
Modeling Decision Process in Multi-Agent Systems:
A Graphical Markov Game based Approach

Hao Li∗, Yuejiang Li∗ and H.Vicky Zhao ∗
∗ Department of Automation, Beijing National Research Center for Information Science and Technology,

Tsinghua University, Beijing, P. R. China
E-mail: lihao2020@ia.ac.cn, lyj18@mails.tsinghua.edu.cn, vzhao@tsinghua.edu.cn

Abstract—Multi-agent decision processes, where multiple
agents interact with each other and make decisions indepen-
dently, can be seen everywhere in life. Many of the multi-
agent systems in reality have underlying topological structures,
which constraint the interactions and decision makings of agents
such as social networks, computer networks, and cognitive
radio networks. Some works considered the topological structure
between agents, while the decision process of each agent is
modeled as a simple imitation of neighbors. Thus, it is of
critical importance to study and model how agents interact with
each other with consideration about long-term rewards and how
the system evolves when considering the topological structure
between agents. In this paper, we consider the topological
structure between agents and formulate the graphical Markov
game. In graphical Markov game, each agent can only observe the
actions of neighbors and make decisions based on the interactions
with them. The goal of each agent is to maximize its long-term
cumulative reward. To find the optimal policy of each agent,
we implement a policy gradient based algorithm. We compare
our framework with graphical evolutionary game theory where
agents only consider the current rewards through experiments
of different game settings.

Keywords: multi-agent system, topological structure, multi-
agent reinforcement learning, Markov game

I. INTRODUCTION

People make decisions all the time, such as whether to
forward a message in a social network, how to invest money,
and these decisions may have long-term effects. Modeling
decision processes is important to study human behavior and
offers important guidelines to the design of more efficient and
personalized services.

To model sequential decision processes of a single agent, a
series of work [1–5] formulated Markov decision processes
(MDPs). In MDPs, the agents sequentially make decisions
based on the current environment state. Every time the agent
makes a decision, it obtains a corresponding reward. The goal
is to maximize the expected long-term cumulative reward.

However, in some scenarios, there are more than one agents
who interact with each other frequently and influence each
other’s decisions. Such systems are called multi-agent systems.
Game theory is used to model the decision processes in multi-
agent systems where two or more agents make decisions, and
their decisions together determine the reward of each agent.
In game theory, the agents are considered to be rational: they

This work is supported by the National Key Research and Development
Program of China (2017YFB1400100).

know the structure of the game and aim to maximize their own
utilities. The solution to such games is the Nash equilibrium,
where no agent could gain more rewards by changing only
its own decision [6]. However, the assumed rationality of
agents in conventional game theory is not often satisfied. To
model the decision processes of not fully rational agents, the
authors in [7] proposed evolutionary game theory (EGT). In
EGT, a game is played over and over again by biologically
or socially conditioned agents who are randomly drawn from
large populations [8]. The actions of the agents who have
higher rewards would be more likely to be adopted and
replicated in the populations. EGT studies how the proportion
of actions converge to a stable equilibrium, which would be
restored even if a small proportion of agents randomly deviate.
Such a stable equilibrium is called an evolutionary stable state
(ESS) [9].

To consider the impact of long-term rewards, the work in
[10] proposed Markov games as a combination of game theory
and MDPs. In Markov games, each agent is assumed to choose
actions independently based on the observation of the environ-
ment. According to whether the observation contains complete
information about the environment, Markov games are divided
into fully observable and partially observable Markov games.
The actions of all agents together decide the transition of the
environment. Same as in MDPs, each agent in Markov games
obtains a reward every time it makes decisions and aims to
maximize its expected long-term cumulative reward.

However, the above works did not consider the topological
constraint among agents. That is, each agent could only inter-
act with its neighbors. Such topology among agents is common
in our real life. For example, in social networks, users are often
greatly influenced by friends, while the influence of unfamiliar
ones is negligible. In a computer network, each machine can
only directly communicate with its neighbors. The work in
[11] modeled the topology among agents as an undirected
graph and proposed graphical EGT. In the graph, vertices
represents agents, and edges represents interactions among
agents. Each agent in graphical EGT copies actions from its
neighbors according to different strategy update rules. These
rules have a common feature: the actions of agents who receive
larger rewards are more likely to be adopted and imitated by
others. Graphical EGT focuses on the evolutionary dynamic
and ESS in EGT. It is shown in [12] that the cooperation action
is more popular in the Prisoner’s Dilemma and the Snow Drift

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

197978-988-14768-8-3/20/$31.00 ©2020 APSIPA APSIPA-ASC 2020



game when there are topological constraints among agents.
Similar conclusions are also drawn in [13–15], which indicates
that topological structure among agents significantly influences
the evolutionary stable states of the agents’ interactions.

Most existing works consider the long-term reward of agents
and the topological structures among agents in multi-agent
systems separately. However, these two ingredients are often
mixed together in common decision scenarios. In this paper,
we formulate graphical Markov games. In graphical Markov
games, the topological constraint among agents is also mod-
eled using an undirected graph structure. Each agent chooses
an action simultaneously according to the observation of its
neighbors and then obtains a reward based on the action and
the state. The goal of each agent is to maximize its expected
long-term cumulative reward. We use the policy gradient
algorithm in multi-agent reinforcement learning (MARL) to
find the optimal policy for agents and analyze the stable state.

The remaining parts of the paper are organized as follows.
In Section 2, we introduce related works, including graphical
EGT, partially observable Markov games, and policy gradient
algorithm. In Section 3, we introduce the formulation of
graphical Markov games. We introduce a MARL method for
graphical Markov games in Section 4. In Section 5, we show
the simulation results of graphical Markov game and graphical
EGT with different game settings and different number of
agent types. Conclusions are drawn in Section 6.

II. RELATED WORKS

A. Graphical Evolutionary Game Theory

Graphical EGT is used to model decision scenarios where
there are not fully rational agents with the topological struc-
ture. In graphical EGT, agents are located on the vertices of a
graph, and the edges determine the interactions among agents
[16]. Agents in graphical EGT imitate actions from neighbors
according to different strategy update rules, and actions of the
agents who have larger fitness are more likely to be imitated by
others. An agent’s fitness f is defined as a linear combination
of the baseline fitness B and the reward R received from
interactions with its neighbors:

f = (1− α) ·B + α ·R. (1)

B represents the agent’s inherent property, e.g., its social
status, and in this work, we assume that B is the same for
all agents. In the graphical evolutionary game with w possible
actions, the payoff matrix U is defined as:

U =

u11 · · · u1w
...

. . .
...

uw1 · · · uww

 ,
whose entry uij is the reward an agent receives when it
chooses action i and interacts with a neighbor with action j. R
is the sum of rewards that an agent obtains from interactions
with all its neighbors:

R =

w∑
j=1

|nj | · uij , (2)

where i represents the action of the agent and |nj | represents
the number of neighbors with action j. In (1), 0 ≤ α ≤ 1 is
defined as the selection strength, which controls how much the
rewards that an agent obtains from interactions with neighbors
contribute to its fitness.

Death-Birth (DB) update rule is widely used to character
how each agent is influenced by neighbors and updates its
action: one agent is chosen randomly as the focal agent
and it imitates one of its neighbors’ actions with probability
proportional to their fitness. There are also the Birth-Death
update rule and the Imitation update rule, and the analysis is
similar and omitted. The whole population evolves under spe-
cific update rules. Graphical EGT focuses on such evolution
dynamic and ESS, which would be restored even if a small
proportion of agents randomly deviate their actions.

The original graphical EGT assumes that all agents use
the same payoff matrix. However, agents are heterogeneous
in many scenarios. For example, the fans of a singer are more
likely to obtain high reward from forwarding the messages of
him/her, while others cannot obtain such a high reward even
if they choose the same action. To model such heterogeneous
agents, the work in [17] divided agents into different types,
and different types of agents had different payoff matrices.
It is assumed in [17] that the type of agents was unknown
to others and modified the DB update rule for heterogeneous
agents. As the focal agent has no information about the type
of neighbors, the focal agent in the DB update rule regards the
type of all neighbors the same as itself, estimates the fitness
of neighbors, and then copies one of neighbors’ actions with
the probability proportional to the estimated fitness.

B. Partially Observable Markov Games

MDP is a discrete-time model where an agent sequentially
chooses actions at each time in an environment. At each time,
the agent fully observes the state of the environment s, chooses
an action a based on the state, and gains a corresponding
reward that is defined by a reward function R(s, a). After the
agent chooses its action, the state of the environment s changes
to s′ with probability defined by the transition probability
function T (s′, s, a). The policy is a rule guiding the agent
to choose the action at different states. The goal of the agent
is to find the optimal policy π∗ that maximizes the expected
long-term cumulative reward:

π∗ = argmax
π

E(

∞∑
t=0

γtR(t)), (3)

where R(t) is the reward at time t. γ ∈ (0, 1) is a discounting
factor, indicating the agent cares more about the current reward
than future rewards. For more details of MDPs, we refer
readers to [3].

Partially observable Markov game is an extension of MDPs
in multi-agent systems, where multiple agents make decisions
simultaneously and each agent can only learn partial infor-
mation about the environment from its observation. Let S
represent the set of states of the environment. At state s,

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

198



each agent i receives a private observation oi(s) ∈ Oi and
chooses an action ai ∈ Ai based on its policy πi. πi can
be a deterministic policy πi : Oi 7→ Ai; it can also be a
stochastic policy πi : Oi × Ai 7→ [0, 1], where πi(oi, ai)
represents the probability to choose action ai with observation
oi. After all N agents simultaneously choose their actions,
each agent gains a reward based on the reward function
Ri : S×Ai 7→ R, and the state s changes to s′ with probability
T (s′, s, a1, a2, ..., aN ). Same as in MDPs, each agent i in
Markov games aims to find the optimal policy that maximizes
its expected long-term cumulative reward E(

∑∞
t=0 γ

tR
(t)
i ),

where γ is the discounting factor, and R(t)
i is the reward that

agent i gets at time t.

C. Policy Gradient Algorithm

Reinforcement learning (RL) studies how to learn by trial
and error and is usually used to solve MDPs. Policy gradient
algorithm is a classic RL algorithm without any prior knowl-
edge about the environment, and performs well to approximate
the optimal stochastic policy in MDPs with a continuous set
of actions. Policy gradient algorithm represents the stochastic
policy by a parameter vector θ and adjusts θ in the gradient
direction of expected long-term cumulative reward [18]. As
the state transition is unknown or cannot be expressed math-
ematically, the gradient cannot be obtained directly. Policy
gradient algorithm uses the action-value function Q(s, a)
and the discounted weighting of states ρ(s) to estimate the
gradient. Q(s, a) is the expected long-term cumulative reward
with initial state s and action a:

Q(s, a) = E(

∞∑
t=0

γtR(t)|s(0) = s, a(0) = a), (4)

where s(t) and a(t) are the state and action at time t, respec-
tively. ρ(s) is defined as:

ρ(s) = E(

∞∑
t=0

γtp(s(t) = s)). (5)

ρ(s) could been seen as the weights of the reward at state s
while considering the expected long-term cumulative reward.
The work in [18] proved that for the stochastic policy, the
gradient is equal to:

∇θE(

∞∑
t=0

γtR(t)) =

∫
S
ρ(s)

∫
A
∇θπθ(s, a) ·Q(s, a)dads

= Es∼ρ,a∼πθ (∇θ lnπθ(s, a) ·Q(s, a)),
(6)

where S is the set of states and A is the set of actions.
Using (6), the gradient can be estimated with samples of
θ(s, a) ·Q(s, a). However, Q(s, a) is not explicitly known due
to ignorance of the state transition. An alternative approach
to estimate Q(s, a) is Monte-Carlo method. It repeatedly
generates a T -long trajectory

{
(s(t), a(t), R(t))|T−1t=0

}
with the

initial state s(0) = s and action a(0) = a, and estimates
Q(s, a) as the average of the long-term cumulative reward∑T−1
t=0 γtRt.

III. GRAPHICAL MARKOV GAME FORMULATION

In this work, we extend partially observable Markov game
by considering the topological structure among agents, and
propose graphical Markov game model. In an N -agent graph-
ical Markov game, the topological structure among agents
is modeled as an undirected graph G with N vertices. The
vertices represent agents, and the edges represent interactions
among agents. The whole decision process is split into time
steps. In each time step, each agent i chooses an action from
its action set Ai based on the observations of its neighbors. In
this paper, we consider a simple scenario where all agents have
the same binary action set: A∗ = A1 = ... = AN = {c, d}.
The system state can be described by all agents’ actions at the
last time step: s(t) =

[
a
(t−1)
1 , a

(t−1)
2 , ..., a

(t−1)
N

]
∈ {c, d}N ,

where s(t) is the state at time step t and a(t−1)i is the action
of agent i at time step t− 1. Due to the topological structure,
the observation that agent i receives at state s, oi(s), is defined
as the proportion of neighbors who take action c in the last
time step.

In each time step, agent i interacts with each of its neigh-
bors, and obtains rewards from these interactions. The payoff
matrix of agent i, Ui, is defined as follows:

Ui =

uicc uicd

uidc uidd

 ,
where uicd is the payoff that agent i gets when it chooses
action c and interacts a neighbor with action d. uicc, u

i
dc and

uidd are similarly defined. Same as in [17], we also assume that
the payoff matrices show the intrinsic property of agents, and
different types of agents have different payoff matrices. The
reward that agent i gets with action ai at state s, Ri(s, ai), is
defined as the sum of the payoffs that agent i gets from all
interactions with its neighbors:

Ri(a, s) =

{
|ni| ·

[
uicc · oi(s) + uicd · (1− oi(s))

]
, a = c,

|ni| ·
[
uidc · oi(s) + uidd · (1− oi(s))

]
, a = d,

(7)
where |ni| is the total number of neighbors of agent i.

In this work, we consider the scenario where all agents
adopt stochastic policy, that is, agent i chooses action ai ∈
{c, d} at state s with probability πi(oi(s), ai). The goal of
each agent i is to find the optimal policy π∗i that maximizes its
expected long-term cumulative reward Li = E(

∑∞
t=0 γ

tR
(t)
i ):

π∗i = argmax
πi

Li, (8)

where 0 < γ < 1 is the discounting factor, and R
(t)
i is the

reward for agent i at time step t.

IV. POLICY GRADIENT FOR GRAPHICAL MARKOV GAME

In this work, to find the optimal policy in the graphical
Markov game, we adopt the policy gradient algorithm and the
Monte-Carlo method. We use a 2-layer fully connected neural
network, which is called the policy network, to represent
the stochastic policy for agents. In the policy network, the

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

199



activation function of the hidden layer is ReLu, while the
activation function of the output layer is softmax. We let πθ
denote the policy network with parameters θ.

According to the formulation of graphical Markov game in
Section III, the input of the policy network for an agent is
its observation, that is, the proportion of neighbors who take
action c, while the output is the probabilities to choose c and
d, respectively. We update the policy parameters of each agent
i, θi, using the gradient ascent method:

θi = θi + λ · ∇θiLi, (9)

where λ is the learning rate and controls the update rate of
πθi . Li is the expected long-term cumulative reward of agent
i. ∇θiLi is estimated using (6), and the Monte-Carlo method
is used to estimate the action-value function Q(o, a) with a
T -long trajectory of agent i,

{
(o

(t)
i , a

(t)
i , R

(t)
i )|Tt=1

}
:

∇θiLi = Eo∼ρπθi ,a∼πθi
(∇θi lnπθi(o, a) ·Q(o, a))

≈
T∑
t=1

∇θi lnπθi(o
(t)
i , a

(t)
i ) ·

T∑
j=t

γj−tR
(j)
i .

(10)

However, there are two main problems: instability and expen-
sive computational cost. Policy gradient algorithm applies to
MDPs where the environment is stable. However, in graphical
Markov games, all agents simultaneously update their policies,
and the environment for each agent includes all other agents
and is unstable. On the other hand, the policy gradient al-
gorithm requires a large number of trajectories to converge,
which causes expensive computational cost if we find the
optimal policy for each agent respectively.

To address thees two issues, we use parameter sharing to
reduce the computational cost, and use two policy networks
for each type of agents to improve stability. Fig. 1 illustrates
the whole training process, and fig. 2 shows details of the
policy gradient step.

A. Parameter Sharing

Parameter sharing means that the same type of agents share
the same policy network, that is, they use the same policy.
This strategy is widely used to reduce the computational cost
in MARL, when there are considerable amount of agents in
each type [19–21]. We let m(i) denote the type of agent i,
and πθ∗m denotes the policy network for type-m agents, whose
parameters are θ∗m. With parameter sharing, each trajectory of
type-m agents may be used to update θ∗m. In non-uniform
degree networks, the same type of agents may have different
number of neighbors, and the agents who have more neighbors
are more likely to obtain higher rewards. It leads to large
variance of rewards and may result in oscillation in training. To
eliminate the impact of the neighbor’s number, we normalize
Rti with |ni|. θ∗m(i) is updated with a T -long trajectory

Fig. 1. Training process.

{
(o

(t)
i , a

(t)
i , R

(t)
i )|Tt=1

}
of agent i using:

θ∗m(i) = θ∗m(i)+λ·
T∑
t=1

∇θ∗
m(i)

lnπθ∗
m(i)

(o
(t)
i , a

(t)
i )·

T∑
j=t

γj−t
R

(j)
i

|ni|
.

(11)
As the topological structure G is static and |ni| is a constant,
dividing Rti by |ni| would not change the optimal policy of
agent i.

B. Two Policy Networks For Each Type Of Agents

For one agent, changes in other agents’ policy cause the
environment instability in training. To overcome it, only one
agent, which is called the center agent, updates its policy
network in a policy gradient step. Thus each type of agents
have two policy networks, called the updating policy network
and the evaluating policy network, respectively. In policy
gradient steps, updating policy networks are updated while
evaluating policy networks keep constant. As shown in fig. 2,
only the center agent uses the updating policy network, while
others use the evaluating policy network. Thus the environment
is stable for the center agent. Similar strategy is used in [22].

Updating policy networks and evaluating policy networks
are updated in different ways. Updating policy networks are
updated by (11) in policy gradient steps. After the policy

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

200



Fig. 2. The policy gradient step, where updating policy networks are updated
and evaluating policy networks keep constant.

gradient step is executed several times, the evaluating policy
network is updated by soft update as in [22]:

θem = (1− τ)θem + τθum (12)

where τ � 1, and θum and θem represent the parameters of the
updating policy network and the evaluating policy network for
type-m agents, respectively. By using soft update rather than
direct copy, the evaluating policy network tracks the updating
policy network slowly, which improves the stability of training.

V. EXPERIMENTS

In this paper, we design experiments with different games
and different number of agent types, and compare the results
of graphical Markov game with graphical EGT. The policy
gradient algorithm is used to find the optimal policy in
graphical Markov game, while the DB update rule is used
in graphical EGT.

Table I shows the hyper-parameters that are shared in all
experiments. In policy gradient algorithm, the hidden layer of
policy networks has five neurons, and there are 1000 iterations
in training and each iteration has 10 policy gradient steps.

TABLE I
HYPER-PARAMETERS SHARED IN EXPERIMENTS

parameter physical meaning value

T the length of trajectories 50
λ learning rate in the policy algorithm 0.001
τ soft update coefficient 0.1
γ the discounting factor in graphical Markov game 0.9
α the selection strength in graphical EGT 0.15

A. Stag Hunt Game

In this experiment, all agents are of the same type and use
the same payoff matrix U that satisfies: ucc > udc ≥ udd >
ucd. The game between two agents is called the stag hunt
game and action c can be seen as the cooperative action. We
normalize ucc = 1 and ucd = 0, and assume udc = udd. In
the game, the reward for agent i, Ri, is:

Ri(a, s)

|ni|
=

{
oi(s), a = c,

udd, a = d,
(13)

where s is the state of the environment, and a is the action
that agent i chooses. With oi(s) increases, indicating that there
are more cooperative neighbors, agent i would obtain a larger
reward with the cooperative action but a constant reward with
the uncooperative action. This leads to a positive feedback:
if the cooperative agents obtain more rewards or long-term
cumulative rewards than uncooperative agents, agents would
be more likely to choose the cooperative action and the
advantage of the cooperative agents would increase at the
next time step. Thus, whether the cooperative action has an
advantage or not at time step 0 influences the proportion of
cooperative agents at the following time steps.

To reduce the random error caused by policy initialization in
our method, the policy network is initialized using randomly
chosen actions, that is, agents would choose action c or d
with probability 0.5 respectively. We obtain the initial policy
network by supervised learning: we first randomly initialize a
policy network and define the loss function as the square of the
difference between the probability to choose action c and 0.5.
Then we repeatedly generate a random input between 0 and 1,
calculate the loss function, use the back-propagation algorithm
to find the gradient of the loss function with respect to the
parameters of the policy network, and update the parameters
in the opposite direction to the gradient. The above steps are
repeated 10,000 times.

Let p(0)c denote the proportion of agents who begin with
action c, and let p∗c denote the proportion of agents that choose
action c in the final stable state. p(0)c determines the probability
distribution of the state and the observations at time step 0.
The experimental results show that with the payoff matrix
of a stag hunt game, the graphical Markov game and the
graphical EGT both have two kinds of stable equilibrium:
p∗c = 0 and p∗c = 1. Table II shows the number of times
of reaching the full cooperation stable state with p∗c = 1 of
two models in a uniform degree graph with different udd and

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

201



p
(0)
c . Here, the uniform degree graph has 500 nodes, and each

node has 20 neighbors. From Table II, both models would
be more likely to achieve the cooperative stable equilibrium
p∗c = 1 when udd are smaller and when p(0)c are larger. At time
step 0, with higher p(0)c , cooperative agents are more likely to
interact with cooperative neighbors and obtain higher rewards.
A smaller udd means that the reward that agents obtain with
uncooperative actions is smaller. Those intuitively lead to the
advantage of the cooperative action at time step 0 and the
trend of cooperation.

TABLE II
THE NUMBER OF TIMES OF REACHING THE p∗c = 1 STABLE STATE IN THE

STAG HUNT GAME

udd p
(0)
c graphical Markov game graphical EGT

0.4 0.1 10/10 0/10
0.4 0.5 10/10 10/10
0.5 0.1 7/10 0/10
0.5 0.5 10/10 9/10

0.55 0.1 1/10 0/10
0.55 0.5 1/10 6/10

When p
(0)
c decreases from 0.5 to 0.1 with udd = 0.5, the

number of times of p∗c = 1 in graphical EGT decreases much
faster than graphical Markov game. But when udd increase
from 0.5 to 0.55 with p

(0)
c = 0.5, the number of times of

p∗c = 1 in the graphical EGT decreases less than that in
the graphical Markov game. This difference is due to the
influence of udd and p

(0)
c on the current and future rewards:

p
(0)
c directly affects the reward at time step 0 and indirectly

affects the following rewards by affecting the proportion of
agents who choose action c in the following time steps. But
udd directly affects the rewards at all time steps. As the agents
in graphical Markov games consider both the current reward
and the future rewards, while agents in graphical EGT only
consider the current reward, the advantage of the cooperative
action in graphical Markov game at time step 0 is influenced
more by udd and less by p(0)c than in graphical EGT.

B. Prisoner’s Dilemma

In this experiment, all agents are of the same type and the
game played between two neighboring agents is defined as a
prisoner’s dilemma with payoff matrix U :

U =

1 + ucd ucd

1 0

 ,
where 0 > ucd > −1. The action c is defined as cooperation
in the game, while the action d is defined as defection. ucd
can been seen as the current cost of cooperation. In the game,
the reward for agent i, Ri, is:

Ri(a, s)

|ni|
=

{
oi(s) + ucd, a = c,

oi(s), a = d.
(14)

As ucd < 0, action c is dominated by action d, that is, action
d brings larger current reward than action c in any scenarios.

And agent i would obtain higher rewards with larger oi(s),
which means more cooperative neighbors. In this experiment,
the graph has 100 nodes and each node has 5 neighbors. Each
agent would choose c as the initial action with probability 0.1.

TABLE III
THE NUMBER OF TIMES OF REACHING THE STABLE STATE p∗c = 1 IN THE

PRISONER’S DILEMMA GAME

ucd graphical Markov game graphical EGT

-0.1 10/10 5/10
-0.13 6/10 4/10
-0.15 3/10 2/10
-0.2 0/10 1/10

Our experiments show that with a randomly initialized
policy network, p∗c would always be 0. A randomly initialized
policy network can hardly satisfy that the probability to choose
action c increases fast enough with higher proportion of co-
operative agents in neighbors. This makes cooperative agents
can hardly have enough more cooperative neighbors in the
future and obtain enough more future rewards to make up for
the disadvantage on current rewards. Therefore, agents would
be more inclined to defect and aggravates the disadvantage,
which finally leads p∗c to 0.

Essentially, each agent is in a repeated prisoner’s dilemma
game with each neighbor. In [23], it is shown that in the 2-
agent repeated game of prisoner’s dilemma, “tit for tat”, which
means first cooperating and then subsequently replicating
the other agent’s previous action, can successfully stimulate
cooperation and punish non-cooperative actions. Inspired by
this, we use an initial policy that each agent chooses the co-
operative action with probability that equals to the proportion
of cooperative neighbors. Such an initial policy is obtained
by supervised learning: we first randomly initialize a policy
network and define the loss function as the square of the
difference between the probability to choose action c, and the
input. Then we repeatedly generate a random input between 0
and 1, calculate the loss function, and use the back-propagation
algorithm to calculate the gradient of the loss function with
respect to the parameters of the policy network and update
the parameters in the opposite direction to the gradient. The
above steps are repeated 10,000 times.

The p∗c of graphical Markov game and graphical EGT have
the same two possible value, 0 and 1. Table III shows the
number of times of reaching the fully cooperative stable state
p∗c = 1 in the two models. In both models, p∗c is more likely
to be 1 when ucd is larger. The agents are more likely to
choose cooperative actions when the additional future rewards
that cooperative actions bring can make up for the current lose
ucd. Larger ucd means less current cost of cooperation, which
intuitively leads to cooperation in the graphical Markov game.
For analysis on prisoner’s dilemma in the graphical EGT, we
refer readers to [12]. The results also show that p∗c in graphical
Markov game is influenced more by ucd than in graphical
EGT: when ucd decreases from -0.1 to -0.2, the number of

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

202



Fig. 3. average rewards in the stable state with different proportions of type-2
agents.

times of reaching p∗c = 1 in graphical Markov game decreases
faster than in graphical EGT.

C. Two Types Of Nodes

In this experiment, there are two types of agents. Type 1
agents and type 2 agents have the two different payoff matrices
respectively as:

U1 =

0.4 0.8

0.8 0.6

 , and U2 =

0.6 0.8

0.8 0.4

 .
Here, the graph has 200 nodes and each node has 20 neighbors.

We let p2 denote the proportion of type-2 agents. Fig. 3
shows the average rewards of the two models in the stable
state with different p2. Agents in graphical Markov game have
higher average rewards than in graphical EGT, especially when
p2 is close to 0.5. Fig. 4 shows the dynamic of average rewards
in the two models during testing when p2 is 0.25. The results
shows that both type-1 and type-2 agents in graphical Markov
game always gain more rewards than in graphical EGT.
Those differences are caused by the difference in the strategy
update rules/polices. In graphical Markov game, agents choose
actions based on the optimal policy that maximizes long-term
cumulative rewards; while in graphical EGT, agents simply
imitate neighbors’ actions with specific update rules, which
only consider current rewards.

VI. CONCLUSION

In this paper, we formulate graphical Markov game, which
considers both the topological structure among agents and
long-term rewards. In graphical Markov game, each agent
can only observe the actions of neighbors and choose actions
simultaneously based on the observations. The goal of each
agent is to maximize its expected long-term cumulative re-
ward. To find the optimal policy of each agent, we implement
a policy-gradient-based algorithm with parameter sharing and
two policy networks. We design experiments of different game
settings and compare our framework with graphical EGT.

(a) graphical Markov game

(b) graphical EGT

Fig. 4. average reward of two models with p2 = 0.25.

When interactions between agents is defined by a stag hunt
game or prisoner’s dilemma, due to the influence of future
rewards on the agent’s actions, cooperation is more likely
to occur in our framework with large encough reward of
cooperation. We also find that when there are two types of
agents, the agents in our framework obtain higher reward than
in graphical EGT.

REFERENCES

[1] R. A. Howard, Dynamic programming and Markov pro-
cesses. MIT Press, 1960.

[2] A. G. Barto, R. S. Sutton, and C. Watkins, Learning and
sequential decision making. University of Massachusetts
Amherst, 1989.

[3] M. L. Puterman, Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons,
2014.

[4] D. P. Bertsekas, Dynamic programming and optimal
control, 2nd ed. Athena Scientific, 2000.

[5] M. Ghallab, D. Nau, and P. Traverso, Automated plan-
ning: theory and practice. Elsevier, 2004.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

203



[6] M. J. Osborne and A. Rubinstein, A course in game
theory. MIT press, 1994.

[7] J. M. Smith and G. R. Price, “The logic of animal
conflict,” Nature, vol. 246, no. 5427, pp. 15–18, 1973.

[8] R. Cressman, Evolutionary dynamics and extensive form
games. MIT Press, 2003.

[9] J. M. Smith and J. M. M. Smith, Evolution and the theory
of games. Cambridge university press, 1982.

[10] M. L. Littman, “Markov games as a framework for
multi-agent reinforcement learning,” in Proceedings of
The Eleventh International Conference on International
Conference on Machine Learning, 1994, pp. 157–163.

[11] M. A. Nowak and R. M. May, “Evolutionary games and
spatial chaos,” Nature, vol. 359, no. 6398, pp. 826–829,
1992.

[12] H. Ohtsuki and M. A. Nowak, “The replicator equation
on graphs.” Journal of Theoretical Biology, vol. 243,
no. 1, pp. 86–97, 2006.

[13] F. C. Santos and J. M. Pacheco, “Scale-free networks
provide a unifying framework for the emergence of
cooperation.” Physical Review Letters, vol. 95, no. 9, p.
98104, 2005.

[14] F. C. Santos, J. M. J. Pacheco, and T. Lenaerts, “Evo-
lutionary dynamics of social dilemmas in structured
heterogeneous populations,” the National Academy of
Sciences of the United States of America, vol. 103, no. 9,
pp. 3490–3494, 2006.

[15] G. Szabó and G. Fáth, “Evolutionary games on graphs,”
Physics Reports, vol. 446, no. 4, pp. 97–216, 2007.

[16] F. Fu, L. Wang, M. A. Nowak, and C. Hauert, “Evolu-
tionary dynamics on graphs: efficient method for weak
selection,” Physical Review E, vol. 79, no. 4, pp. 46 707–
46 707, 2009.

[17] X. Cao, Y. Chen, C. Jiang, and K. J. R. Liu, “Evolu-
tionary information diffusion over heterogeneous social
networks,” IEEE Transactions on Signal and Information
Processing over Networks, vol. 2, no. 4, pp. 595–610,
2016.

[18] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Man-
sour, “Policy gradient methods for reinforcement learning
with function approximation,” in Proceedings of Ad-
vances in Neural Information Processing Systems 12,
1999, pp. 1057–1063.

[19] J. K. Gupta, M. Egorov, and M. J. Kochenderfer, “Co-
operative multi-agent control using deep reinforcement
learning,” in Proceedings of International Conference on
Autonomous Agents and Multiagent Systems, 2017, pp.
66–83.

[20] Y. Yang, R. Luo, M. Li, J. Wang, and W. Zhang, “Mean
field multi-agent reinforcement learning,” in Proceedings
of The Thirty-fifth International Conference on Machine
Learning, 2018, pp. 5567–5576.

[21] J. Jiang, C. Dun, T. Huang, and Z. Lu, “Graph convo-
lutional reinforcement learning,” in Proceedings of The
Eighth International Conference on Learning Represen-
tations, 2020.

[22] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez,
Y. Tassa, D. Silver, and D. Wierstra, “Continuous con-
trol with deep reinforcement learning,” arXiv preprint
arXiv:1509.02971, 2015.

[23] R. Axelrod and W. D. Hamilton, “The evolution of
cooperation,” Science, vol. 211, no. 4489, pp. 1390–1396,
01 1981.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

204


