Shah model[14], Chan and
Vese [11] proposed a region-based active contour model. This
model is to utilize regional mean gray values to decide the
contour and divide the image into the targets and background.
Let Ω be the image domain, and I(x, y) : Ω → R is a
given image function, where x, y represent horizontal and
vertical coordinates of pixels respectively, and I(x, y) denotes
the intensity at a point (x, y). This model is formulated by
minimizing the following energy functional:

ECV (C, c1, c2) = λ1

∫
inside(C)

|I(x, y)− c1|2

H(ϕ(y))dxdy + λ2

∫
outside(C)

|I(x, y)− c2|2(1−H(ϕ(y)))dxdy(1)

where λ1, λ1 are fixable parameters, inside(C) and outside(C)
represent the region inside and outside of the contour C, c1
and c2 are the mean gray value of the inside or outside region
respectively. H(φ) is the Heaviside function. Notation δ(·)
indicates the Dirac function and it is defined as the derivative
of the Heaviside function H(·):

H(z) =

{
1, z ≥ 0
2, z < 0

, (2)

δ(z) =
d

dz
H(z) =

{
0, z ̸= 0
+∞, z = 0

(3)

By minimizing (1), we can obtain C1 and C2: C1 =
∫
Ω
I(x,y)H(ϕ(x,y))dxdy∫
Ω
H(ϕ(x,y))dxdy

C2 =
∫
Ω
I(x,y)(1−H(ϕ(x,y)))dxdy∫
Ω
(1−H(ϕ(x,y)))dxdy

(4)

By introducing a length term
∫
Ω
δ(ϕ(x, y))|∇ϕ(x, y)|dxdy

(where ∇ represents the gradient operator) and an area term∫
Ω
H(ϕ(x, y))dxdy, which are used to regularize the contour.

Then minimizing these terms together, we can obtain the
following variational formulation:

∂φ

∂t
= δ(ϕ)[µdiv(

∇ϕ

|∇ϕ|
)−ν−λ1(I−c1)

2+λ2(I−c2)
2] (5)

where parameters µ ≥ 0,ν ≥ 0. µ is a scaling parameter,
it controls the smoothness of zero level set. If it is small
enough, small objects are likely to be extracted, if it is large
enough, big objects are likely to be detected. And ν increases
the propagation speed.

In order to compute the partial differential equation in (5),
discontinuous functions H(φ) and δ(φ) need to be approxi-
mated by regularized version Hε(φ) , δε(φ). In general, the
regularized Heaviside function and Dirac function are selected
as follows:

Hε(Z) =
1

2
(1 +

2

π
arctan(

z

ε
)) (6)

δz =
1

π

ε

ε2 + z2
, z ∈ R (7)

where R represents the set of real number and ε is a small
value in the denominator to avoid the singularities. ε is also
a predefined parameter for control the speed of the function
Hε(z) rising from 0 to 1. CV model has good performance
in detection of objects whose boundaries are not necessarily
defined by gradient or with weak boundaries. However, it gen-
erally fails to segment images with intensity inhomogeneity.

B. LBF MODEL

The local statistical information of the LBF model[15] is
obtained by introducing a kernel function. Consider a given
vector valued image I : Ω → ℜd, where Ω ⊂ ℜd is the
image domain, and d ≥ 1 is the dimension of the vector I(x).
For gray level images, d=1, for color images, d=3. Let C be
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a contour in the image domain Ω, They defined the energy
functional as follows

ELBF (ϕ, f1, f2) = λ1

∫
Ω

[

∫
Ω

Kσ(x− y)|I(y)− f1(x)|2

H(ϕ(y))dy]dx

+λ2

∫
Ω

[

∫
Ω

Kσ(x− y)|I(y)− f2(x)|2

(1−H(ϕ(y)))dy]dx (8)

where Kσ is the Gaussian kernel function with standard
deviation σ, λ1 > 0, λ2 > 0, are fixed parameters. Keeping
level set function ϕ fixed and minimizing the energy functional
(8) with regard to local center f1 and f2, we can obtain the
following equation

f1(y) =
Kσ(x) ∗ [Hε(ϕ(x))I(x)]

Kσ(x) ∗ [Hε(ϕ(x))]
(9)

f2(y) =
Kσ(x) ∗ [(1−Hε(ϕ(x)))I(x)]

Kσ(x) ∗ [1−Hε(ϕ(x))]
(10)

Although the LBF model can effectively segment inhomo-
geneous images, it is sensitive to initial contour.

C. LIC MODEL

This model is proposed by Li et al.[24] based on bias field
estimation and local intensity clustering property.

1) Bias field estimation : For the real-world images, an
observed image I can be modeled as

I = bJ + n (11)

where J is the true image which is an intrinsic physical
property of the objects being imaged, thus it can be approxi-
mately assumed to be piecewise constant; b is the intensity
inhomogeneity component which is referred to as a bias
field(or shading image), and n is additive noise which can
be assumed to be zero-mean Gaussian noise.

Based on the above properties, Li et al. proposed two
assumptions: (1) The bias field b is slowly varying, which
implies that b can be well approximated by a constant in a
neighborhood of each point in the image domain. (2) The true
image J approximately takes N distinct constant values , c1...,
cN in disjoint regions, Ω1, · · · ,ΩN , respectively, where Ωi

N
i=1

forms a partition of the image domain, i.e. Ω = ∪N
i=1Ωi and

Ωi ∩ Ωj = ϕ for i ̸= j.
2) Local intensity clustering property: Based on the image

model in (12) and the assumptions (1) and (2), Li et al.used
a property of local intensities, which is referred to as a local
intensity clustering property as described and justified below.
They considered a circular neighborhood with a radius ρ cen-
tered at each point y ∈ Ω, defined by ϑy =: {x : |x−y| ≤ ρ}.
The partition Ωi

N
i=1 of the entire domain Ω induces a partition

of ϑy . For a slowly varying bias field b, the values b(x) for
all x in the circular neighborhood ϑy are close to b(y), i.e.

b(x) ≈ b(y), for x ∈ ϑy (12)

Thus, the intensities b(x)J(x) in each subregion ϑy ∩ Ωi

are close to the constant b(y), i.e.

b(x)J(x) ≈ b(y)ci, for x ∈ ϑy ∩ Ωi (13)

Then, in view of the image model in (12), we have

I(x) ≈ b(y)ci ≈ b(y)ci + n(x) for x ∈ ϑy ∩ Ωi (14)

where n(x) is additive zero-mean Gaussian noise. Therefore,
the intensities in the set Iiy = I(x) : x ∈ ϑy ∩ Ωi form
a cluster with cluster center, which can be considered as
samples drawn from a Gaussian distribution with mean mi.
Obviously, the clusters I1y, · · · , INy , are well-separated, with
distinct cluster centers mi ≈ b(y)ci, i = 1, ..., N , because the
constants are distinct and the variance of the Gaussian noise n
is assumed to be relatively small. This local intensity clustering
property is used to formulate the proposed method for image
segmentation and bias field estimation as follows.

3) Energy Formulation: Li et al. applied the standard K-
means clustering to classify these intensities according to the
above described local intensity clustering property indicates
that the intensities in the neighborhood can be classify into N
clusters,with center mi ≈ b(y)ci, i = 1, ..., N

Then the two-phase energy functional as follows

F (ϕ, c, b) = ε(ϕ, c, b) + ν(ϕ) + µ(ϕ) (15)

The ε(ϕ, c, b) is defined by

ε =

∫ ( N∑
i=1

∫
K(y − x)(|I(x)− b(y)ci|)2Mi(ϕ(x))dx

)
dy

(16)
where the membership functions defined by{

M1(ϕ) = H(ϕ)
M2(ϕ) = 1−H(ϕ)

(17)

The energy term L(ϕ) is defined by

L(ϕ) =

∫
|∇H(ϕ)|dx (18)

The energy term Rp(ϕ) is defined by

Rp(ϕ) =

∫
p(|∇ϕ|)dx (19)

where p(s) = (1/2)(s− 2)2

With respect to c, we can obtain the follow equation

ĉi =

∫
(b ∗K)Iuidy∫
(b2 ∗K)uidy

, i = 1, ..., N (20)

with ui(y) = Mi(ϕ(y))
Equally, with respect to b, we can obtain the follow equation

b̂ =
(IJ1) ∗K
J2 ∗K

(21)

where J1 =
∑N

i=1 ciui and J2 =
∑N

i=1 c
2
iui

This model can segment images with intensity inhomo-
geneities and more robust to contour initialization. Moreover,
this model is much more efficient than the LBF model.
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D. The fractional order differential

The definition of fractional order differential is not uni-
fied until now. The usual definitions among them include:
Grnwald-Letnikov derivative, Riemman-Liouville fractional
derivative, Caputo fractional derivative, Laplace-domain frac-
tional derivative, frequency-domain (Fourier domain) frac-
tional derivative. For example, the famous Riemman-Liouville
fractional derivative can be defined as follows:

Let f(t) be a continuous function and f(t) : (0,+∞) −→
R, then define the α(α > 0)-order Riemman-Liouville frac-
tional derivative as:

Dαf(t) =
1

Γ(n− α)

(
d

dt

)n ∫ t

0

f(s)

(t− s)
α−n+1 ds (22)

where n = [α] + 1 and [α] denotes the integer part of α.
Other ways of definition is the frequency-domain fractional

order differential. For a given function of a single variable
f(t), it Fourier transform is defined as follow:

F (ω) =

∫
R

f(t)e−jωtdt (23)

According to the differential property of Fourier transform,
the equivalent formulation of the n-order derivative in the
Fourier domain is:

Dnf = fn(t) ↔ F (fn(t)) = (jω)
n
F (ω) (24)

where n is a non-negative integer, ”↔” represents the Fourier
transform pair. It can be shown straightforwardly that the
Fourier domain expression of the α-order differential:

F (Dαf(t)) = (jω)
α
F (ω) (25)

where α the can be any positive real number. Thus, the
fractional order differential expression of the function f(t)
in frequency domain is defined as:

Dαf(t) = F−1((jω)
α
F (ω)), α ∈ ℜ+ (26)

where ℜ+ is the set of positive real number, and F−1 is the
inverse Fourier transform operator. Thus the fractional order
partial differential of the two-dimensional function g(x, y) can
be defined as follows:{

Dα
x g(x, y) = F−1(jω1)

αG(ω1, ω2)
Dα

y g(x, y) = F−1(jω2)
αG(ω1, ω2)

(27)

According to the translation property of the two-dimension
DFT, the center difference schemes of the any order derivative
in the Fourier domain can be defined as:

Dα
x g(x, y) = F−1[(1− exp(−2πjω1/m))α

exp(πjαω1/m)G(ω1, ω2)]
Dα

y g(x, y) = F−1[(1− exp(−2πjω2/m))α

exp(πjαω2/m)G(ω1, ω2)]

(28)

The fractional order differential has the characteristics of
increasing the low frequency component of the signal while
preserving the high frequency component of the signal nonlin-
early. Therefore, fractional order differential has gained more

and more attention and application in the field of image pro-
cessing. In this paper we use the frequency-domain fractional
differential, because it is easy to compute numerically owing
to the fast discrete Fourier transform.

III. THE PROPOSED MODEL

A. Fractional-Varying-Order Differential

First, we calculate the gradient information of the image,
because the edge of the image exists in the gradient informa-
tion. Then we supposeA = (aij)n×mis a n ×m matrix, and
its value is obtained by the following operation after obtaining
the image gradient information.

A = 2× (|∇un|+ 1)÷ (|∇un|+ 0.8) (29)

In other words, we get the order of the fractional derivative
by the gradient of the image. The range of gray value of the
image is [0,255], the range of gradient can be obtained by
difference is [0,255], then the range of A is [2,2.5], and then the
fractional order differential operation is carried out according
to the order matrix. The fractional vary-order differential
operator with different orders of each pixel point is obtained
by:

DA :=


Da11 Da12 · · · Da1m

Da21 Da22 · · · Da2m

...
...

. . .
...

Dan1 Dan2 · · · Danm

 , (30)

Thus, we define the fractional-varying-order derivative in
the frequency domain as

Da⃗f(t) ↔ (jω⃗)a⃗f̂(ω⃗) (31)

where a⃗ is an appropriate vector. It is obvious that the semi-
group property of fractional-varying-order derivative operators
holds, namely

(Da⃗)(Db⃗)f = (Db⃗)(Da⃗)f = (Da⃗+b⃗)f (32)

where vectors α⃗,β⃗ have the same dimension.
For any g(x, y) ∈ L2(R2), the corresponding two

dimensional(2−D) Fourier transform is

ĝ(ω1, ω2) =

∫
R

g(x, y)exp[−j(ω1x+ ω2y)]dxdy (33)

Thus, the corresponding fractional-varying-order partial
derivatives are{

DAxg = F−1[(jω1)
Aĝ(ω1, ω2)]

DAyg = F−1[(jω2)
Aĝ(ω1, ω2)]

(34)

where A is a n×m matrix, F−1 is an inverse 2−D Fourier
transform operator. So the corresponding A-order differential
and divergence of image u can be updated to

DAu(x, y) = (DAxu,DAyu) (35)
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B. Energy Formulation

Based on LIC model and fractional varying-order differen-
tial, we put up forward our new energy functional model. Our
proposed model also consist three parts: the local term EL,
the length(or regulation) term ER, and the penalty term EP .
We adapt the first term of LIC model as our local term EL

in our energy functional because of their good performance in
various applications. In order to get more details to get a more
detailed segmentation effect, we use DA in place of tradition
differential to get new the length term and the penalty term.
The new energy term ER and EP are defined by

ER(ϕ) =

∫
|H(DAϕ)|dx (36)

EL(ϕ) =

∫
p|DAϕ|dx (37)

The final energy functional can be described as

E =

∫
(

N∑
i=1

∫
K(y − x)(|u(x)− b(y)ci|)2

Mi(ϕ(x)dx)dy

+

∫
|DAH(ϕ)|dx+

∫
p(DA|ϕ|)dx (38)

By exchanging the order of integrations, we have

E =

∫ N∑
i=1

(∫
K(y − x)(|u(x)− b(y)ci|)2dy

)
Mi(ϕ(x)dx)

+ν

∫
|DAH(∇ϕ)|dx+ µ

∫
p(DA|∇ϕ|)dx (39)

The Euler-Lagrange equation of the energy functional is solved
by using the variational method:

∂F

∂ϕ
− d

dx

(
∂F

∂ϕx

)
− d

dy

(
∂F

∂ϕy

)
= 0 (40)

Among them,
∂F

∂ϕ
= δ(ϕ)(e1 − e2) (41)


∂F
∂ϕx

= νδ(ϕ) ϕx

|∇ϕ| + µ
(

|∇ϕ|−1
|∇ϕ| · ϕx

)
∂F
∂ϕy

= νδ(ϕ)
ϕy

|∇ϕ| + µ
(

|∇ϕ|−1
|∇ϕ| · ϕy

) (42)


d
dx

(
∂F
∂ϕx

)
= νδ(ϕ) d

dx

(
ϕx

|∇ϕ|

)
+ µ d

dx

(
|∇ϕ|−1
|∇ϕ| · ϕx

)
d
dy

(
∂F
∂ϕy

)
= νδ(ϕ) d

dy

(
ϕy

|∇ϕ|

)
+ µ d

dy

(
|∇ϕ|−1
|∇ϕ| · ϕy

)
(43)

The minimization of the energy in (39) with respect to the
variable can be performed by solving the following gradient

flow equations:

∂ϕ

∂t
= −∂F

∂ϕ
+

d

dx

(
∂F

ϕx

)
+

d

dy

(
∂F

ϕy

)
= −δ(ϕ)(e1 − e2) + νδ(ϕ)div(

∇ϕ

|∇ϕ|
)

+µ[div(∇ϕ)− div(
∇ϕ

|∇ϕ|
)]

= −δ(ϕ)(e1 − e2) + νδ(ϕ)K

+µ[div(∇ϕ)−K] (44)

where

ei =

∫
K(y − x)(|u(x)− b(y)ci|)2dy (i = 1, 2) (45)

Here K is the curvature of the contour, and we calculate it by

K = DAxϕ+DAyϕ (46)

C. Implementation And Algorithm

The implementation and algorithm of this model consists of
the following steps:
1.Initialize the level set function ϕ to a function ϕ0. Then,
construct the initial contour C.
2.Calculate the contour curvature K by (46).
3.Update ϕk+1

i,j = ϕk
i,j +∆t ·A(uk

i,j), where is the approxima-
tion of the right hand side in (44).
4.Updata î, b̂ by (20), (21).
5.Check if the set number of iterations is reached. If not, return
to step 2.

IV. EXPERIMENTAL RESULTS

In this section, we show experimental results from seg-
mentation of various synthetic and real images, with different
types of contours and shapes. We also compare results of the
proposed model with the CV model, the LBF model and the
LIC model. In addition, we use Dice similarity coefficient
which defined by :

DSC =
2N(S1

∩
S2)

N(S1) +N(S2)
(47)

where N is the number of pixels in the enclosed region. The
closer the DSC value is to 1, the better segmentation is. All the
experiments are carried out by Matlab(R2017b) in the Lenovo
DESKTOP-G20HT3F with Intel(R) Core(TM) i7-7700 CPU
@ 3.60GHz processer. The paramenters are set as follows:
µ = 1.0, ν = 0.001 × 2552, ∆t = 0.1and ρ should be
relatively smaller for images with more localized intensity
inhomogeneities.

Firstly, we applied our method to a synthetic image in
Fig. 1 with four different initializations of the contour and the
corresponding results. In this four different initializations, we
can see that these different initial contours can finally capture
the boundary of the objects from these figures. It confirms that
our model not be effected by different initial contours.

Next, in order to prove that our segmentation result is
more robust, we used our model to segment the image under
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(a) (b) (c) (d)

Fig. 1. Segmentation results of our model with different intializations. Top
row: original images with different initializations. Bottom row: corresponding
segmentation results.

(a) (b) (c) (d) (e)(c) (e)

Fig. 2. Segmentation results of our model with noise and blur. Top row is the
original images with noise. Bottom row is the original images with blur.(a)
Original images; (b) segmentation results of CV model; (c) segmentation
results of LBF model; (d) segmentation results of LIC model and (e)
segmentation results of our model.

(a) (b) (c) (d) (e)

Fig. 3. Performance of our method and the CV model, the LBF model, the
LIC model in different MR image. The first row:(a) Original images; (b)
segmentation results of CV model; (c)segmentation results of LBF model; (d)
segmentation results of LIC model and (e)segmentation results of our model.
The second row:(a) ground truth; (b) white matter segmentation of CV model;
(c)white matter segmentation of LBF model; (d) white matter segmentation
of LIC model and (e)white matter segmentation of our model.

the conditions of noise and blur on Fig. 2. The results are
compared with those of other models. From the first row
images, we can see our model can still get better segmentation
results in the presence of noise compared with other models.
Under the condition of blurring, because the edges of the
image become less clear, the contours of other models are
slightly reduced in. Compared with other models, our model
can resist this change and without obvious contour distortion.

Lastly, we compare our model with the CV model, the
LBF model and the LIC model on Fig. 3 and Fig. 6.
As shown in these results we can see that the CV model

TABLE I
THE NUMBER OF ITERATIONSDSCCPU TIME AND AVERAGE CPU TIME

OF THE CV MODEL, THE LBF MODEL, THE LIC MODEL AND OUR
MODELS OF FIG.3 IMAGES.

models Iterations DSC CPU time Average CPU time

CV 1000 0.9314 14.8045 0.0148

LBF 50 0.7190 13.1041 0. 2621

LIC 20 0.9143 4.8828 0.2441

OUR 20 0.9297 9.2977 0.4649

(a) (b) (c) (d) (e)

Fig. 4. Performance of our method and the CV model, the LBF model, the
LIC model in different MR image. The first row:(a) Original images; (b)
segmentation results of CV model; (c)segmentation results of LBF model; (d)
segmentation results of LIC model and (e)segmentation results of our model.
The second row:(a) ground truth; (b) white matter segmentation of CV model;
(c)white matter segmentation of LBF model; (d) white matter segmentation
of LIC model and (e)white matter segmentation of our model.

TABLE II
THE NUMBER OF ITERATIONSDSCCPU TIME AND AVERAGE CPU TIME

OF THE CV MODEL, THE LBF MODEL, THE LIC MODEL AND OUR
MODELS OF FIG.4 IMAGES.

models Iterations DSC CPU time Average CPU time

CV 1000 0.7515 55.4584 0.0555

LBF 50 0.7568 123.4280 2.4686

LIC 20 0.8448 5.1012 0.2551

OUR 20 0.8540 6.8016 0.3401

(a) (b) (c) (d) (e)

Fig. 5. Performance of our method and the CV model, the LBF model, the
LIC model in different MR image. The first row:(a) Original images; (b)
segmentation results of CV model; (c)segmentation results of LBF model; (d)
segmentation results of LIC model and (e)segmentation results of our model.
The second row:(a) ground truth; (b) white matter segmentation of CV model;
(c)white matter segmentation of LBF model; (d) white matter segmentation
of LIC model and (e)white matter segmentation of our model.

cannot segment preferably intensity inhomogeneity from these
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TABLE III
THE NUMBER OF ITERATIONSDSCCPU TIME AND AVERAGE CPU TIME

OF THE CV MODEL, THE LBF MODEL, THE LIC MODEL AND OUR
MODELS OF FIG.5 IMAGES.

models Iterations DSC CPU time Average CPU time

CV 1000 0.9262 56.0668 0.0561

LBF 50 0.0.7641 120.3080 2.4062

LIC 20 0.9617 4.9140 0.2457

OUR 20 0.9657 7.1136 0.3557

(a) (b) (c) (d) (e)

Fig. 6. Performance of our method and the CV model, the LBF model, the
LIC model in different MR image. The first row:(a) Original images; (b)
segmentation results of CV model; (c)segmentation results of LBF model; (d)
segmentation results of LIC model and (e)segmentation results of our model.
The second row:(a) ground truth; (b) white matter segmentation of CV model;
(c)white matter segmentation of LBF model; (d) white matter segmentation
of LIC model and (e)white matter segmentation of our model.

TABLE IV
THE NUMBER OF ITERATIONSDSCCPU TIME AND AVERAGE CPU TIME

OF THE CV MODEL, THE LBF MODEL, THE LIC MODEL AND OUR
MODELS OF FIG.6 IMAGES.

models Iterations DSC CPU time Average CPU time

CV 1000 0.7987 65.2708 0.0653

LBF 50 0.5201 38.6414 0. 7728

LIC 5 0.8523 15.9277 3.1855

OUR 5 0.8845 38.2982 7.6596

images and because the LBF model is affected by level set
initialization, so it does not perform well in the initial contour
we set. Compared with LIC model, in the image with large
difference in gray value(see Fig. 3-Fig. 5), the segmentation
regions obtained by these two methods are relatively close,
but our method will have more fluctuation in the segmentation
edge part. The edges of this resulting conforms to the actual
situation, reflected in the DSC value is the value slightly bigger
than the LIC models. In images with close gray values(see
Fig. 6), it is obvious that our model will distinguish more
regions than the LIC model. This is because we used diverse
differential orders to the different parts of the curve and gained
more detailed information so we can see that edge is more
refined than the LIC model and it can handle some details
better. As shown in the DSC values of each table, the segmen-
tation accuracy is quantitatively verified by evaluating these
results. These experiments demonstrate the robustness and

accuracy of our model. And we can see that in average CPU
time, CV model is the fastest image segmentation method,
because the c1c2 in its energy functional is constant and there
is no complex calculation. But it cannot accurately represent
the intensity of the image inside and outside the contour, so it
cannot segment the image with intensity inhomogeneity. The
speed of image segmentation by LBF model is related to the
size of the image. The larger the image, the longer the time it
takes, and conversely the shorter it is. In the image with large
difference in gray value(see Table. I -Table. III), we can see
that there is little difference in average CPU time between the
LIC model and our model, but our model is slightly higher
than the LIC model. And in images with close gray values(see
Table. IV), our model is more higher than LIC model. This is
because our model uses fractional differentiation in the image
gradient part, which takes a long time to calculate, but we get
a more accurate segmentation than LIC model.

V. CONCLUSION

In this paper, we proposed a new image segmentation
model based LIC model and apply fractional-varying-order
differential to this model. Application of fractional-varying-
order differential allows us to have more details about the
curve evolution. So our segmentation result is more delicate
and closer to the image boundary. And our model can segment
images with intensity inhomogeneity. We can see our model
is much more robust to initialization from the experimental
results. From the segmentation results of noised and blurred
images, we can see that our model has better performance than
the CV model, the LBF model and the LIC model.
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