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Abstract—This paper proposes a method to lower the compu-
tational complexity of the adaptive filters based on the Gaussian
model (GM-ADF). The conventional GM-ADF is shown to be
robust against impulsive noise. However, the price to pay is a
higher computational complexity since each coefficient in the
GM-ADF has its own Gaussian model, and the parameters
(means and variances) of the Gaussian distributions must be
computed to estimate them. In this paper, we propose a method
which trims down the number of coefficients modeled by the
Gaussian distributions, so that the number of the parameter
calculated per iteration reduces. Besides, we alter the way to
update the coefficients, which would possibly increase the rate
of convergence under some conditions. The performance of the
proposed method is demonstrated by computer simulations.

I. INTRODUCTION

Adaptive filtering algorithms have been used in various
signal processing applications such as echo cancelation, noise
cancelation, channel equalization, and system identification
[1]-[3]. The most popular adaptive algorithms are the lean-
mean-square (LMS) and the normalized-LMS (NLMS) be-
cause the LMS-type algorithms have the advantage of easily
implemented at a computational complexity of O(L), where L
shows the length of the filter [1]. However, in real applications,
adaptive filters are suffered from performance degradation
under the environments where non-Gaussian noise, such as
impulsive noise, exists [10]. To overcome this problem, many
robust adaptive algorithms have been developed [4]-[10]. The
adaptive filter based on the Gaussian model (GM-ADF) [11]
is one of those algorithms.

GM-ADF is derived from the concept of the Gaussian
mixture model (GMM), which has been widely used in
pattern recognition and signal processing applications, e.g. ,
for clustering of data or probability density estimation[12]-
[15]. In GM-ADF, each coefficient is modeled as a random
variable with the Gaussian distribution, and is used to check
whether its coefficients should be updated or not. In other
words, at each time, a candidate of the value at the next
time of each coefficient is computed by an adaptive algorithm
and then, the GM-ADF detects the outliers by checking based
on the Gaussian distributions to keep the coefficient value to
be inside the range of the distribution. Hence, The GM-ADF
eliminates the probability of updating the coefficients when the
impulsive inference appears. The computational complexity of
GM-ADF is higher than other robust LMS-type algorithms

since the parameters (means and variances) of the Gaussian
distributions for all the coefficients must be estimated. It means
that the complexity of the GM-ADF could be heighten for
some practical applications.

In this paper, we propose a method to lower the compu-
tational complexity of GM-ADF. In the original GM-ADF,
each coefficient has its own Gaussian model, and is processed
independently. The proposed method, on the other hand, trims
down the number of the coefficients modeled as the Gaussian
distribution. In the following, we call the proposed method
as the adaptive filter based on the Gaussian model trimmed
down (TD-GM-ADF). Accordingly, we modify the way to
update the coefficients; that is, all coefficients are computed
simultaneously using a LMS-type algorithm on the basis of
the evaluation with a subset of the coefficients with Gaussian
model. We apply the TD-GM-ADF to the NLMS algorithm
and the NLMS algorithm using the Gear Shift (GS) strategy
[10]. The performance of the proposed method is evaluated by
computer simulations. Furthermore, we compare the TD-GM-
ADF with the VP-VSS-NLMS algorithm and the GS-VP-VSS-
NLMS algorithm [10]. In addition to lower the computational
complexity, the simulation results show that the TD-GM-ADF
can achieve faster convergence than the conventional GM-
ADF.

II. ADAPTIVE ALGORITHM

A. NLMS algorithm

In this paper, we assume the following model for the system
identification problem, i.e., the desired signal d(k) is given as

d(k) = u(k)Th+ v(k) (1)

where the superscript T denotes the vector transpose operation,
u(k) = [u(k), u(k−1), ..., u(k−L+1)]T is a (L×1) input sig-
nal vector, L stands for the filter length, h= [h0, h1..., hL−1]

T

is the coefficient vector of an unknown system, and v(k) is the
environmental noise which is independent of the input signal.

The purpose of the adaptive filters is to estimate the co-
efficient vector h of the unknown system. Let ĥi(k) be an
estimate of the i-th coefficient of h at time k and ĥ(k) be
defined as

ĥ(k) = [ĥ0(k), ĥ1(k), ..., ĥi(k), ..., ĥL−1(k)]
T . (2)
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Fig. 1. (a) In the GM-ADF, graphical explanation of the coefficient modeled as the Gaussian RV. All coefficient have their own Gaussian model. (b) In the
TD-GM-ADF, graphical explanation of the coefficient modeled as the Gaussian RV. Only part of the coefficients has own Gaussian model.

In this paper, the LMS-type algorithms are assumed to be used,
in which coefficients are updated by the equation

ĥ(k + 1) = ĥ(k) + λ(k)u(k)e(k) (3)

where λ(k) is the step size at time k and e(k) = d(k) −
u(k)T ĥ(k). The NLMS algorithm uses the normalized step
size λ(k) defined as

λ(k) = η/(u(k)Tu(k) + ξ) (4)

where 0 ≤ η < 2 is step size of the NLMS and the small
positive constant ξ is used to prevent the division by zero.

B. GM-ADF algorithm

In the GM-ADF, each coefficient is processed indepen-
dently. Therefore, here, we describe the individual component
of (3), i.e., the update formula of the i-th coefficient is given
as

ĥi(k+1) = ĥi(k)+λe(k)u(k−i) i = 0, 1, ..., L−1. (5)

Here, we introduce a new variance ζi(k), as in [11], defined
by

ζi(k) = ĥi(k) + λe(k)u(k − i). (6)

Because, in the GM-ADF, ĥi(k + 1) of (5) may not used as
the coefficient at time k + 1, we utilize ζi(k) to emphasize
this. In addition, GM-ADF assumes that ĥi(k) can be modeled

Fig. 2. Graphical explanation of the condition (7). When the ĥi(k+ 1) is in
true region, the coefficient will be updated.

as a random variable (RV) with the Gaussian distribution.
That is, it’s probability density p(ĥi(k)) is given by the
Gaussian distribution, denoted by p(ĥi(k)) = N (µi, σ

2
i ),

whereN (µ, σ2) shows a Gaussian probability density function
(PDF) with the mean µ and the variance σ2. Besides, the mean
value of the distribution is assumed to be the true coefficient
hi, i.e.,

µi = hi. (7)

Under these assumptions, the adaptive process of ĥi(k) using
(5) are interpreted as that it seeks the true mean value µi of the
Gaussian distribution. Fig. 1(a) shows a graphical explanation
of the coefficients modeled as an RV with the Gaussian
distribution in the GM-ADF. As shown in this figure, each
of the coefficients has it’s own Gaussian distribution in the
GM-ADF.

The motivation that the GM-ADF models the coefficients as
the Gaussian RVs is to detect the outliers when the impulsive
inference appears. Under the Gaussian model, when ĥi(k)
oscillates within a certain range from µi, the coefficients are
regarded as the convergence. Therefore, GM-ADF evaluates
the following condition after the computation of ĥi(k + 1)
using (5):

µ̂i(k)− γσ̂i(k) < ζi(k) < µ̂i(k) + γσ̂i(k) (8)

where µ̂i(k) and σ̂i(k) are an estimated mean and an estimated
variance at time k respectively, and γ is a parameter to
determine the width of the acceptable range of the variation.
ĥi(k + 1) is checked if it is in the range using condition (7)
and determine whether ĥi(k) should be updated or not. Fig. 2
shows an example of the region where the condition (7) is true.
Since we can not use the true information of the distribution
N (µi, σ

2
i ), it uses the estimated values of µi, σi. Furthermore,

when the condition (7) is true, they are updated as follows

µ̂i(k + 1) = βµµ̂i(k) + (1− βµ)ζi(k) (9)

σ̂2
i (k + 1) = βσσ̂

2
i (k) + (1− βσ)(ζi(k)− µ̂i(k))2 (10)

where 0 < βµ < 1 and 0 < βσ < 1 are the forgetting factors
of the mean and the variance respectively. After that, the i-th
coefficient is updated as
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ĥi(k + 1) = µ̂i(k + 1). (11)

On the other hand, when the condition of (7) is false, the
coefficient will not be updated (i.e., ĥi(k + 1) = ĥi(k)).

In practice, we need to prepare initial estimates of µ̂ and σ̂2.
To gain them, they are computed using (8), (9) respectively
during time 0 ≤ k ≤ k∗, where k∗ is a predefined period [15].

C. Computational complexity of the GM-ADF

In the GM-ADF, each coefficient is processed indepen-
dently. The computations of µ̂i(k+1) in (8) and σ̂2

i (k+1) in
(9) require 5L multiplications and 3L+2 additions. in order to
implement GM-ADF, we need 8L+2 multiplications and 6L+2
additions per iteration.

III. PROPOSED METHOD

A. Preparation

In this section, we propose a novel approach which trims
down the number of coefficients modeled as the Gaussian RVs,
so as to lower the computational complexity of the GM-ADF,
which we call TD-GM-ADF. First, to express the coefficients
modeled as the Gaussian RVs, we define the set Hi as follows

Hi ={ĥi|i = 0, 1, ..., L− 1} (12)

Then, we choose the coefficient ĥsm from Hi, where

sm ⊆ 0, 1, ..., L− 1, (13)

and

m = 0, 1, ...,M − 1 ≤ L− 1 (14)

where M shows the number of coefficients modeled as the
Gaussian RVs. In the proposed method, therefore, the selected
M coefficients are used to detect the outliers. Besides, the set
Hsm of ĥsm is given as

Hsm ⊆ Hi. (15)

B. TD-GM-ADF algorithm

Here, we describe the proposed procedure. First, as in the
conventional GM-ADF, all candidates of coefficients at k + 1
are simultaneously computed at time k using (3).

Besides, we assume that the coefficients ĥsm(k) in the
subset Hsm can be modeled as the Gaussian RVs. Those coef-
ficients are used to determine whether all coefficients should
be updated or not. Fig. 1(b) shows a graphical explanation
of the coefficients modeled as the Gaussian RVs in the TD-
GM-ADF. As shown in Fig. 1, all coefficients are modeled as
the Gaussian RVs in the GM-ADF, whereas a subset of the
coefficients is modeled as the Gaussian RVs in the TD-GM-
ADF. Hence, the condition (7) becomes

µ̂sm(k)−γσ̂sm(k) < ĥsm(k+1) < µ̂sm(k)+γσ̂sm(k) (16)

where µ̂sm and σ̂sm are the estimated mean and variance
of the distribution on ĥsm respectively. Compared with (7),

Algorithm 1 : GM-ADF algorithm using proposed method
Parameter setting:βµ, βσ , γ, sm

Insert ĥsm into dictionary {Hsm}
Initialization:
for each time 0 ≤ k ≤ k∗, each sm do

ĥ(k + 1) = ĥ(k) + λu(k)e(k)

µ̂sm (k + 1) = βµµ̂i(k) + (1− βµ)ĥi(k + 1)

σ̂2
sm (k + 1) = βσσ̂2

i (k) + (1− βσ)(ĥi(k + 1)− µ̂i(k))2

end for
Adaption Loop:
for each time k > k∗ do

ĥ(k + 1) = ĥ(k) + λu(k)e(k)
for each sm in {Hsm} do

if µ̂sm (k)− γσ̂sm (k) < ĥsm (k + 1) < µ̂sm (k) + γσ̂sm (k)

Insert ĥsm into dictionary {Ĥsm}
end if
if |Ĥsm | ≥ dHsm/2e

µ̂sm (k + 1) = βµµ̂sm (k) + (1− βµ)ĥsm (k + 1)

σ̂2
sm

(k + 1) = βσσ̂2
sm

(k) + (1− βσ)(ĥsm (k + 1)− µ̂sm (k))2

else
ĥ(k + 1) = ĥ(k)

end if
end for

end for

the condition (15) is used only coefficients in the set Hsm .
Accordingly, we also rewrite (8), (9) as

µ̂sm(k + 1) = βµµ̂sm(k) + (1− βµ)ĥsm(k + 1) (17)

σ̂2
sm(k + 1) = βσσ̂

2
sm(k) + (1− βσ)(ĥsm(k + 1)− µ̂sm(k))2.

(18)

In the GM-ADF, each coefficient is checked using (7) inde-
pendently. Instead, the TD-GM-ADF checks whether or not
ĥ(k + 1) should be updated using the following condition:

|Ĥsm | ≥ dHsm/2e (19)

where | · | shows the number of the member in a set, d·e is the
ceiling function, and the subset Ĥsm is

Ĥsm = {ĥsm ∈ Hsm |µ̂sm − γσ̂sm < ĥsm < µ̂sm + γσ̂sm}.
(20)

Namely, when more than half of the selected coefficients
satisfy the condition (15), the TD-GM-ADF updates all the
coefficients. After that, when condition(17) is false, the update
formula of ĥ(k) is expressed as

ĥ(k + 1) = ĥ(k). (21)

The TD-GM-ADF algorithm is summarized in Algorithm 1.
In the GM-ADF, each coefficient has its own Gaussian model
and is processed independently at time k. By contrast, in the
TD-GM-ADF, all the coefficients are simultaneously computed
using the NLMS algorithm and then, whether ĥ(k+1) should
be updated or not is finally concluded based on the evaluation
of the condition (17).

C. Computational complexity of the TD-GM-ADF

The computations of µ̂sm(k + 1) in (15) and σ̂2
sm(k + 1)

in (16) require 5M multiplications and 3M+2 additions. To
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TABLE I
PARAMETER SETTINGS SUMMARY

Algorithm η βµ βµ γ kβ ke
NLMS 0.7 - - - - -
GM-ADF(I) 0.7 0.3 0.1 10 - -
GM-ADF(II) 0.7 0.5 0.1 10 - -
TD-GM-ADF(I) 0.7 0.3 0.1 10 - -
TD-GM-ADF(II) 0.7 0.5 0.1 10 - -
VP-SSS-NLMS(I) 0.7 - - - 1000 15
VP-SSS-NLMS(II) 0.7 - - - 2000 25
GS-VP-SSS-NLMS - - - - 2000 15
GS-TD-GM-ADF - 0.3 0.1 10 - -

implement the TD-GM-ADF, we need 3L+ 5M+2 multiplica-
tions and 3L+3M+2 additions per iteration in total. Note that,
when we set M = L, the computational complexity of the
TD-GM-ADF will be equal to that of GM-ADF. In order to
compare the complexity of the TD-GM-ADF and that of the
GM-ADF, we define the computational efficiency as

ε =M/L. (22)

IV. SIMULATION RESULTS

To demonstrate the performance of the proposed method, we
applied the TD-GM-ADF algorithm to system identification
problems. The unknown system is the FIR filter of L = 36
taps, which designed using the Remez algorithm. The input
signal is the AR(1) process with the AR parameter a0 set as
a0 = 0.95 . The system has the abrupt change at k = 2500 to
examine the tracking properties of the algorithms.

In addition, the system noise v(k) is a mixture of a white
Gaussian noise s(k) with 30 dB signal-to-noise ratio (SNR)
and impulsive noise q(k) (q(k) = 2) (i.e. v(k) = s(k)+q(k)).
The q(k) is modeled as q(k) = X(k)Y (k), where X(k) is a
Bernoulli process described by the probability Pr(X(k) =
1) = p (p = 0.01) and Pr(X(k) = 0) = 1 − p , and Y (k)
is a zero-mean white Gaussian with the power σ2

Y = 1000σ2
y

( σ2
y is the power of the system output y(k) = u(k)T ĥ(k) )

We use the normalized misalignment defined by

10log10
‖ĥ(k)− h‖2

‖h‖2
. (23)

The misalignment curves are gained from 100 independent
trials.

A. Comparison with the NLMS and the GM-ADF

First, we compare the performance of the TD-GM-ADF
algorithm with those of the NLMS algorithm and the GM-
ADF algorithm. The parameter settings are summarized in
Table I. Fig. 3, Fig. 4 and Fig. 5 are obtained with p = 0,
p = 0.01 and p = 0.05 respectively, and we set sm =
{5i|i = 0, 1, 2, ..., 7}(M = 8) in both TD-GM-ADF(I) and
TD-GM-ADF(II) . In this case, the computational efficiency
becomes ε = 4.5. In Fig. 3, It can be seen that the NLMS and
the TD-GM-ADF exhibit same behavior and the conventional
GM-ADF degrades the performance in terms of the rate
of convergence. Considering the results, when the impulsive

Fig. 3. Misalignment learning curves for the NLMS algorithm, the GM-ADF
algorithm and the TD-GM-ADF algorithm. The impulsive interferences occur
with probability p = 0.

Fig. 4. Misalignment learning curves for the NLMS algorithm, the GM-ADF
algorithm and the TD-GM-ADF algorithm. The impulsive interferences occur
with probability p = 0.01.

Fig. 5. Misalignment learning curves for the NLMS algorithm, the GM-ADF
and the TD-GM-ADF algorithm . The impulsive interferences occur with
probability p = 0.05.
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Algorithm 2 :Robust adaptive algorithms
VP-SSS-NLMS:

ĥ(k + 1) = ĥ(k) + λs(β(k), e(k)/‖u(k)‖)u(k)e(k)

Ae = [|e(k)|, |e(k − 1)|, ..., |e(k −Nw + 1)|

ē(k) = νē(k − 1) + (1− ν)Cmin(Ae(k))

β(k) =

{
kβe

−b (ē(k) ≥ b/ke)
kβe

−keē(k) (otherwise)

s(β(k), e(k)/‖u(k)‖) = 1/(1 + β(k)(e(k)/‖u(k)‖))2

ν = 0.99, Nw = 18, C = 1.483(1 + 5/(Nw − 1)), b = 4.6

GS strategy:

η =

{
ηlarge (ē2(k) ≤ τ)

ηsmall (otherwise)

ηlarge = 0.7, ηsmall = 0.1, τ = 10−4

noise do not occur, TD-GM-ADF where each coefficient is
updated independently could lead to slow convergence. As
shown in Fig. 3 and Fig. 4, TD-GM-ADF algorithms behave
in a similar manner. As compared to the GM-ADF algorithm,
we can see that the rate of convergence of them improves,
especially after the system changes at k = 2500. In Fig. 5,
we can see that both TD-GM-ADF algorithms achieve better
performances than other algorithms, in terms of the tracking
property and the final misalignment.

B. Comparison with conventional robust algorithms

In the next experiment, the performance of the TD-GM-
ADF algorithm and the TD-GM-ADF algorithm using the
GS strategy (GS-TD-GM-ADF) algorithm are compared with
that of the conventional robust adaptive algorithms, the VP-
SSS-NLMS algorithm and the GS-VP-SSS-NLMS algorithm
[10], which are summarized in Algorithm 2. For the parameter
settings, the setting sm was same as the previous experiment,
and the other parameters used in the simulation are listed in
Table I. From Fig. 6, we can see that the performance of
the TD-GM-ADF is comparable to those of the conventional
robust adaptive algorithms, and the final misalignment of the
GS-TD-GM-ADF is better than those of the TD-GM-ADF. As
we mentioned earlier, the TD-GM-ADF simultaneously update
all coefficients at time k, and it means that it can be easily
apply to various adaptive algorithms.

C. Effect of the selection of smand M

Finally, we examine the effects of the selection of sm and
M on the convergence characteristics, that is; we varied the
number of coefficients modeled as the Gaussian RVs. In these
simulations, we set sm = {5i|i = 0, 1, . . . , 7}(M = 8),
sm = {10i|i = 0, 1, 2, 3}(M = 4), and sm = {15i|i =
0, 1, 2}(M = 3) in TD-GM-ADF(II). The parameters of
TD-GM-ADF(II) were same as Table I. The computational
efficiencies ε become ε = 4.5, ε = 9, and ε = 12 respectively.
The simulation results are shown in Fig. 7 and Fig.8, where

Fig. 6. Misalignment learning curves in system identification. The impulsive
interferences occur with probability p = 0.01.

Fig. 7. Misalignment learning curves for the TD-GM-ADF algorithm . In this
simulation, we varied M . The impulsive interferences occur with probability
p = 0.01.

Fig. 8. Misalignment learning curves for the TD-GM-ADF algorithm . In this
simulation, we varied M . The impulsive interferences occur with probability
p = 0.05.
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p = 0.01 for Fig. 7 and p = 0.05 for Fig. 8. In Fig. 7, it can
be seen that TD-GM-ADF(II) with M = 3 (green) modestly
jumps at the points where the impulse noise affect it. In Fig 8,
the performances of TD-GM-ADF(II) with M = 3 (green) and
TD-GM-ADF(II) with M = 4 (red) degrade, while that of TD-
GM-ADF(II) with M = 8 (blue) remains barely unchanged.
From these results, we can say that the selections of sm and M
influences the robustness to an impulsive noise and generate
the trade-off relation for the computational complexity.

V. CONCLUSIONS

In this paper, we proposed a method to lower the compu-
tational complexity of the GM-ADF, namely TD-GM-ADF.
The subset of its coefficients were modeled as the Gaussian
RV and all of its coefficient were simultaneously updated.
Consequently, the computational complexity of the TD-GM-
ADF was lower as compared to the GM-ADF, in which each
coefficient had its own Gaussian model. The simulation results
showed that the performance of the TD-GM-ADF algorithm
could achieve better converge rate than that of the GM-ADF
algorithm depending on the conditions. However, to trim down
the number of coefficients as the Gaussian RVs could lead to
miss detecting outliners.
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