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Abstract—This paper considers distributed adaptive signal
processing for tracking an unknown sparse parameter vector in
large-scale networks. We propose a sparsity-promoting diffusion
least-mean-square algorithm based on consensus propagation,
which is an average consensus algorithm using message passing
techniques. The main contributions of the paper are optimizing
coefficients in the algorithm in terms of the steady-state error
to achieve better convergence and robustness, and presenting the
adaptive implementation.

Index Terms—Diffusion LMS, distributed signal processing,
average consensus, sparseness

I. Introduction
Distributed signal processing or distributed optimization

is gathering more interest in the context of wireless sensor
networks and multi-agent networked systems [1]–[6]. Diffu-
sion least-mean-square (D-LMS) [7]–[11] is one of the most
popular algorithms to track and estimate an unknown param-
eter vector in a fully distributed manner in such networks.
Moreover, for the applications where the unknown parameter
is known to be sparse, an extension of D-LMS called sparse
diffusion LMS (SD-LMS) has been proposed in [12], which
considers sparse regularization as in compressed sensing [13].
SD-LMS is superior to the original D-LMS in the case that
the unknown vector is sufficiently sparse.

In D-LMS and SD-LMS, each node in the network iterates
the updates of estimate by using its own measurement like
LMS algorithm [14] and also by averaging the neighbors’
estimates. The former update is called LMS step and the
latter is averaging step. The averaging step can be regarded
as the update for average consensus, which is a well-known
problem to obtain the average of all nodes’ state values in
a distributed manner. In D-LMS and SD-LMS, the average
consensus protocol [15] is employed for the averaging step,
however, this protocol is known to require a lot of iterations
for the convergence especially in large networks.

We have proposed to use a faster average consensus al-
gorithm instead of the average consensus protocol in [15]
to achieve faster convergence of D-LMS and SD-LMS. In
our previous work [11] and [16], the proposed methods
have shown better convergence performance than D-LMS and
SD-LMS, respectively, by employing consensus propagation
(CP) [17], which is based on the idea of message passing
algorithms [18]. In [11], we have further optimized coefficients

involved in the combination weights of the averaging step by
minimizing mean-square-deviation (MSD) of D-LMS at the
steady-state. On the other hand, in [16], we have employed
the coefficients that minimize the steady-state MSD of D-
LMS instead of that of SD-LMS because minimizing the latter
requires complicated calculations. Thus, the coefficients in [16]
have not considered the effect of the sparse regularization.

In this paper, we tackle the optimization of the coefficients
of our previous method [16] by minimizing MSD of SD-
LMS and considering the effect of the sparse regularization
to make the method faster and more robust to the change
of the unknown sparse vector. The optimal coefficients are
derived under some approximations while the effect of the
sparse regularization term into consideration. This is the first
work that shows the optimal combination weight for SD-LMS
as long as we know while that for D-LMS has been considered
in [11], [19]–[21]. Moreover, we derive an adaptive implemen-
tation to track the optimal coefficients as well as the unknown
parameter. The proposed algorithm requires a slightly higher
computational complexity but simulation results show that it
achieves a better convergence performance and robustness to
the change of the unknown vector than that of conventional
methods especially in dense networks.

In the rest of the paper, we use the following notations.
Let R and C be the set of real and complex numbers,
respectively. Superscripts (·)T and (·)H denote the transpose
and the Hermitian transpose, respectively. E[·] and Tr(·) stand
for the expectation and the trace operators, respectively. IM
is the identity matrix of size M × M . ‖w‖p for a vector
w = [w1, . . . , wM ]T ∈ CM and p ≥ 1 is !p-norm defined
by

(∑M
m=1 |wm |p

)1/p
. ‖w‖0 for a vector w is the number of

nonzero elements of w and is called !0-norm. diag{· · · } means
a diagonal or block diagonal matrix whose diagonal elements
or matrices are given by the elements in the braces. sign(w)
for w = [w1, . . . , wM ]T ∈ RM is a vector of size M whose
m-th element [sign(w)]m is defined as

[sign(w)]m =
{
wm/|wm |, if wm ! 0
0, if wm = 0. (m = 1, . . . ,M)
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II. Preliminaries
A. System Model

We consider a connected network composed of N sensor
nodes. Each node k (k = 1, 2, . . . , N ) obtains a noisy measure-
ment d (i)

k ∈ C at each time i (i = 0, 1, 2, . . .) as a measurement
of an unknown vector of interest wo ∈ CM . This indicates the
following linear measurement model as in [7]–[12]

d (i)
k = u(i)H

k wo + v (i)
k , (1)

where u(i)
k ∈ CM is a random measurement vector and

v (i)
k ∈ C is a zero-mean additive complex white Gaussian

noise with variance of σ2
k . We assume that each node in

the network can perform single-hop communication only with
its neighboring nodes. The information which each node can
obtain is only a part of all nodes’ information, i.e., its own and
neighbors’ information. Moreover, the total number of nodes N
is assumed to be unknown to each node. The set of neighbors
of node k including k itself is denoted by Nk .

B. Diffusion LMS
D-LMS [7], [8] is one of the distributed adaptive filters

to track and estimate unknown vector at all nodes in a fully
distributed manner. All nodes in the network aim to obtain
the estimate of wo by minimizing the following global cost
function:

J glob
dif (w) =

N∑

k=1
E[|d (i)

k − u(i)H
k w |2] . (2)

Each node cannot directly solve this problem because it
includes all nodes’ information that is unavailable at the node.
Therefore, the following approximated local cost function has
been considered at each node k,

J loc
dif,k(w)=E[|d (i)

k −u
(i)H
k w |2]+

∑

l ∈Nk \{k }
blk‖w − φ (i)

l ‖
2, (3)

where φ (i)
l is the current estimate of wo at node l at time i,

and blk is the weight naturally determined later. The second
term of (3) means the penalty for the difference between node
k’s and neighbors’ estimates.

In order to minimize (3), the steepest descent method [22]
and LMS algorithm [14] are employed, then node k’s estimate
φ (i)
k is updated as

φ (i)
k = φ

(i−1)
k + µk u

(i)
k (d (i)

k − u(i)H
k φ (i−1)

k )

+ µk
∑

l ∈Nk \{k }
blk (φ (i)

l − φ
(i−1)
k ), (4)

where µk > 0 is a step-size parameter. The update by (4)
can be divided into 2 steps. The one is to update the cur-
rent estimate ψ (i)

k by LMS-like rule using its instantaneous
measurement. Another is to update the estimate φ (i)

k by using
neighbors’ current estimates ψ (i)

l . Namely,

ψ (i)
k = φ

(i−1)
k + µk u

(i)
k (d (i)

k − u(i)H
k φ (i−1)

k ), (5)

Algorithm 1 Diffusion LMS algorithm

1: Initialization: φ (−1)
k = 0

2: for each time i ≥ 0 and each node k do
3: ψ (i)

k = φ
(i−1)
k + µk u

(i)
k (d (i)

k − u(i)H
k φ (i−1)

k )
4: φ (i)

k =
∑

l ∈Nk
alkψ (i)

l
5: end for

φ (i)
k = ψ

(i)
k + µk

∑

l ∈Nk \{k }
blk (ψ (i)

l − ψ
(i)
k ), (6)

where φ (i)
l and φ (i−1)

k in the third term of (4) are replaced with
ψ (i)
l and ψ (i)

k , respectively. Here, let A = {alk } ∈ RN×N be

alk =

µkblk, if l ∈ Nk \ {k},
1 − µk

∑
l ∈Nk \k blk, if l = k,

0, if l " Nk,
(7)

then (6) can be rewritten as

φ (i)
k =

∑

l ∈Nk

alkψ (i)
l . (8)

Summarizing (5) (LMS step) and (8) (averaging step), the
updating rules of D-LMS are shown in Algorithm 1. Note
that we employ in this paper the adaptive-then-combine type
of D-LMS proposed in [8].

C. Sparse Diffusion LMS
SD-LMS [12] is an extension of D-LMS for the case when

the unknown vector wo is known to be sparse but the indices
of nonzero elements are unknown. All nodes in the network
aim to obtain the estimate of wo by minimizing the following
global cost function:

J glob
spa (w) =

N∑

k=1
E[ |d (i)

k − u(i)H
k w |2] + λ f (w), (9)

where λ > 0 is a regularization parameter and f (w) is a
convex sparse regularization function. The specific form of
f (w) will be discussed later. In the same way as in D-LMS,
the alternative problem considered to perform at each node k
is minimizing the following approximated local cost function

J loc
spa,k (w) = E[|d (i)

k −u
(i)H
k w |2]+λ f (w)+

∑

l ∈Nk \{k }
b′lk ‖w−φ

(i)
l ‖

2,

(10)

where b′lk is the weight naturally determined later. The LMS-
type update for this cost function also can be divided into 2
steps as

ψ (i)
k = φ (i−1)

k + µk u
(i)
k (d (i)

k − u(i)H
k φ (i−1)

k )

−µkλ∂f (φ (i−1)
k ), (11)

φ (i)
k = ψ

(i)
k + µk

∑

l ∈Nk \{k }
b′lk (ψ (i)

l − ψ
(i)
k ), (12)
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Algorithm 2 Sparse diffusion LMS algorithm

1: Initialization: φ (−1)
k = 0

2: for each time i ≥ 0 and each node k do
3: ψ (i)

k = φ (i−1)
k + µk u

(i)
k (d (i)

k − u(i)H
k φ (i−1)

k ) −
µkλ∂f (φ (i−1)

k )
4: φ (i)

k =
∑

l ∈Nk
alkψ (i)

l
5: end for

where ∂f (·) is the sub-gradient of f (·). Letting b′lk = blk and
introducing A = {alk } in (7) lead to

φ (i)
k =

∑

l ∈Nk

alkψ (i)
l . (13)

Summarizing (11) (LMS step) and (13) (averaging step), the
updating rules of SD-LMS are shown in Algorithm 2. It should
be noted that SD-LMS is the extension of Algorithm 1 by
adding the regularization term to the LMS step.

In this paper, according to [12], we employ the following
regularization function

f (w) =
M∑

m=1

|wm |
ε + |wm |

, (14)

where wm is the m-th element of w and ε > 0 is a parameter.
While !1-norm is widely used for the sparse regularization
function [23], the function (14) is known to be a better
approximation of ‖w‖0 than ‖w‖1 as long as ε is sufficiently
small. One of the sub-gradients of (14) is given by

∂f (w)=diag
{

1
ε + |w1 |

, . . . ,
1

ε + |wm |

}
sign(w). (15)

The convergence of SD-LMS in mean and mean-square
senses are guaranteed in [12] under reasonable assumptions.

D. Consensus Propagation
CP [17] is the algorithm that achieves average consensus by

using the idea of belief propagation [18]. Consider a bidirected
graph G = {V, E}, where V is a set of nodes, E is that of
edges, and |V | = N . Assume that each node k ∈ V has an
initial state value xk . Each node aims at obtaining the average
of all nodes’ initial values, x̄ = 1

N

∑N
u=1 xu , that is, achieving

average consensus, by using message propagation algorithm.
Two types of updating rules of CP are as follows:

K [ j]
(u→k ) =

1 +∑
m∈Nu\{k,u } K [ j−1]

(m→u)

1 + 1
βk

(
1 +∑

m∈Nu\{k,u } K [ j−1]
(m→u)

) , (16)

θ[ j](u→k ) =
xu +

∑
m∈Nu\{k,u } K [ j−1]

(m→u)θ
[ j−1]
(m→u)

1 +∑
m∈Nu\{k,u } K [ j−1]

(m→u)

, (17)

where (u → k) ∈ E, K [ j]
(u→k ) and θ[ j](u→k ) are the messages

from node u to k at time j, K [0]
(u→k ) = θ

[0]
(u→k ) = 0, and βk > 0

is a parameter. After iterating (16) and (17) T times between
all nodes, the estimate of x̄ at node k is given as

x[T ]
k =

xk +
∑

u∈Nk \{k } K [T ]
(u→k )θ

[T ]
(u→k )

1 +∑
u∈Nk \{k } K [T ]

(u→k )

. (18)

CP can achieve exact average consensus when the network
has a tree structure and βk s (k = 1, . . . , N ) are set to be ∞
only with the same number of iterations T as the diameter
of the tree. However, for the case of the network with some
cycles, the behavior of CP such as the consensus value and
the required number of iterations are unknown. Moreover,
the coefficient βk plays an important role in guaranteeing
convergence but its optimal value for general networks is also
unknown.

E. Sparse Diffusion LMS using Consensus Propagation
In this section, we introduce the improved SD-LMS that

we have proposed in [16], which applies CP instead of the
conventional average consensus protocol. As mentioned in
Sect. II-D, CP achieves exact average consensus with the same
number of iterations as the diameter of the network, when
the network has a tree structure. On the other hand, when the
network has some cycles, the required number of iterations and
convergence value remain unknown. We have thus considered
applying a special case of CP, where only the first iteration
(T = 1) is employed, to SD-LMS as in our previous work [11].

We describe the averaging step of SD-LMS (13) by using the
messages of CP, K [1]

(u→k ) and θ[1]
(u→k ) . The former is naturally

calculated as

K [1]
(u→k ) =

βk
1 + βk

. (19)

Substituting the current estimate ψ (i)
k in (11) for the initial

value xk of CP in (17) (k = 1, 2, . . . , N), then

θ[1]
(u→k ) = xu = ψ (i)

u . (20)

Moreover, the estimate φ (i)
k is obtained by the derivation of

x[1]
k in (18) instead of (13) and can be calculated as

φ (i)
k =

xk +
∑

u∈Nk \{k } K [1]
(u→k )θ

[1]
(u→k )

1 +∑
u∈Nk \{k } K [1]

(u→k )

=
1 + βk

1 + |Nk | βk
ψ (i)
k +

βk
1 + |Nk | βk

∑

u∈Nk \{k }
ψ (i)
u

=
∑

l ∈Nk

acp
lkψ

(i)
l ,

where

acp
lk =



βk

1+ |Nk |βk
, if l ∈ Nk \ {k},

1+βk

1+ |Nk |βk
, if l = k,

0, otherwise.
(21)

This can be considered as a combination weight for SD-LMS,
which satisfies the conditions in (7). Therefore, this method
arrives at an SD-LMS that uses the coefficient βk for the
combination weights.
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The optimal choice of βk in terms of CP is also unknown
as mentioned in Sect. II-D. In [16], we have focused on the
average of all nodes’ MSD at the steady-state, named steady-
state network MSD defined as

MSDnet
spa = lim

i→∞
1
N

N∑

k=1
E[‖φ (i)

k − wo‖2],

and tried to determine βk by minimizing MSDnet
spa. The steady-

state network MSD for any combination weight has been
considered in [12] under the following assumptions.

Assumptions : The noise process {v (i)
k } is temporally white

and spatially independent. The measurement vector process
{u(i)

k } is temporally white and spatially independent. v (i)
k is

independent of u( j )
l for all l ! k and i ! j. The step-sizes

{µk } are sufficiently small.
By using the assumptions, the steady-state network MSD of
SD-LMS is given by

MSDnet
spa = MSDnet

dif +
λ

N
gλ,ε (A), (22)

where MSDnet
dif is the steady-state network MSD of D-LMS [8]

and gλ,ε (A) is a function which depends on the parameters
λ and ε , and the combination matrix A. The second term
of (22) indicates the influence of the sparse regularization
term. The specific formula of gλ,ε (A) is considerably complex
and will be discussed later. In [16], for simplicity, we have
approximated gλ,ε (A) as gλ,ε (IN ) then minimizing MSDnet

spa in
terms of βk can be replaced with minimizing MSDnet

dif . Thus,
we can use previous results in [11] and derive the optimal
value of βk as

βopt
k =


( |Nk |−1)γ2

k

Γ̃k
if Γ̃k > 0

+∞ otherwise,
(23)

where γ2
k = µ

2
kσ

2
kTr(Ruk ) and Γ̃k =

∑
l ∈Nk

γ2
l − |Nk |γ2

k ! 0.
Furthermore, we have also derived an adaptive solution to

estimate γ2
k and then update βk to avoid the direct calculation

of γ2
k that depends on locally unavailable network statistics

such as noise variance σ2
k and the correlation matrix Ruk .

The estimate β(i)
k of βopt

k and the corresponding combination
weight acp, (i)

lk at time i are described as

β(i)
k =


( |Nk |−1)γ̃2, (i)

kk

Γ̃(i)
k

if Γ̃(i)
k > 0

+∞ otherwise,
(24)

acp, (i)
lk =



β (i)
k

1+ |Nk |β (i)
k

if l ∈ Nk and l ! k
1+β (i)

k

1+ |Nk |β (i)
k

if k = l

0 otherwise,

(25)

where Γ̃(i)
k =

∑
l ∈Nk

γ̃2, (i)
lk − |Nk |γ̃2, (i)

kk and γ̃2, (i)
lk is the estimate

of γ2
l at node k and time i and it is updated by γ̃2, (i)

lk = (1 −
ν̃k )γ̃2, (i−1)

lk + ν̃k ‖ψ (i)
l − φ

(i−1)
k ‖2, where ν̃k (0 < ν̃k < 1) is the

forgetting factor. This combination weight has been named
as adaptive CP rule. SD-LMS using the adaptive CP rule is
summarized in Algorithm 3.

Algorithm 3 Sparse diffusion LMS with adaptive CP rule

1: Initialization: φ (−1)
k = 0, γ2, (−1)

lk
2: for each time i ≥ 0 and each node k do
3: ψ (i)

k = φ (i−1)
k + µk u

(i)
k (d (i)

k − u(i)H
k φ (i−1)

k ) −
µkλ∂ f (φ (i−1)

k )
4: γ2, (i)

lk = (1 − νk )γ2, (i−1)
lk + νk ‖ψ (i)

l − φ
(i−1)
k ‖2

5: if ∑
l ∈Nk

γ2, (i)
lk − γ2, (i)

kk |Nk | > 0 then
6: β(i)

k =
( |Nk |−1)γ2, (i)

kk∑
l∈Nk γ2, (i)

lk
−γ2, (i)

kk
|Nk |

7: else
8: β(i)

k = +∞ (large positive constant)
9: end if

10: a(i)
lk =

β (i)
k

1+β (i)
k
|Nk |

(l ∈ Nk \ k), 1+β (i)
k

1+β (i)
k
|Nk |

(l = k)

11: φ (i)
k =

∑
l ∈Nk

a(i)
lk ψ

(i)
l

12: end for

III. Proposed Optimal Combination Weight
A. Optimization of Coefficients

The coefficient proposed in [16] has some room for improve-
ment because it has been derived by ignoring the influence of
the sparse regularization term. In this paper, we optimize the
coefficient βk by considering the contribution of the second
term of (22). The specific formula of gλ,ε (A) has been shown
in [12] as

gλ,ε (A) = λg1,Σ,∞ − g2,Σ,∞, (26)

where

g1,Σ,∞ = lim
i→∞

E
[
∂ f (φi−1)TMAΣATM∂ f (φi−1)

]
, (27)

g2,Σ,∞ = lim
i→∞
−2E

[(
∂ f (φi−1)

)TMAΣAT(INM−MD)φ̃i−1
]
,

(28)

φi−1 =



φ (i−1)
1
...

φ (i−1)
N


, φ̃i−1 =



wo − φ (i−1)
1
...

wo − φ (i−1)
N


,

M = diag {µ1IM, . . . , µN IM } ,
A = A ⊗ IM,

D = diag


N∑

l=1
Rul , . . . ,

N∑

l=1
Rul

 ,
and Σ is any Hermitian nonnegative-definite matrix.

The first term of (22), MSDnet
dif , is difficult to calculate

directly but its upper bound has been already derived in [8]
as

MSDnet
dif ≤ c

N∑

k=1

∑

l ∈Nk

γ2
l a2

lk, (29)
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where c is some constant. By substituting (21), (29) can be
rewritten as

MSDnet
dif ≤

N∑

k=1

01
2
cγ2

k

(
1 + βk

1 + |Nk | βk

)2
+

∑

l ∈Nk \{k }
cγ2

l

(
βk

1 + |Nk | βk

)234
5
.

(30)

The second term of (22) is also difficult to directly obtain
because it includes the limitation, the expectation, and the
unknown vector. Thus, we consider to simplify (27) and (28).
First, we approximate Σ with the identity matrix. Second, since
the step-sizes are sufficiently small, we ignore the quadratic
term of (28) with respect to M and approximate it as

g2, I,∞ , lim
i→∞
−2E

[(
∂ f (φi−1)

)TMAATφ̃i−1
]
. (31)

We further approximate by removing the limitation and the
expectation in (27) and (31), and use the instantaneous values.
Specifically, the approximated values of g1, I,∞ and g2, I,∞ are
given by

g1, I, i , ∂ f (φi−1)TMAATM∂ f (φi−1), (32)

g2, I, i , −2
[(
∂ f (φi−1)

)TMAATφ̃i−1
]
, (33)

respectively. By using these terms, we have the approximated
gλ,ε (A) as

gλ,ε (A) ≈ λg1, I, i − g2, I, i

=

N∑

k=1

∑

j ∈Nk

∑

l ∈Nk

[
λµ j µla jkalk∂f (φ (i−1)

j )T∂f (φ (i−1)
l )

+ 2µ ja jkalk∂f T(φ (i−1)
j )

(
wo − φ (i−1)

l

) ]
. (34)

It seems hard to optimize N2 combination weights {alk }
directly from (34) but it can be captured by the optimization
of N coefficients {βk } in the case of our proposed method.
Substituting (21) into (34) leads to

gλ,ε (A) ≈
N∑

k=1

[
(η̃kl + η̃ jk )

(
1 + βk

1 + |Nk | βk

) (
βk

1 + |Nk | βk

)

+ η̃kk

(
1 + βk

1 + |Nk | βk

)2
+ η̃ jl

(
βk

1 + |Nk | βk

)2 ]
,

(35)

where

η̃kl =
∑

l ∈Nk \{k }
µk∂f (φ (i−1)

k )T
{
λµl∂f (φ (i−1)

l ) + 2
(
wo − φ (i−1)

l

)}
,

η̃ jk =
∑

j ∈Nk \{k }
µ j∂f (φ (i−1)

j )T
{
λµk∂f (φ (i−1)

k ) + 2
(
wo − φ (i−1)

k

)}
,

η̃kk = µk∂f (φ (i−1)
k )T

{
λµk∂f (φ (i−1)

k ) + 2
(
wo − φ (i−1)

k

)}
,

η̃ jl =
∑

l ∈Nk \{k }

∑

j ∈Nk \{k }
µ j∂f (φ (i−1)

j )T

·
{
λµl∂f (φ (i−1)

l ) + 2
(
wo − φ (i−1)

l

)}
.

Although it still includes the unknown vector, the replacement
is considered in the next section.

By incorporating (30) and (35), we can obtain the approxi-
mated upper bound of MSDnet

spa as

MSDnet
spa ≤ c

N∑

k=1

∑

l ∈Nk

γ2
l a2

lk +
λ

N
(λg1, I, i − g2, I, i ) (36)

=

N∑

k=1

[ λ
N

(η̃kl + η̃ jk )
(

1 + βk
1 + |Nk | βk

) (
βk

1 + |Nk | βk

)

+

(
cγ2

k +
λ

N
η̃kk

) (
1 + βk

1 + |Nk | βk

)2

+
01
2

∑

l ∈Nk \{k }
cγ2

l +
λ

N
η̃ jl

34
5
(

βk
1 + |Nk | βk

)2 ]

=

N∑

k=1

[
ηkl j

(
1 + βk

1 + |Nk | βk

) (
βk

1 + |Nk | βk

)

+ ηkk

(
1 + βk

1 + |Nk | βk

)2
+ η jl

(
βk

1 + |Nk | βk

)2 ]

=

N∑

k=1
Fk (βk ), (37)

where ηkk = cγ2
k +

λ
N η̃kk , ηkl j = λ

N (η̃kl + η̃ jk ), and η jl =∑
l ∈Nk \{k } cγ

2
l +

λ
N η̃ jl . In this paper, we optimize {βk }Nk=1 by

minimizing the approximated upper bound (37), i.e.,

min
{βk }Nk=1

N∑

k=1
Fk (βk ). (38)

We can divide the problem into the following N problems,
βopt
k = arg min

βk

Fk (βk ) k = 1, . . . , N . (39)

The differential of Fk with respect to βk can be calculated as
∂Fk

∂ βk
=

[ {
2η jl − 2(|Nk | − 1)ηkk − ( |Nk | − 2)ηkl j

}
βk

− {2(|Nk | − 1)ηkk − ηkl j }
]
· 1

(1 + |Nk | βk )3 .

(40)

Since the denominator is positive, ∂Fk
∂βk
= 0 when

βk =
2(|Nk | − 1)ηkk − ηkl j

2η jl − 2(|Nk | − 1)ηkk − ( |Nk | − 2)ηkl j
. (41)

We put Γk = 2η jl − 2(|Nk | − 1)ηkk − (|Nk | − 2)ηkl j and
Λk = 2( |Nk | − 1)ηkk − ηkl j . Considering βk > 0, we can
derive the following optimal parameter:


βopt
k =

Λk
Γk
, if Γk > 0 and Λk > 0,

βopt
k → +0, if Γk > 0 and Λk ≤ 0,
βopt
k → +∞, if Γk ≤ 0.

(42)

Note that sufficiently small βk indicates that the node do not
use the neighbors’ estimates at the averaging step but only
use its own information. When βk is very large, the resulting
combination weight (21) coincides with conventional uniform
rule [24].

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

232



B. Adaptive Implementation
The optimal parameter (42) includes unavailable informa-

tion such as the unknown vector wo, noise variance {σ2
k },

correlation matrices {Ruk }, and the number of all nodes N .
Therefore, in this section, we consider adaptive estimations and
replacements of these factors, and finally derive an adaptive
algorithm.

First, we consider adaptive estimations of γ2
l =

µ2
lσ

2
l Tr(Rul ) in a similar way as that of D-LMS [9], [20],

[21]. The estimate φ (i)
k approaches to the unknown vector wo

as the algorithm iterates (11) and (13), and reaches steady-
state under the assumption that the step-sizes are sufficiently
small. By using (11) and (1), we can rewrite

ψ (i)
l ≈ wo + µlu

(i)
l v

(i)
l − µlλ∂ f (wo).

Taking the expectation leads to

E
[999ψ (i)

l − wo + µlλ∂ f (wo)9992] ≈ µ2
lσ

2
l Tr(Rul ).

We substitute the instantaneous values into the expectation and
use it to estimate γ2

l . Let γ2, (i)
lk be the estimate of γ2

l at node k
and time i. We adaptively obtain the estimate by employing
the following update:

γ2, (i)
lk = (1−νk )γ2, (i−1)

lk +νk
999ψ (i)

l − φ
(i−1)
k + µlλ∂f (φ (i−1)

k )9992
,

(43)

where νk (0 < νk < 1) is the forgetting factor.
Second, we replace the unknown vector wo and the number

of all nodes N with the instantaneous estimate φ (i−1)
k and the

number of neighbors |Nk |, respectively. The coefficients ηkk ,
ηkl j , and η jl are redefined as

η (i)
kk = cγ2, (i)

kk +
λ

|Nk |
µk∂f (φ (i−1)

k )T

·
{
λµk∂f (φ (i−1)

k ) + 2
(
ψ (i)
k − φ

(i−1)
k

)}
, (44)

η (i)
kl j =

λ

|Nk |
[
ζ (i)T
k

{
λµk∂f (φ (i−1)

k ) + 2
(
ψ (i)
k − φ

(i−1)
k

)}
+ µk∂ f (φ (i−1)

k )Tι(i)k

]
, (45)

η (i)
jl = c

∑

l ∈Nk \{k }
γ2, (i)
lk +

λ

|Nk |
ζ (i)T
k ι(i)k , (46)

where ζ (i)
k =

∑
j ∈Nk \{k } µ j∂f (φ (i−1)

j ) and ι(i)k = λζ (i)
k +

2( |Nk | − 1)ψ (i)
k − 2 ∑

j ∈Nk \{k } φ
(i−1)
j . We further redefine Γk

and Λk by using (44)–(46) as

Γ(i)
k = 2η (i)

jl − 2( |Nk | − 1)η (i)
kk − ( |Nk | − 2)η (i)

kl j, (47)

Λ(i)
k = 2( |Nk | − 1)η (i)

kk − η
(i)
kl j, (48)

respectively.

Algorithm 4 Sparse diffusion LMS using proposed adaptive
CPO rule

1: Initialization: φ (−1)
k = 0, {γ2, (−1)

lk } ∀k, l
2: for each time i ≥ 0 and each node k do
3: ψ (i)

k = φ (i−1)
k + µk u

(i)
k (d (i)

k − u(i)H
k φ (i−1)

k ) −
µkλ∂f (φ (i−1)

k )
4: Calculate γ2, (i)

lk (l ∈ Nk ) as in (43)
5: Calculate η (i)

kk, η
(i)
kl j, η

(i)
jl as in (44)–(46)

6: Calculate Γ(i)
k and Λ(i)

k as in (47) and (48)
7: if Γ(i)

k > 0 then
8: if Λ(i)

k > 0 then
9: β(i)

k =
Λ(i)
k

Γ(i)
k

10: else
11: β(i)

k = +0 (small positive constant)
12: end if
13: else
14: β(i)

k = +∞ (large positive constant)
15: end if
16: a(i)

lk =
β (i)
k

1+ |Nk |β (i)
k

(l ∈ Nk \ {k}),
1+β (i)

k

1+ |Nk |β (i)
k

(l = k)

17: φ (i)
k =

∑
l ∈Nk

a(i)
lk ψ

(i)
l

18: end for

Summarizing these estimations and replacements, we can
derive an adaptive form of the parameter βk as below:



βo, (i)
k =

Λ(i)
k

Γ(i)
k

, if Γ(i)
k > 0 and Λ(i)

k > 0,

βo, (i)
k → +0, if Γ(i)

k > 0 and Λ(i)
k ≤ 0,

βo, (i)
k → +∞, if Γ(i)

k ≤ 0.

(49)

The subsequent combination weight acpo, (i)
lk is described as

acpo, (i)
lk =



βo, (i)
k

1+ |Nk |βo, (i)
k

, if l ∈ Nk \ {k},
1+βo, (i)

k

1+ |Nk |βo, (i)
k

, if l = k,

0, otherwise.

(50)

SD-LMS using the proposed adaptive optimization is summa-
rized in Algorithm 4. We name this weight adaptive CP with
Optimization (CPO) rule.

It should be noted that Algorithm 4 requires a slightly higher
computational complexity than Algorithm 2 and 3, but the
required amount of communication is the same as Algorithm 3.

IV. Simulation Results
We have evaluated the learning performance of the proposed

method via computer simulations. All the simulation results
are obtained by MATLAB. In order to compare the perfor-
mance in networks of different density, we have generated
4 Erdős-Rényi random networks with N = 20, where the
mean degrees are D = 12, 14, 16, and 18, respectively. We
have used node-independent step-size parameters µk = µ,
forgetting factors νk = ν, and initial values γ2, (−1)

lk = γ2, (−1) ,
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(a) Network MSD learning curves with N =
20, D = 12.
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(c) Network MSD learning curves with N =
20, D = 16.
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(d) Network MSD learning curves with N =
20, D = 18.

Fig. 1: Network MSD learning curves.

for all k, l. The step-size parameter, the forgetting factor, and
the parameter in the regularization function are fixed to be
µ = 0.05, ν = 0.005, and ε = 0.001, respectively. The initial
values γ2, (−1) are set to be 1. We have fixed the regularization
parameter as λ = 0.0005 for D = 12 and 14, and λ = 0.0004
for D = 16 and 18, with which have shown the best steady-
state performance among our trials. The parameter c that con-
trols the balance of MSD (36) has been chosen as c = 0.1, 1, or
5. The unknown vector is with size M = 100 and the number
of nonzero elements is 1, where the index switches every
1000 iterations at uniformly random. The measurement vectors
{u(i)

k } are zero-mean real Gaussian random vectors and have
time-correlated shift structures [25]. The specific structure is
given by u(i)

k = [uk (i) uk (i − 1) · · · uk (i − M + 1)]T, where
uk (·) is i.i.d. zero-mean real Gaussian random variable with
variance σ2

uk
, where σ2

uk
∈ (0, 1] is drawn from uniform dis-

tribution and fixed throughout the simulations. All simulation
results are obtained by averaging 100 independent trials. The
measurement noise power σ2

k is independently generated by
uniform distribution over [0.1, 0.2] in each trial. We compare

learning curves of SD-LMS in terms of instant network MSD
1
N

∑N
k=1 ‖φ

(i)
k − wo‖2 using the proposed adaptive CPO rule

(Algorithm 4) with that using the conventional adaptive CP
rule (Algorithm3), static Metropolis rule amet

lk [1], and adaptive
relative-variance (RV) rule arv, (i)

lk [21]:

amet
lk =


1

max( |Nk |, |Nl |) if l ∈ Nk \ {k}
1 −∑

l ∈Nk \{k } alk if k = l
0 otherwise,

arv, (i)
lk =


[γ̃2, (i)

lk
]−1

∑
m∈Nk [γ̃2, (i)

mk
]−1 if l ∈ Nk

0 otherwise.
Figs. 1(a)–(d) show the learning curves in the case of

D = 12, 14, 16, and 18, respectively. In Fig. 1(a), the proposed
adaptive CPO rule and the conventional adaptive CP rule
achieve faster convergence than adaptive RV rule and lower
MSD than Metropolis rule but higher than adaptive RV rule
in i = 1001–3000 when c = 1 or 5. However, as the density
of the network increases, the algorithm with the proposed
adaptive CPO rule achieves faster convergence and lower MSD
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under the suitable choice of c than that with all the other
rules. Namely, the proposed method shows the best tracking
performance to the change of the unknown vector.

V. Conclusion
We have optimized the coefficients involved in our previous

method [16] in terms of the steady-state network MSD of SD-
LMS to achieve better convergence performance and robust-
ness. Moreover, we have shown an adaptive implementation
for tracking the optimal coefficients as well as the unknown
vector. The algorithm with the proposed adaptive CPO rule
has shown better tracking performance for the change of
the unknown vector especially in dense networks under the
suitable choice of the parameter c, at the cost of a slightly
higher computational complexity.
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