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Abstract—The paper introduces a combination of several
techniques and methods to tackle the problem of Direction-of-
Arrival (DOA) estimation for coherent and non-stationary signals
under severe noise conditions. Until now, these properties of the
signals were studied by many researchers, yet the solutions were
developed separately. At the first stage of the algorithm, the
Spatial Time-Frequency Distribution (STFD) matrix is derived,
which accounts for non-stationarity of the signals and allows
denoising. The forward-backward spatial smoothing is applied
to the STFD matrix to solve the problem of signals coherency.
The main principle of the Root MUltiple SIgnal Classification
(Root-MUSIC), namely, solving for the roots of the polynomial
to obtain the signals DOA is exploited. The algorithm was
simulated with coherent chirp signals with different Signal-to-
Noise Ratio (SNR) values to observe its efficiency compared to
the conventional Root-MUSIC and Time-Frequency MUSIC (TF-
MUSIC) methods.

I. INTRODUCTION

The aim of sound source localization (SSL) is to automat-
ically determine the positions of sound sources. There are
two components of a source position that can be estimated
as part of SSL: Direction-of-arrival (DOA) estimation and
Distance estimation [1]. DOA is important in various fields,
starting from human-robot interaction in robotics, progressing
through rescue scenarios without visual contact and ending up
with target tracking. The DOA estimation methods in real-life
scenarios need to take into account that more than one sound
source might be active in the environment. Therefore it is also
necessary to estimate the position of multiple simultaneous
sound sources.

Many approaches exist in the literature to address the
DOA estimation problem. According to the classical litera-
ture review in this topic, these approaches can be broadly
divided in four categories: time delay-based, beamforming-
based, subspace-based and learning-based approaches [1]. This
paper will discuss advancements in subspace-based DOA
estimation techniques.

Major efforts have been devoted to solving the DOA estima-
tion problem by array signal processing methods. Particularly,
the high-resolution MUltiple SIgnal Classification (MUSIC)
algorithm, which represents the most classical approach to
spatial spectrum estimation, was initially developed in [2].
The method is based on the orthogonality property of signal
and noise subspaces derived from performing the eigenvalue

decomposition (EVD) on an input covariance matrix. The
second most studied counterpart of the original algorithm
is known as Root-MUSIC, which estimates the DOA by
determining the roots of a polynomial formed from the noise
eigenvectors [3]. The above-mentioned approaches imply us-
ing narrowband, non-coherent and stationary signal sources
and low-level noise for adequate performance, however, these
requirements are rarely met in real-life conditions. It is known
that coherent signals, which tend to have similar frequency
components, deteriorate the performances of the frequency
estimating algorithms. However, [4][5] suggest applying the
spatial smoothing technique to weaken the restriction of non-
coherence. Besides, most of the signals used in practice,
including human speech, are non-stationary, that is, they have
variable statistical characteristics with time. The dependence
of signal frequency on time significantly reduces the effective-
ness of conventional methods. Therefore, the authors of [6][7]
proposed a revolutionary approach that leverages the properties
of spatial time-frequency (TF) distributions. Furthermore, the
TF analysis represents the energy distribution of the signal
across all TF points. It allows denoising by separating signal
components from white noise.

The main focus of this paper is to advance the conventional
Root-MUSIC for DOA estimation irrespective of the level
of noise and independent of coherency and stationarity of
the applied signals. In comparison with existing literature
[4][5], the spatial time-frequency distribution (STFD) matrix
is formed instead of the regular covariance matrix. According
to [8], the former one provides better signal selectivity due to
different TF signatures of source signals. Another advantage
of STFD matrix is noise suppression as the power of noise
is spread over the entire TF plane. In contrast to [6][7], the
spatial smoothing technique was applied to coherent signals
to restore the full-rank property of the STFD matrix. At last,
DOA for multiple sources were estimated from the roots of a
polynomial as opposed to spatial spectrum search in [4]-[7].
Hence, the method introduced in this paper expands the scope
of above-mentioned methods by simultaneously handling both
non-stationary and coherent signals.

The remaining of this paper is organized as follows. In
Section II, preliminary information about TF concepts and
the signal model are presented. The key features of the
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proposed method are discussed in details in Section III and the
simulation results are reported in Section IV. Finally, Section
V concludes the paper and defines the future study direction.

II. PRELIMINARIES

A. TF Concepts

There exist different approaches for deriving the TF distri-
bution (TFD) of a signal. Common methods include Short
Time Fourier Transform (STFT), Spectrogram and Gabor
Transform, Rihaczek Distribution and Wavelet Transform [9].
However, the core distribution that is connected to all other
TF Distributions (TFDs) via a certain time-lag kernel is known
as Wigner-Ville Distribution (WVD). Considering the original
signal s(t) received by a microphone, its analytic associate
z(t) is used in the TFD calculations. Thus, the WVD of the
analytic signal, Wzz(t, f), is formulated as [9]

Wzz(t, f) = Fτ→f{z(t+
τ

2
) z∗(t− τ

2
)}, (1)

where t is the discrete-time given in time-samples, f is the
discrete frequency defined with frequency bins, τ is the time
lag, Fτ→f stands for the Discrete Fourier Transform (DFT)
operator, and ∗ represents the conjugation. The usage of the
analytic associate is motivated by an attempt to eliminate
impractical artifacts on the TF plane caused by the interaction
between positive and negative frequencies. Analytic signal
contains energy of the signal only at positive frequencies in the
frequency domain. One way of obtaining such a signal is by
using the Hilbert transform. The product of inside of DFT in
(1) is termed as instantaneous autocorrelation function (IAF)
and denoted as Kzz(t, τ). Correspondingly, the distribution of
z1(t) and z2(t) is described by the cross-WVD function:

Wz1z2(t, f) = Fτ→f{z1(t+
τ

2
) z∗2(t−

τ

2
)}. (2)

In the case when WVD is performed on a signal which
contains more than one frequency components, there might be
additional cross-terms on the TF plane. These terms reduce the
usefulness of the TFD [9]. Therefore, a special time-lag kernel,
G(t, τ), is applied to the IAF, making a smoothed version of
WVD of z1(t) and z2(t) [10]:

Dz1z2(t, f) = F{G(t, τ)~Kz1z2}, (3)

where Kz1z2 is the IAF of the signals z1(t) and z2(t), and ~
represents the convolution. The time-lag kernel acts as a filter
implemented by different window functions. The particular
kernel function used in the paper is the Blackman-Harris
window.

B. Signal Model

The model consists of an M -element Uniform Linear Array
(ULA) that receives the signals from a P number of sources.
To a certain extent, the assumption of a far-field environ-
ment may not be applied due to spatial smoothing, which
is discussed later in the paper. The wavefront delay between
adjacent sensors in ULA is calculated as [11]

τp =
d sin(θp)

c
, (4)

where c is the speed of light, θp is the DOA for the pth source,
and d represents the spacing between array elements. It is
recommended that the spacing is equal to half of the signal
wavelength [12]. Assuming that there are N time samples, an
instantaneous mixing model is given by

xxx (t) = AAA (θ)sss (t) +nnn (t) , t = 1, . . . , N, (5)

where sss(t) is P×1 vector for the source signals, nnn(t) is M×1
vector for additive white Gaussian noise, and AAA(θ) is M×P
propagation matrix which contains the delay information of
each signal source at every array element, and where M
denotes the number of sensors.

III. PROPOSED METHOD

A. Array STFD matrix

STFD matrix represents auto- and cross-TFDs of signals
from all array elements. Since the matrix considers the number
of sensors, the third space dimension is introduced. The
covariance matrix of the signals in (5) becomes time-dependent
when the stationarity assumption is removed [10]:

RRRxx (t, τ) = AAA(θ)RRRss (t, τ)AAA(θ)
H + σ2

nδ (τ)III, (6)

where RRRxx (t, τ) is the M×M covariance matrix of the
recorded signals at specific time instant and time-lag,
RRRss (t, τ) is the P×P covariance matrix of the source signals,
σ2
n is the additive noise variance, δ (τ) is the Dirac delta

function, and III is the M×M identity matrix.
One may notice the similarity between the IAF and the

covariance function, which is described as

RRRxx (t, τ) = E {KKKxx (t, τ)}

= E
{
xxx
(
t+

τ

2

)
xxxH
(
t+

τ

2

)}
,

(7)

where E defines the expectation operator, and KKKxx is the ma-
trix where each entry represents the IAF of the corresponding
signals.

Using (3) and (7), we rewrite the expression in (6) to derive
the STFD matrix of the recorded signals:

DDDxx (t, f) = AAADDDss (t, f)AAA
H + σ2

nIII, (8)

where DDDss(t, f) is the STFD matrix of the source signals. It
is worth noting that the diagonal and off-diagonal entries of
the STFD matrix correspond to auto-TFDs and cross-TFDs,
respectively. The structure of the matrix allows applying the
same subspace methods that are usually done on covariance
matrices.

B. Post-processing of STFD matrix

The first step in reducing the effects of cross terms to a
notable degree is spatial averaging, which is formulated as

Davg (t, f) =
1

M

M∑
m=1

Dmm(t, f), (9)

where Davg(t, f) represents the averaged TFD, and Dmm(t, f)
is the TFD of the mth sensor signals. This effect is explained
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by averaging the auto-terms located on the same spots on the
TF planes while the cross-terms are allocated in different spots.

The usage of STFD matrix permits to denoise the TF
representation of the signals. It is implemented by setting
a threshold to the TF points’ energies of Davg (t, f). The
idea is to select those points with energies higher than user-
defined threshold, ε, and reject the ones with low energies
that may come from noise [10]. In this study, the threshold is
empirically chosen to be 4% of the energy of the maximum
TF point:

ε = 0.04×max(Davg (t, f)). (10)

The final step for obtaining the averaged STFD matrix, which
would be suitable for the DOA estimation, is determining the
averages of the chosen TF points after setting the threshold:

DDDxx =
1

npoints

npoints∑
i=1

DDDxx (ti, fi) , (11)

npoints in the expression refers to the total number of TF
points. It is during this stage the matrix entries take single
values instead of TF matrices.

C. Spatial Smoothing for Coherent Signals

The spatial smoothing technique has been developed for
stationary signals under uniform white noise [4]. Applied to
a covariance matrix, its performance degrades when at least
one of the conditions is not met. However, in this study,
the case with non-stationary signals is already handled by
the developed STFD matrix. The basic idea of the MUSIC
algorithm requires the covariance matrix, or the STFD matrix
in this paper, to be full rank to keep the noise subspace
orthogonal to the signal subspace. The full-rank assumption
becomes no longer valid provided that two or more signals
are coherent [5]. Thus, the aim of the spatial smoothing is to
diagonalize a matrix and decorrelate the signal sources [13].

The algorithm divides the ULA into L overlapping subar-
rays of size K, which lies in the range [P +1; M ]. There are
two ways of creating the subarrays depending on whether the
sensors are grouped in a forward or a backward direction. In
the forward smoothing, the received signal vector similar to
(5) is created at l-th subarray as

xxxl (t) = [xl(t), xl+1(t), . . . , xl+K−1(t)]
T = UUU lxxx(t), (12)

where UUU l = [000K×(l−1) IIIK 000K×(M−K−l+1)] is the selection
matrix which is used to select the sensors from l to l+K− 1
when multiplied to complete array model [4][14]. Correspond-
ingly, separate STFD matrices can be found for each subarray.
Hence, the total STFD matrix of the forward smoothing, DDDf ,
is derived by averaging all STFD matrices of L subarrays:

DDDf =
1

L

L∑
l=1

DDDf
l =

1

L

L∑
l=1

UUU lDDDxxUUU
H
l , (13)

where DDDf
l is the STFD matrix of lth subarray in forward

smoothing.

In backward smoothing, since the sensors are selected in
reverse order, the l-th subarray includes sensors numbered
from (l + K − 1) to l. Therefore, the output vector of the
subarray, yyyl (t), is expressed as

yyyl (t) = UUU lJJJxxx
∗ (t) , (14)

where JJJ is an M×M exchange matrix with ones on the anti-
diagonal entries and zeros on others. Thus, the counterpart of
(13) for backward smoothing is defined as

DDDb =
1

L

L∑
l=1

DDDb
l =

1

L

L∑
l=1

UUU lJJJDDD
∗
xxJJJUUU

H
l , (15)

where DDDb
l is the STFD matrix of lth subarray in backward

smoothing, and DDD∗xx is the conjugate of the non-smoothed
STFD matrix in (8).

Finally, the spatially smoothed STFD matrix is the average
of (13) and (15):

DDDfb =
DDDf +DDDb

2
. (16)

The smoothed STFD matrix would reach full rank when the
time of smoothing L is equal to the half of the number of
coherent sources. At this point, all the eigenvalues become
non-zero, which confirms the decorrelation ability of the
spatial smoothing technique [5].

D. Root-MUSIC algorithm for DOA estimation

The working principle of the Root-MUSIC algorithm is
based on orthogonality of source and noise subspaces [3].
After performing the EVD on the spatially smoothed STFD
matrix, the eigenvalues are sorted in descending manner.
Hence, considering λ1 ≥ λ2 ≥ . . . ≥ λM are the eigenvalues
for the spatially smoothed STFD matrix DDDfb, and v1 ≥ v2 ≥
. . . ≥ vP are eigenvalues for the signal part only, the following
expression is derived as

λi =

{
vi + σ2

n, i = 1, 2, . . . , P

σ2
n, i = P + 1, . . . ,M

. (17)

As (17) suggests, the first P eigenvectors of all qqq1, qqq2,
. . . , qqqM span the signal as well as noise subspace and are
denoted as eee1, eee2, . . . , eeeP , while the remaining M − P
eigenvectors span the noise subspace only. The subspace-based
methods such as Root-MUSIC assume a Hermitian matrix,
which has orthogonal eigenvectors for distinct eigenvalues

eeek
Hqqqi = 0, i = P + 1, . . . , M and k = 1, . . . , P. (18)

In the spectral MUSIC algorithm, the DOA are estimated
by the power spectrum function, which results in peaks when
the source angles are found. For that, the function utilizes the
expression (18) in the denominator and is given as

PMUSIC(θ) =
1∑M

i=P+1 |eeeHqqqi|
2

=
1∑M

i=P+1 eee
HqqqiqqqiHeee

=
1

eeeHQQQQQQHeee
,

(19)
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Fig. 1. The flowchart of the proposed method.

whereQQQ denotes the M×1 noise vector. In fact, the expression
(18) can be viewed as the Z-transform of qqqi

Qi(z)|z=ejw1 =

M−1∑
n=0

qi (n) z
−n= eee1

Hqqqi = 0. (20)

Therefore, the Root-MUSIC considers the denominator of
(19) as a polynomial in Z-domain

F (z) = eeeH(z)QQQQQQHeee(z) = eeeH(z)NeNeNe(z), (21)

where eeeH = [1 z−1 z−2 . . . z−(M−1)], and NNN is the
(M − 1)× (M − 1) matrix containing the information about
the coefficients of the polynomial. As a matter of fact, a special
vector CCC containing the coefficients is created by summing the
elements in each diagonal of the matrix.

Ideally, there will be P number of roots of the polynomial,
lying on the unit circle, that represent the DOA for the

Fig. 2. A pictorial representation of the simulation set-up.

incoming signals [15]. However, the roots might deviate from
the unit circle due to impact of noise. The actual angles of the
sources are determined for each root as

θk = arcsin[
λ

2πd
arg(zk)], k = 1, . . . , P, (22)

where arg(zk) is the argument of the kth root on the unit
circle, and θk is the corresponding DOA for kth source.

The proposed method consists of three main components:
the STFD matrix, the spatial smoothing technique, and
the Root-MUSIC algorithm. The flowchart of the proposed
method is represented in Fig. 1.

IV. SIMULATIONS

The simulation set-up diagram is illustrated in Fig. 2. As
shown, we consider a ULA with M = 6 to evaluate and
compare the performance of the proposed method with the
Root-MUSIC [3] and the TF-MUSIC [7] algorithms. The
spacing between the array elements are taken as half of
the signal wavelength. There are P = 4 source signals
that impinge on the sensor array from different directions
−30◦, −20◦, 0◦, 70◦, where the minus sign represents the
source lying to the left of the reference point.

A. Experiment 1: Coherent sources

In many applications, there is the effect of signal rever-
beration when the signals get reflected from various surfaces,
which results in the duplicates of the original signal. Hence, to
simulate the coherent sources, the model assumes two identical
signals arriving at the array from −30◦ and 0◦ directions.
As only two sources are considered coherent, the number of
spatial smoothing is equal to half of it, i.e. L = 1. The source
are set to be stationary with constant angular frequencies
[ 2π5 ,

4π
5 ,

2π
5 ,

3π
5 ], respectively. The SNR value is chosen to be

20 dB. The results of the TF-MUSIC are originally given in
the form of spectral plots, e.g. Fig. 3 shows the spectral plot
for the first experiment. Thus, the peak values in TF-MUSIC
in following experiments are also read from the similar plots.
The experiment results are illustrated in Table I.
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TABLE I
RESULTS OF EXPERIMENT 1

DOA Angle

θ1 = −30◦ θ2 = −20◦ θ3 = 0◦ θ4 = 70◦

Root-MUSIC -6.34 -19.98 23.55 69.98

TF-MUSIC - -20 -2 70

Proposed TF-

Root-MUSIC
-30.01 -19.83 -0.01 69.96

-100 -50 0 50 100
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-60

-50

-40
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-20

-10
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Fig. 3. A Spectral plot of TF-MUSIC for the Experiment 1.

According to Table I, the Root-MUSIC and TF-MUSIC
algorithms demonstrate valid results only for non-coherent
sources located at −20◦ and 70◦. However, neither methods
can correctly determine the DOA for the coherent sources. In
fact, the Fig. 3 depicts how the TF-MUSIC spectral plot cannot
spot the peak of the signal arriving from −30◦. While the
proposed TF-Root-MUSIC algorithm outputted the DOA for
all sources accurately because of the applied spatial smoothing
technique.

B. Experiment 2: Non-stationary sources

The experiment considers non-coherent and non-stationary
signals. The Linear Frequency Modulated (LFM) chirp signals
are used to represent the sources since they are the most com-
mon examples of non-stationary signals. The angular frequen-
cies of the signals are modulated starting from [ 2π5 ,

4π
5 ,

π
5 ,

3π
5 ]

to [ 4π5 ,
2π
5 ,

3π
5 , π]. The Blackman-Harris window is chosen as

the time-lag kernel for smoothing the TFD, which has 512 time
samples and 512 frequency bins. The SNR value is equal to
20 dB. The results are given in Table II.

As expected, the Table II shows that the TF-MUSIC and the
proposed TF-Root-MUSIC methods accurately estimate the
DOA for all sources. The results for the Root-MUSIC make
it explicit that the algorithm is not capable of determining the
DOA for non-stationary sources.

TABLE II
RESULTS OF EXPERIMENT 2

DOA Angle

θ1 = −30◦ θ2 = −20◦ θ3 = 0◦ θ4 = 70◦

Root-MUSIC -49.9 -8.85 17.66 38.57

TF MUSIC - -20 0.5 70

Proposed TF-

Root-MUSIC
-30.01 -19.83 -0.01 69.96

TABLE III
RESULTS OF EXPERIMENT 3 FOR THE ROOT-MUSIC

DOA Angle

SNR (dB) θ1 = −30◦ θ2 = −20◦ θ3 = 0◦ θ4 = 70◦

10 -49.90 -8.87 17.60 38.61

0 -54.46 -0.10 21.26 46.75

-5 -49.64 -9.08 17.79 38.76

-10 -50.00 -9.24 18.14 38.56

-15 -50.16 -7.31 19.07 37.43

-20 -50.58 -8.16 12.91 30.75

C. Experiment 3: Coherent and Non-stationary sources at
different SNR values

The experiment is organized to analyze the performance of
each algorithm when the coherent and non-stationary sources
have different SNR values. The angular frequencies are lin-
early varied from [ 2π5 ,

π
5 ,

2π
5 ,

3π
5 ] to [ 4π5 ,

3π
5 ,

4π
5 , π]. It should

be noted that the signals arriving from −30◦ and 0◦ are
coherent. The performance of each algorithm is examined
under different levels of noise (SNR). The results are given
separately for each method in Tables III, IV, and V.

The Table III shows that although the TF-MUSIC can
handle the non-stationary signals, it has poor performance at
retrieving the DOA for the coherent signals due to the lack
of spatial smoothing. This is the reason for having no values
in the first column of the TF-MUSIC. Whereas the Table IV
illustrates that the Root-MUSIC fails at determining the DOA
mainly because of nonstationarity of the signals. It can be
seen from the Table V that the proposed method demonstrates
accurate performance for both non-stationary and coherent
signals even at low SNR values.

V. CONCLUSION

An efficient method for DOA estimation of non-stationary
and coherent sources under adverse noise conditions has been
developed in the paper. The proposed approach uses a com-
bination of spatial TF analysis, spatial smoothing technique,
and the direction estimating principal of the Root-MUSIC.
In addition, once the STFD matrix is calculated, the TF
points with higher energies than the threshold are selected
for denoising. The forward-backward spatial smoothing is
used to decorrelate the sources and restore the rank of the
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TABLE IV
RESULTS OF EXPERIMENT 3 FOR THE TF-MUSIC

DOA Angle

SNR (dB) θ1 = −30◦ θ2 = −20◦ θ3 = 0◦ θ4 = 70◦

10 - -25.5 0 70

0 - 25 0 70.5

-5 - -25 0 70

-10 - -24 0 69.5

-15 - -24.5 0.5 66

-20 - -25.5 -2.5 65.5

STFD matrix. Ultimately, the derived matrix is processed
by the conventional time-domain Root-MUSIC to extract
the DOA information. Simulation results illustrate that the
proposed method outperforms the classical Root-MUSIC and
TF-MUSIC methods under various conditions.

One of the main limitations is that the algorithm cannot be
applied when the number of sources is greater than the sensors
(P ≥ M). It can be improved by using the Blind Source
Separation (BSS) as a preprocessing step as it was suggested
in [16]. It allows reducing the problem down to separate
single sources, the DOA for which later can be estimated
individually. Thus, due to the outstanding capabilities of the
BSS, it is expected to expand the application scenarios of the
proposed approach
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