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Abstract—In this paper, we propose a new adversarial training
for the end-to-end speech enhancement network. Taking the
advantage of getting the paired training waveform, a new
attention module is introduced into the proposed discriminator
to incorporate the information of the desired waveform. Since
this attention module has a role of the inter- and intra-attention
mechanism, it helps the discriminator to distinctly distinguish
the structural features underlying in the desired waveform and
the waveform generated by the speech enhancement network.
Unlike the other conditional generative adversarial networks, the
proposed training architecture can simultaneously minimize the
adversarial loss and the distortion loss. Through the simulation
experiments for speech enhancement, we reveal that the proposed
adversarial training can provide a significant performance.

I. INTRODUCTION

Recently, the demands of speech communication and speech
recognition have been increasing as the devices controlled with
a voice user interface have been spread. Since such devices
are mostly used in noisy environments, speech enhancement
technique is growing in importance. In this paper, we focus
on a single microphone speech enhancement technique.

Most of the state-of-the-art speech enhancement are oper-
ated in frequency domain or time-frequency domain [1], [2].
Although some of them produce excellent speech enhancement
results, they usually require a little higher computational
complexity because of the use of the Short Time Fourier Trans-
form (STFT) or the wavelet analysis. The end-to-end speech
enhancement, which is the time-domain speech enhancement,
has the advantage of requiring low computational complexity.
However, it is a challenging task since the waveform is more
easily corrupted by noise than the spectral features.

Among the existing end-to-end models, Wave-U-Net [3] ar-
chitecture significantly provides the outstanding performance.
Wave-U-Net is composed of the stack of the downsam-
pling fully-convolutional layers and the upsampling fully-
convolutional layers. Although the several modifications of
Wave-U-Net have been developed [4], [5], there remains a
problem that the detailed structures are still degraded in a high
noise-level situation.

There are two strategies for improving speech enhancement
performance of the model: redesigning the network architec-
ture [4]-[6], and developing a new training architecture to
accelerate the learning efficiency. This paper investigates the
latter strategy.

The mainstream of the training architecture to obtain high
resolution is the adversarial training [7]-[9]. Speech Enhance-
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Fig. 1. Block diagram of the discriminator used in SEGAN.

ment Generative Adversarial Network (SEGAN) [10] is one
of the examples applying the adversarial training into speech
enhancement. The SEGAN achieves the adversarial training
using the discriminator which is designed based on DCGAN
[11]. The Block diagram of the discriminator used in SEGAN
is shown in Figure 1. This discriminator is composed of 11
dilated-convolutional layers. As seen in the Figure 1, the input
of the discriminator is conditioned by the corresponding noisy
waveform. The discriminator discriminates whether the input
is the clean waveform or the waveform reconstructed by the
generator, namely, real or fake. In the training scheme, the loss
function composing of the distortion loss and the adversarial
loss are minimized. The adversarial loss is related to the
perceptual quality.

Although SEGAN produced a very slight improvement in
the speech enhancement performance, it may be difficult to
make a furthermore improvement. Several papers [12], [13]
reported that the benefit of the adversarial training is quite
limited since there exists the incompatibility between the
distortion loss and the adversarial loss in adversarial training.
In fact, the adversarial training often induces an undesired
distortion. The reference [14] also investigated the trade-off
relationship existing between the degree of distortion and
perceptual quality in more detail.

The resolution of the incompatibility is a major issue
in the adversarial training. For speech enhancement, many
researchers have been tackling this issue using multi-task
learning. GSEGAN [15] introduces the acoustic feature loss
as a multi-task cost function into FSEGAN [16], where the
acoustic feature loss directly measures the distances of the
log-power spectra and the Mel-frequency cepstral coefficients.
HLGAN [17] adds a regularization of the latent vectors into
the distortion loss to simultaneously minimize the variation
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of the latent vector in the generator among the clean speech
waveform input and the noisy waveform input. As the above
methods, the additional various metrics contribute to avoiding
convergence on a local solution induced by the incompatibility
between the losses. Nevertheless, the additional metrics also
induce another local solution.

In this paper we address to mediate the incompatibility be-
tween the distortion loss and the adversarial loss by developing
a new discriminator. The proposed discriminator includes the
attention mechanism to measure the similarity of the structural
features between the clean speech waveform and the recon-
struction. In the attention mechanism, the clean speech wave-
form and the input waveform corresponds to the target and the
source, respectively. The effect of the attention mechanism is
changed depending on whether the input waveform is the real
or the fake, namely the clean waveform or the reconstruction.
In the former case, the attention mechanism is equivalent
to Self-Attention GAN (SAGAN) [18]. This architecture be-
haves as inter-attention and extracts the structural features
characterizing the clean speech waveform. Meanwhile, the
attention mechanism of the latter case obtains an effect of
intra-attention. The discriminator in this case works to enlarge
the distance of the underlying structural features between the
clean speech waveform and the reconstruction.

Focusing only on the structure of the discriminator, the
proposed architecture can be considered as using the dis-
criminator which incorporates the feature map projection into
the projection discriminator [20], or the discriminator which
replaces the concatenation of the feature maps with the inner-
product operator in the fusion discriminator [21]. The two
conventional discriminators are designed based on cGAN [22]
to capture the distribution of the underlying structural features.
Unlike such the cGAN-based methods, the proposed method
having the attention mechanism is specialized in supervised
learning with paired training data to directly measure the
similarity of the structures between the clean speech waveform
and the reconstruction. The proposed method is therefore
expected to be useful not only for the speech enhancement
task but also the high-dimensional reconstruction task such as
the super-resolution task.

Some experiments were conducted to evaluate the perfor-
mance of the proposed method. Through the comparison with
the results of the several conventional models, we reveal that
the proposed method can solve the incompatibility between
the distortion loss and the adversarial loss, and improve the
speech enhancement performance.

II. DISCRIMINATOR WITH INTER/INTRA ATTENTION

In this section, we explain a new framework of the dis-
criminator for speech enhancement, which discriminates a
probability distribution of the structures refined by the at-
tention map. The detail of the discriminator architecture is
given in Figure 2. In this paper, both the clean speech
waveform and the reconstruction are set to 16,384 samples.
The discriminator is composed of a stack of the convolutional
layer with two branches, the attention module coupling two

branches, two convolutional layers, and an affine layer. The
dimensions of the outputs from the successive layers of
the network are: 16384x1 (input, conditional information),
16384x64, 16384x64, 8192x128, 4096x256, 1 for the output.
The filter size of each convolutional layer is set to 15. The
stride sizes of two convolutional layers after the attention mod-
ule are set to 2x1 to implement the downsampling operation.
The leaky ReLU with a slope of 0.1 for the negative part is
used as the activation function in all layers except in the output
layer.

The attention module behaves differently depending on
whether the input of the discriminator is real or fake, namely,
the clean speech waveform or the reconstruction. When the
discriminator receives the clean speech waveform as the real
input, the attention mechanism is equivalent to a Self-Attention
(SA) architecture, which has an effect of intra-attention. In
this case, the discriminator works to extract the structures
characterizing the clean speech waveform under unsupervised
learning. Meanwhile, the attention mechanism having the re-
construction as the fake input is so similar to the Source-Target
Attention (STA) which has an effect of inter-attention. The
mask generated by the inter-attention mechanism calculates
the structural similarity between the reconstruction and the
clean speech waveform, and so it helps to distinguish between
the common and the different structures lying in them.

In this paper, x and y stand for the noisy speech waveform
and the corresponding clean speech waveform, respectively.
Using p to designate the true distributions of pair data (x,y),
the discriminator cost function relaxed by the hinge function
[18] is given by

LD = Ey∼p [max {0, 1−D(y,y)}]
+E(x,y)∼p [max {0, 1 +D (G(x),y)}] . (1)

The generator cost function is defined by

LG = ∥G(x)− y∥1 − λE(x,y)∼p [D (G(x),y)] . (2)

The first term and the second term on the right side in
(2) are called the distortion loss and the adversarial loss,
respectively. In (2), λ is a regularization parameter with a
positive value, which adjusts the regularization strength of
the adversarial loss against the distortion loss. To guarantee
that the discriminator satisfies 1-Lipshitz constraint, we use
an additional regularization of spectral normalization [19] for
training.

III. COMPARISON WITH OTHER ADVERSARIAL TRAINING

In the proposed discriminator, the clean speech waveform
has a role as the conditional information, whereas other
conventional methods based on cGAN normally treat the
noisy speech waveform as the conditional information of the
discriminator. From this standpoint, our design concept of the
discriminator is essentially different with cGAN, but rather
similar to the attention-based GAN.

The discriminator naively conditioned by the additional
information has a problem that it is difficult to capture the
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Fig. 2. Block diagram of the discriminator with Inter/Intra attention module for speech enhancement.

statistical features of the potential structures. The projection
discriminator [20] and the fusion discriminator [21] were de-
signed to solve that problem by incorporating the conditional
information using the inner-product or the fusion of the feature
map. Although they assess the discrepancy of the structural
probability distribution between the unpaired data of the truth
and the target, they can not directly assess the similarity of
the structures between the paired data of the generated data
and the desired data owing to the framework of cGAN.

Meanwhile, the attention based GAN, such as SAGAN [18]
and spatial attention GAN [23], achieves either inter-attention
or intra-attention but have no framework to simultaneously
implement both features.

Thus, the proposed discriminator contributes to capturing
the structural features to distinctly distinguish between the
clean waveform and the reconstruction with the inter/intra-
attention module.

IV. ARCHTECTURE OF GENERATOR

In this paper, the Wave-U-Net [3] is used as the generator.
The Wave-U-Net is a state-of-the-art architecture for end-to-
end speech enhancement. Figure 3 shows the architecture of
the Wave-U-Net. The encoder and decoder half and double the
resolution of the feature map in each downsampling block and
upsampling block, respectively. The feature skip-connections
from the encoder layers and the decoder layers help to restore
the fine structures.

In the proposed method, the spectral normalization is used
to stabilize the training of the generator, unlike the original
training architecture. The spectral normalization guarantees
that the generator satisfies the following relation:

max
x

∥G(x)∥2
∥x∥2

≤ 1 ⇒ ∥x∥2 ≥ ∥G(x)∥2 . (3)

Since this relation plays a similar role as a bounded restriction
on the generator discussed in [1], the spectral normalization
brings another benefit that the solution space can be efficiently
reduced in the speech enhancement task.
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Fig. 3. The Wave-U-Net architecture

V. EXPERIMENTAL SETUP

A. Dataset

To evaluate the performance of the proposed architecture
on the speech enhancement task, we employed VCTK speech
dataset [24] and DEMAND dataset [25], which are the same
datasets used in [10]. For the training set, 10 types of noise
and 10 different sentences with 4 signal-to-noise ratio (SNR)
(15, 10, 5, and 0 dB) were used. For the test set, 5 types of
noise and 4 different sentences with 4 SNR (17.5, 12.5, 7.5,
and 2.5 dB) were used. Each speech data has the sampling
frequency of 16kHz. During training, the speech waveform
segments with length of 16,384 samples were extracted from
the training data with 50% overlap. During testing, the length
of the speech waveform segment was the same as that of
training, but the ratio of the overlap was changed to 75%.
As in [10], a high-frequency pre-emphasis filter of coefficient
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Fig. 4. Learning curves of three different models on the training set

0.95 was applied to each segment of the waveform. The
segments of the waveform produced by the trained model were
de-empasized and eventually concatenated to reconstruct the
enhanced speech waveform.

B. Experiments

To confirm the effect of the proposed training architecture,
we experimented with three models applied over the aforemen-
tioned data, where the three models are Wave-U-Net, Wave-
U-Net with SAGAN, and Wave-U-Net with the proposed
discriminator that we name Inter/Intra-Attention Discriminator
(IIAD). For the training of all models, we used the Adam
optimizer [26] with β1 = 0.9 and β2 = 0.9. The learning rates
for the generator and the discriminator are respectively 0.0001
and 0.0005, which are designed based on two-timescale update
rule (TTUR) [27]. All models were trained for 200 epochs
with random minibatches of size 20. As mentioned above, the
proposed training architecture used the spectral normalization
in the discriminator as well as in the generator for stable
training. For more stable training, the zero-centered gradient
penalty [28] was used only in the discriminator, which is a
modification of the gradient penalty used in Wasserstein GAN
with gradient penalty (WGAN-GP) [29].

Figure 4 shows the learning curves of three models. In
this figure, the vertical axis shows the distortion loss defined
by ∥G(x)− y∥1 and the horizontal axis shows the number
of epochs. The displayed values of the distortion loss are
averaged over all the iterations in each epoch. As seen in this
figure, the proposed training architecture provides the lowest
distortion error, while the SAGAN induced a little worse
convergence around 200 epochs than the baseline Wave-U-
Net because of the incompatibility between the distortion loss
and the adversarial loss. At 200 epochs, the proposed method
reduced about 12.9% of the distortion error in comparison
with the other models. As seen from this result, the proposed
method can relax the trade-off relationship between the distor-
tion loss and the adversarial loss, and thus improve the training
efficiency.
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C. Objective Evaluation

To assess the quality of the reconstruction signals, we used
six objective metrics including PESQ [30], CSIG, CBAK,
COVL [31], Segmental SNR (SSNR), and STOI [32]. PESQ
measures speech quality, which returns a score from 4.5 to
-0.5, with higher scores indicating better quality. CSIG is a
MOS predictor of speech distortion (from 1 to 5), CBAK is
a MOS predictor of intrusiveness of background noise (from
1 to 5), and COVL is a MOS predictor of overall processed
speech quality (from 1 to 5). STOI whose score ranges from 0
to 1 is a measure used to predict the intelligibility of speech.

For evaluation, we compared other five end-to-end models
in addition to the above three models: SEGAN, HLGAN,
WGAN-GP, SERGAN [33], DSEGAN. Table I shows the
experimental results of the different models. This table sum-
marizes that the proposed training architecture outperforms the
other conventional methods at all assessment methods. Only
Wave-U-Net with SAGAN provides a similar performance to
Wave-U-Net with IIAD.

Figures 5 demonstrates the resulting spectrograms of
p257 070.wav which is a noisy female speech signal with
low SNR included in the test set. Focusing on the silenced
region enclosed in the white dashed box, both Wave-U-Net and
Wave-U-Net with SAGAN have an insufficient performance
in removing the ambient noise. Meanwhile, the Wave-U-Net
with IIAD successes in suppressing the noise compared with
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TABLE I
OBJECTIVE EVALUATION RESULTS OF EIGHT DIFFERENT MODELS ON THE TEST SET OF VCTK DATASET

Model PESQ CSIG CBAK COVL SSNR STOI
Noisy 1.97 3.35 2.44 2.63 1.68 0.921
SEGAN [10] 2.16 3.43 2.94 2.80 7.73 -
HLGAN [17] 2.48 3.65 3.19 3.05 9.21 -
WGAN-GP [33] 2.54 - - - - 0.937
SERGAN [33] 2.62 - - - - 0.940
DSEGAN [6] 2.39 3.46 3.11 2.90 8.72 0.933
Wave-U-Net [3] 2.40 3.52 3.24 2.96 9.97 -
Wave-U-Net with SAGAN 2.76 4.09 3.38 3.42 10.3 0.948
Wave-U-Net with IIAD 2.80 4.11 3.37 3.45 10.0 0.944

the other methods.

VI. CONCLUSION

In this paper, we proposed a new training architecture for
the end-to-end speech enhancement network. The proposed
discriminator adopts the attention module fusing inter-attention
and intra-attention. This discriminator architecture can break
the strong trade-off relationship between the distortion loss and
the adversarial loss existing in the common adversarial train-
ing. From the experimental results, we reveal the effectiveness
of the proposed training architecture.
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