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Abstract—The investigation of qualitative behaviour of the
fractional Brownian motion is an important topic for modelling
theoretic and real-world applications. Permutation Entropy is a
robust and fast approach to quantify the complexity of a time
series in a scalar-valued representation. There are numerous
studies on the behaviour of Permutation Entropy on fractional
Brownian motion. Similarly, Multi-Scale Permutation Entropy is
used to study structures on different time scales in a univariate
context. Nevertheless, many real-world problems contain multi-
variate time series. In this paper we investigate the behaviour
of Permutation Entropy as well as the behaviour of Multi-Scale
Permutation Entropy on fractional Brownian motion – each in
the multivariate case. We show that the multivariate results are
consistent with known univariate results.

Index Terms—Permutation Entropy, Ordinal Pattern Rep-
resentations, Fractional Brownian Motion, Multivariate Time
Series

I. INTRODUCTION

Time series data are part of many real-world applications,
such as weather forecasting, stock markets, energy production,
medical recordings, sales and website activities, political or
sociological factors. The modelling and prediction of time-
dependent dynamical systems with the specific properties of
long-range dependence, fractality, or self-similarity is com-
monly described by fractional Brownian motion, and due to
its theory-driven approach successful [1], [2], [3].

For the investigation of the qualitative behaviour of frac-
tional Brownian motion it is valuable to consider efficient
mappings from a dynamical system to a set of scalar-valued
representations or features capturing specific characteristics.
Information theoretic entropies are promising through an en-
coding that preserves information content [4]. Permutation
Entropy is a robust, scalar-valued measure for determining the
degree of complexity of time series by analysing the distribu-
tion of ordinal patterns. While the associated entropy is low for
a deterministic time series, it approaches its maximum value
in case of uncorrelated randomness or correlated complexity.

To distinguish between randomness and complexity, an
additional measure is necessary. As a complement to Permu-
tation Entropy, Multi-Scale Permutation Entropy captures the
complexity of time series on different time scales. On higher
time scales, random noise tends to cancel out, resulting in a
low entropy measurement, where complex signals retain a high

entropy. In this manner, it is possible to gain a deeper insight
into randomness and complexity of a system.

Permutation Entropy on fractional Brownian motion in the
univariate case is well understood. Not only the Permutation
Entropy, but also the distribution of ordinal patterns of certain
lengths result in interesting properties. The distribution of
ordinal patterns of lengths two and three yield interesting
parameter functions, that can be used for descriptive purposes
like autocorrelation. The distribution of simple higher ordinal
patterns have irrational values, and depend on the noise
distribution. The distribution of ordinal patterns of lengths
greater than four does not yield closed formulas and thus, a
relationship between autocorrelation and spectrum on the one
hand and ordinal patterns on the other hand no longer exist [5].

However, in many fields of applications, multivariate mea-
surements are performed. One example are electrophysiolog-
ical signals, which are usually not determined from a single
electrode, but from multiple electrodes. Further examples for
the application of multivariate fractional Brownian motion
can be found in economic time series [6], or functional
Magnetic Resonance Imaging of several brain regions [7].
This paper contributes to an understanding of the behaviour of
multivariate Permutation Entropy, in particular Pooled Permu-
tation Entropy, on multivariate fractional Brownian motion. In
addition, we examine multivariate behaviour on different time
scales. We show both in a theoretical and in an experimental
analysis that the multivariate results are consistent with the
univariate case.

II. RELATED WORK

Bandt and Shiha [5] and Zunino [8] significantly contribute
to understand the underlying behaviour of Permutation En-
tropy under known structures such as fractional Brownian
motion. They investigate the distribution of ordinal patterns
of different orders and, if possible, provide closed formulas
for calculation of pattern distributions as well as specific
characteristics and relationships (see Section I). Furthermore,
Davalos et al. [9] analyse the behaviour of fractional Gaussian
noise, the increment process of fractional Brownian motion,
under the scope of multi-scaling in an univariate setting.

Nevertheless, the behaviour of Permutation Entropy of
fractional Brownian motion was not analysed in the context
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of multidimensionality. Amblard et al. [10], [11] summarise
theoretical properties of the multivariate fractional Brownian
motion and its increments. They provide a characterisation
of multivariate fractional Brownian motion by its covariance
function and present an algorithm to simulate multivariate
fractional Brownian motions used in this paper.

III. PRELIMINARIES

We shortly formalise multivariate fractional Brownian mo-
tion and subsequently key concepts of Permutation Entropy,
Multi-Scale Permutation Entropy and their extensions to mul-
tidimensionality.

A. Multivariate Fractional Brownian Motion

In this paper, we focus on a class of special stochastic
processes. A stochastic process or more generally a mathe-
matical object that is similar to itself at all scales is called a
fractal. When you zoom in on a fractal, it resembles or looks
exactly like the original shape. The mathematical property is
called self-similarity. Fractional Brownian motion (fBm) is the
unique mean-zero Gaussian process, which is zero at origin
and has stationary and self-similar increments. As the name
might suggest, the fBm generalises the well-known Brownian
motion. The multivariate extension of the fractional Brownian
motion requires an extension of self-similarity to multivariate
processes first.

Definition 1 (Multivariate self-similar process). A multivariate
process ((Xi(t))mi=1)t∈R = (X1(t), . . . , Xm(t)))t∈R with
variable-dimension m ∈ N is called self-similar, if there exists
a vector H = (H1, . . . ,Hm) with Hi ∈ (0, 1) for i = 1, ...,m
such that for any a > 0 it is

(X1(at), . . . , Xp(at))t∈R ∼ (aH1X1(t), . . . , a
HmXm(t))t∈R,

where ∼ denotes the equality of finite-dimensional distribu-
tions.

With Definition 1, multivariate fractional Brownian motion
is defined as follows:

Definition 2 (Multivariate fractional Brownian motion (mfBm)
[11]). An m-multivariate process ((Xi(t))mi=1)t∈R is called
multivariate fractional Brownian motion (m-mfBm or mfBm)
Bm
H(t) with Hurst parameter H ∈ Rm with Hi ∈ (0, 1) for

i = 1, ...,m if it is
1) Gaussian,
2) self-similar with Hurst parameter H and it has
3) stationary increments, i.e., Bm

H(t)−Bm
H(s) ∼ Bm

H(t−s).

Multivariate self-similarity imposes many constraints on the
covariance structure of mfBm [12]. The covariance structure
is characterised by parameters σi > 0, ρij ∈ (−1, 1) and
ηij ∈ R for i, j = 1, ...,m. Parameter σi > 0 is the standard
deviation of the i-th variable at time 1. Parameter ρij = ρji
is the correlation coefficient between the variables i and j at
time 1. Parameters ηij = −ηji are antisymmetric and linked
with the time-reversibility of mfBm.

Multivariate fractional Brownian motion can be charac-
terised by its covariances and cross-covariances of variables m
as follows.

Lemma 1 (Covariance Function of mfBm [10]). The mfBm
Bm
H(t) is marginally a fBm, such that the covariance function

of the i-th variable BiHi of mBfm is as in the univariate case

Cov(BiHi(s), B
i
Hi(t)) =

σ2
i

2
(|s|2Hi+|t|2Hi−|t−s|2Hi), (1)

where σ2
i = V ar(BiHi(1)). The cross-covariances of mfBm

for all (i, j) ∈ {1, ...,m}2 and i 6= j are given by:

Cov(BiHi(s), B
j
Hj

(t)) =
σiσj
2

(wij(−s)+wij(t)−wij(t−s)),
(2)

where the function wij(h) is defined by

wij(h) =

{
(ρij − ηij sign(h))|h|Hi+Hj for Hi +Hj 6= 1,
ρij |h|+ ηijh log |h| for Hi +Hj = 1.

(3)

Moreover, the setting of ρij = 1 and ηij = 0 in Eq. (2)
and Eq. (3) in the cross-covariance function is matching with
the covariance function in Eq. (1). For m = 1, Definition 2
matches the univariate fBm. In case H = 1/2, fBm corre-
sponds to the ordinary Brownian motion. In case H > 1/2,
the process has a persistence property and positively correlated
increments, i.e., an upward jump is more likely followed by
another upward jump and vice versa. For H → 1, the process
becomes smoother, less irregular and more trendy. In case
H < 1/2, the process has negatively correlated increments
and an anti-persistence property.

B. Multivariate Permutation Entropy

For the investigation of the qualitative behaviour of mfBm in
this paper Permutation Entropy is used. To calculate entropies
of time series it is necessary to encode the sequence of
real-valued measurements in a series values into a sequence
of symbols. As far as current research is concerned, there
are two general approaches of symbolisation. On the one
hand, classical symbolisation approaches use threshold values
and data range partitioning for symbol assignment such as
the well-know Symbolic Aggregate ApproXimation (SAX)
representation introduced by Chiu et al. [13]. On the other
hand, ordinal pattern symbolisation approaches based on an
idea of Bandt and Pompe [14] use an encoding of up and
down movements in a time series. The formalism and the
advantages of the ordinal symbolisation scheme are introduced
as follows. Compared to the previously used capitalisation Xi

for random variables, we use a small notation xi for observed
random variables, also called events or paths.

Ordinal patterns describe the total order between two or
more neighbours, encoded by permutations.

Definition 3 (Univariate Ordinal Pattern). A vector
(x1, ..., xd) ∈ Rd has ordinal pattern (r1, ..., rd) ∈ Nd
of order d ∈ N if xr1 ≥ ... ≥ xrd and rl−1 > rl in the case
xrl−1

= xrl .
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(0, 1, 2), (2, 1, 0), (1, 0, 2), (2, 0, 1), (0, 2, 1), (1, 2, 0)

Fig. 1. All possible ordinal patterns of order d = 3.

Fig. 2. Ordinal pattern determination of order d = 3 and time delay τ = 20
in a univariate time series.

Note that equality of two values within a pattern is not
allowed. In this case, for example, the newer value is replaced
with a smaller value. Fig. 1 shows all possible ordinal patterns
of order d = 3 of a vector (x1, x2, x3). To symbolise a time
series (x1, x2, ..., xT ) ∈ RT each time point t ∈ {d, ..., T} is
assigned its ordinal pattern of order d. The order d is chosen
much smaller than the length T of the time series to look
at small windows in a time series and their distributions of
up and down movements. To access the overarching trend,
delayed behaviour is of interest. The time delay τ ∈ N is
the delay between successive points in the symbol sequences.
Different delays show different details of the structure of a
time series. Fig. 2 visualises the ordinal pattern determination
of order d = 3 and time delay τ = 20 of four different time
points in a univariate time series.

The ordinal approach has notable advantages in its practical
application. First of all, the method is conceptually simple.
Second, it is not necessary to have previous knowledge about
the data range or type of time series. Third, the ordinal
approach supports robust and fast implementations [15], [16].
Fourth, it allows for an easier estimation of a good symboli-
sation scheme compared to classical approaches [17], [18].

Not the ordinal patterns themselves, but their distributions
in different parts of a univariate time series (xt)

T
t=1 are of

interest. Thus, each pattern is identified with exactly one of the
ordinal pattern symbols j = 1, 2, ..., d!. Using the distribution
of the ordinal pattern symbols, its entropy can be calculated
using the well-known formula of (Shannon) entropy resulting
in the Definition of Permutation Entropy.

Definition 4 (Permutation Entropy [14]). The Permutation
Entropy (PE) of order d ∈ N and delay τ ∈ N of a univariate
time series x = (xt)

T
t=1, T ∈ N is defined by

PEd,τ (x) = −
d!∑
j

pτ,dj ln pτ,dj , (4)

where

pτ,dj =
#{t|(xt−(d−1)τ , ..., xt−τ , xt) has pattern j}

T − (d− 1)τ
(5)

is the relative frequency of ordinal pattern j in the time series.

Depending on the area of research, entropy is a measure
for quantifying inhomogeneity, complexity, uncertainty or un-
predictability. For time series with maximum random ordinal
pattern symbols (resulting in a uniform pattern distribution due
to uniqueness), PE is ln(d!). For a time series with regular
pattern, e.g., in case of monotony, PE is equal to zero [4].

Nevertheless, in real-world applications we often have to
deal with high-dimensional multivariate time series. A multi-
variate time series X = ((xit)

m
i=1)

T
t=1 has more than one time-

dependent variable. Each variable xi for i ∈ 1, ...,m depends
not only on its past values but also has some dependency
on other variables. Considering two time points (xit)

m
i=1 and

(xit+1)
m
i=1 with m variables, it is not possible to establish a

total order between them. A total order is only possible if
xit > xit+1 or xit < xit+1 for all i ∈ 1, ...,m. Therefore,
there is no trivial generalisation of the PE algorithm to the
multivariate case. There are numerous studies that deal with
the multivariate version of PE [19]. In the following we use the
original and most popular approach by Keller and Lauffer [20].

The idea of this approach is to use marginal relative
frequencies of d! ordinal patterns regarding all m variables as
input for entropy calculation. For each variable i = 1, ..,m
and for each ordinal pattern j = 1, ..., d!, all time steps
s ∈ [dτ − τ + 1, T ], for which the variable-time pair (i, s)
has the ordinal pattern j, are counted. Each variable has a
total count of δ := T − (dτ − τ) ordinal patterns. The relative
frequencies pτ,dij obtained after dividing the counts by m ·δ are
stored in a pooling matrix P ∈ (0, 1)m×d!, which reflects the
distribution of ordinal patterns in the multivariate time series
across its m variables. It is

∑m
i=1

∑d!
j=1 p

τ,d
ij = 1. Assume

that the marginal relative frequencies pτ,d.j =
∑m
i=1 p

τ,d
ij for

j = 1, ..., d! do not vanish. If they vanish set the value close
to zero.

Definition 5 (Pooled Permutation Entropy [20]). The Pooled
Permutation Entropy (PPE) of a multivariate time series
X = ((xit)

m
i=1)

T
t=1 is defined as the Permutation Entropy

of the marginal relative frequencies pτ,d.j =
∑m
i=1 p

τ,d
ij for

j = 1, ..., d! describing the distribution of the ordinal pattern
and can be calculated as

PPEd,τ (X) = −
d!∑
j

pτ,d.j ln pτ,d.j . (6)

In literature, PPE is often referred to as Multivariate Per-
mutation Entropy (MPE). To avoid confusion with other mul-
tivariate versions, we use the original naming. For example,
PPE is successfully used in analysing electroencephalography
(EEG) signals, because cross-channel regularities between
spatial-distant variables, i.e., on different hemispheres and/or
in different areas, can be extracted by long-range spatial
nonlinear correlations [20].
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C. Multivariate Multi-Scale Permutation Entropy

Such as biological and physiological time series, as well as
time series from other areas, often contain complex structural
correlations over several spatio-temporal levels (scales), which
need to be uncovered. PE or PPE obtain a maximum entropy
on completely random time series as well as series with
complex structural correlations. In order to uncover multi-
scale structural correlations, the Multi-Scale Entropy (MSE)
proposed by Costa et al. [21] provides a systematic procedure
with which a small complexity value can be assigned to both
completely predictable or completely random uncorrelated
time series. In contrast, correlated processes across different
scales have a high complexity value. Morabito et al. [22]
extend the concept of MSE to ordinal patterns, in both the
univariate and multivariate case.

For the consideration of different scales of the time se-
ries and an associated definition, a coarse-grained procedure
is used: From the original time series, several consecutive
time data points are averaged within a non-overlapping time
window of scaling length ε, also called scaling factor. Each
element of the coarse-grained time series y = (y

(ε)
l )

T/ε
l=1 is

calculated as:

y
(ε)
l =

1

ε

lε∑
t=(l−1)ε+1

xt (7)

for 1 ≤ l ≤ T
ε .

Definition 6 (Multi-Scale Permutation Entropy [22]). The
Multi-Scale Permutation Entropy (MSPE) of order d ∈ N and
delay τ ∈ N of a univariate time series x = (xt)

T
t=1, T ∈ N is

defined as PE of its coarse-grained time series y = (y
(ε)
l )

T/ε
l=1 ,

that is
MSPEd,τ,ε(x) = PEd,τ (y). (8)

The multivariate case is analogous: Per variable i in an
multivariate time series, several consecutive time data points
are averaged within a non-overlapping time window of the
scaling length ε. Each element of the coarse-grained time
series Y = ((y

(ε)
i,l )

T/ε
l=1)

m
i=1 is calculated as:

y
(ε)
i,l =

1

ε

lε∑
t=(l−1)ε+1

xi,t (9)

for all i = 1, ...,m and 1 ≤ l ≤ T
ε .

Definition 7 (Multivariate Multi-Scale Permutation Entropy
[22]). The Multivariate Multi-Scale Permutation Entropy
(MMSPE) of order d ∈ N and delay τ ∈ N of a multivariate
time series X is defined as PPE of its coarse-grained time
series Y, that is

MMSPEd,τ,ε(X) = PPEd,τ (Y). (10)

MSPE and MMSPE are calculated on different time scales
by processing the coarse-grained time series as a function of
the scale factor ε. The simultaneous utilisation of a multi-
scale approach and the consideration of multiple variables of

the time series facilitates the assessment of the complexity of
the underlying dynamical system.

As far as current research is concerned, the behaviour of
MMSPE and PPE on mfBm is unknown and therefore subject
of this paper.

IV. POOLED PERMUTATION ENTROPY APPLIED TO
MULTIVARIATE FRACTIONAL BROWNIAN MOTION

In the following, we investigate the behaviour of PPE on
mfBm in a theoretical as well as experimental setting. For this
purpose, we use the univariate results by Bandt and Shiha [5],
who show that for univariate fBms the ordinal patterns of order
d = 2 are equally distributed, more specifically

pτ12 = pτ21 = 1/2 (11)

for all τ . Furthermore, the distribution of ordinal patterns of
order d = 3 of univariate fBms is given by

pτ123 =
1

π
arcsin 2H−1 (12)

for all τ . For a Gaussian process with stationary increments,
that includes fBm, it is

pτj =

{
u if j = (123), (321)
(1− 2u)/4 otherwise (13)

for all τ .
In the following, we show that PPE of orders d = 2 and d =

3 is invariant to the number of variables m and the multivariate
results are consistent with the univariate case.

A. Theoretical Results of Pooled Permutation Entropy on
Multivariate Fractional Brownian Motion

The distribution of univariate ordinal pattern of fBms is
well understood and can be transferred to multivariate case as
follows.

1) Pooled Permutation Entropy of Order d = 2: In Eq. (11),
the distribution of ordinal patterns of order d = 2 is inde-
pendent of Hurst parameter H ∈ (0, 1) due to self-similarity
as well as independent of delay τ . Using the independence
of delay τ , the relative frequencies of ordinal patterns in the
pooling matrix P of mfBm are again equally distributed:

pτi,12 = pτi,21 =
1

2m
(14)

for all i = 1, ..,m. When calculating the marginal relative
frequencies, the number of variables m is reduced again, that
is

pτ.j =
1

2
(15)

for all j = 1, .., d!. Overall, PPE of order d = 2 of mfBm is
thus neither dependent on delay τ or Hurst parameter H , nor
on the number of variables m. It is

PPE2(X) = − ln
1

2
. (16)
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2) Pooled Permutation Entropy of Order d = 3: In analogy
to Paragraph IV-A1 and using Eq. (12) and Eq. (13), the
relative frequencies of ordinal patterns of order d = 3 in the
pooling matrix P of mfBm is given by

pτij =

{
1
mπ arcsin 2Hi−1 if j = (123), (321)
(1− 2

π arcsin 2Hi−1)/(4m) otherwise
(17)

for all i = 1, ...,m and τ .
For the calculation of the marginal relative frequencies, we

distinguish two cases:

1) If Hi = Hj for all i and j, the number of variables m is
reduced again and the marginal relative frequencies are
the same as the frequencies of univariate ordinal pattern
in Eq. (12) and Eq. (13).

2) If Hi 6= Hj for all i = j, the marginal relative
frequencies are given by

pτ.j =

{ ∑m
i=1

1
mπ arcsin 2Hi−1 if j = (123), (321)∑m

i=1
(1− 2

π arcsin 2Hi−1)

4m otherwise
(18)

for all τ and j = 1, ..., d!.

For
∑m
i=1Hi → 1 it is pτ.(123) = 1/2. For

∑m
i=1Hi → 0,

the marginal relative frequencies are distributed equally, that
is pτ.j = 1/6 for all τ .

The consistency regarding the univariate case is not sur-
prising, but is related to the calculation rule of PPE and the
independence of the distribution of ordinal patterns from delay
parameter τ . The relative frequencies of ordinal patterns of
order d = 4 in pooling matrix P as well as the marginal
relative frequencies of mfBms can be calculated analogously
to the cases already treated. For this purpose, the formulas for
the distribution of ordinal patterns can be found in [5]. The
frequencies of the univariate ordinal patterns of order d = 5
cannot be represented in a closed form [5]. Hereafter, we
substantiate the theoretical results in an experimental setting.

B. Experimental Results of Pooled Permutation Entropy on
Multivariate Fractional Brownian Motion

All experimental calculations are based on a simulation
of mfBm using Lemma 1 and a corresponding algorithm
implemented by Amblard et al. [11]. The length T = 7500
of mfBms is assumed to be large. For a small length T the
estimates of the probabilities for the ordinal patterns differ
from the true values of a hypothetical time series of infinite
length. For the simulation of general mfBms, the correlation
parameters ρi,j in Lemma 1 are all set to 0.3, resulting in

1 0.3 . . . 0.3

0.3 1
...

...
. . . 0.3

0.3 . . . 0.3 1

 ∈ Rm×m. (19)

The parameters ηi,j are set to 0.1/(1−Hi−Hj), resulting in
0 0.1

1−Hi−Hj . . . 0.1
1−Hi−Hj

−0.1
1−Hi−Hj 0

...
...

. . . 0.1
1−Hi−Hj

−0.1
1−Hi−Hj . . . −0.1

1−Hi−Hj 0

 ∈ Rm×m

(20)
and for Hi + Hj = 1 the parameters ∼

ηi,j are set to 0.1. An
example of a simulation of mfBm with m = 5 variables,
equally spaced Hurst parameters Hi in [0.2, 0.3] and the
parameters ρij and ηij set as above is shown in Fig. 3(a).
Fig. 3(b) and Fig. 3(c) illustrate the independence of PPE
of order d = 2 on mfBm from the number of parameters
m for different combinations of the Hurst parameter Hi.
For increasing complexity of mfBm by its Hurst parameters
Hi the deviation from the theoretical line (purple) increases.
Reference [9] shows that the behaviour is explainable by the
limitation of length T of the time series. Since the deviation
decreases for a higher number of variables m, which is
also based on a higher number of total observable ordinal
patterns, increasing deviation can be explained by the length
limitation T in the setting. Furthermore, Fig. 3(c) shows the
independence of the different Hurst parameters H1 6= Hj for
j = 2, 3. Fig. 3(d) and Fig. 3(e) visualise the independence of
PPE of order d = 3 on mfBm for different combinations of the
Hurst parameter Hi from the number of parameters m. The
deviation from the theoretical line (purple) can be explained
as above. Fig. 3(e) shows the independence of the number of
variables m from the dependence of the Hurst parameter Hi.

V. MULTIVARIATE MULTI-SCALE PERMUTATION
ENTROPY APPLIED TO MULTIVARIATE FRACTIONAL

BROWNIAN MOTION

In the following, we investigate the behaviour of MMSPE
on mfBm in a theoretical as well as experimental setting. We
show that MMSPE of orders d = 2 and d = 3 on mfBms is
scale-invariant and independent of the number of variables m.

A. Coarse-Graining on Fractional Brownian Motion

To investigate the behaviour of MMSPE on mfBm, coarse-
grained fractional Brownian motion has to be derived and
analysed first. By using the Eq. (7) or Eq. (9) on fBm, we
define coarse-grained fractional Brownian motion (cfBm) as

B
i,(ε)
Hi

(l) =
1

ε

ε∑
j=1

BiHi((l − 1)ε+ j) (21)

for l = 1, ..., T/ε and all i = 1, ...,m.
Since the sum of multiple Gaussian variables is again

Gaussian distributed, cfBm is completely characterised by the
expected value and the covariance function. We follow the
arguments of Davalos et al. [9], who characterise the coarse-
grained fractional Gaussian noise (cfGn) by its expected value
and its covariance function. As the expected value of a sum
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Fig. 3. Simulations of PPE of orders d = 2 and d = 3, and delay τ = 1 on m-fBm for different Hurst parameters Hi, compared to their theoretical
predictions, for signal length T = 7500.

of independent random variables is the sum of the expected
value of each variable, it is

E(B
i,(ε)
Hi

(l)) = E(
1

ε

ε∑
j=1

BiHi((l − 1)ε+ j)) (22)

=

ε∑
j=1

E(BiHi((l − 1)ε+ j)) (23)

= 0, (24)

for all i = 1, ...,m.
Using Eq. (1), self-similarity and stationarity we obtain the

variance and covariance of cfBm by

V ar(B
i,(ε)
Hi

(l)) = V ar(
1

ε

ε∑
j=1

BiHi((l − 1)ε+ j)) (25)

= σ2
i ε

2Hi−1 (26)

and

Cov(B
i,(ε)
Hi

(l), B
i,(ε)
Hi

(m)) (27)

= σ2
i ε

2Hi−1(|l|2Hi + |m|2Hi − |m− l|2Hi) (28)

for all i = 1, ...,m.

The structure of the covariance function is the same as the
original fBm for all variables i = 1, ...,m, but with additional
information of the scale factor ε. Therefore the covariance
function of original fBm or mfBm is invariant to the coarse
grain procedure. In the following we use the definition of cfBm
and its properties to calculate MMSPE.

B. Theoretical Results of Multivariate Multi-Scale Permuta-
tion Entropy on Multivariate Fractional Brownian Motion

Since MSPE and MMSPE are based on PE and PPE,
respectively, and the underlying distributions in the coarse-
grained procedure of cfBm follow those of the original fBm,
the distribution of ordinal patterns of orders d = 2 of cfBm
are the same as in Eq. (11) and d = 3 in Eq. 12) . Thus
they are scale-invariant. The results of the relative frequencies
of ordinal patterns in Eq. (14) and Eq. (17) for the pooling
matrices of mfBms as well as the marginal relative frequencies
in Eq. (15) and Eq. (18) can be adopted. Thus, the MSPE and
MMSPE of the mfBm are scale-invariant and independent of
the number of variables m. Any time-scale dependence of the
MMSPE is not related to the properties of mfBm, but only
results from the fact that the observed data are not infinitely
long. A detailed analysis of the length constraints with respect
to fractional Gaussian noise is presented in [9]. Hereafter, we
substantiate the theoretical results in an experimental setting.
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Fig. 4. Simulations of MMSPE of orders d = 2 and d = 3, and delay τ = 1 on m-fBm for different Hurst parameters Hi, compared to their theoretical
predictions, for signal length T = 10000.

C. Experimental Results of Multivariate Multi-Scale Permu-
tation Entropy on Multivariate Fractional Brownian Motion

As in Section IV-B, all experimental calculations are based
on a simulation of mfBms using Lemma 1, the corresponding
algorithm implemented by Amblard et al. [11], the parameter
setting described in Section IV-B, and the length T = 10000
of the mfBms is assumed to be large. Fig. 4 illustrates the
behaviour of MMSPE of orders d = 2 and d = 3 on mfBm
with different scale factors ε, different variable dimensions
m and different Hurst parameters Hi. Again, with increasing
Hurst parameters Hi deviations from the theoretical prediction
increase due to the length restriction in the experimental setup.

In Fig. 4(a) there is no difference between the behaviour
of MMSPE with different scale factors ε ∈ {1, 30, 50} and
different dimensions m ∈ {3, 5}, but same Hurst parame-
ters Hi = Hj for all i = j. All calculations run along the
theoretical prediction, so that both the first independence of
the MMSPE of order d = 2 from the scaling factor and the
second independence of the MMSPE of order d = 2 from the
number of variables m are demonstrated experimentally. The
same is true for Fig. 4(b), where the case d = 3 is considered.

In Fig. 4(c) and (d) the scale factor is set to ε = 30, and
the variable number to m ∈ {3, 5}. In Fig. 4(c), MMSPE for
different Hurst parameters Hi is also analogous to the theoret-
ical prediction, demonstrating the third independence from the
Hurst parameters Hi in case of d = 2. In Fig. 4(d), MMSPE
has a shift up and down for varying Hurst parameters Hi,
demonstrating an existing dependency on the Hurst parameters
Hi (see Eq. (18) or Fig. 3(e)) in case of d = 3. Thus, the
experimental results underpin our theoretical findings.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a theoretical and experimental
analysis of the behaviour of Pooled Permutation Entropy and
Multivariate Multi-Scale Permutation Entropy on multivariate
fractional Brownian motion. We proved that the behaviour
of the PPE and MMSPE of order d = 2 on the mfBm is
analogous to the univariate case and thus independent of all
parameters, especially in the number of variables m. In case of
order d = 3, the behaviour of PPE and MMSPE on mfBm is
only dependent on the Hurst parameter H ∈ Rm. We showed
that PPE and MMSPE do not reveal relevant structures on
mfBm with infinite length, although the long and short mem-
ory correlations generate a very complex behaviour. In analogy
to the univariate case, the intrinsic properties and complex
behaviour of mfBms are not captured by representations like
PPE or MMSPE. Further analyses are necessary.

In general, the application of PPE and MMSPE in real-world
challenges are promising statistical tools to quantify the com-
plexity even in the multivariate case. However, the application
of PPE and MMSPE does not take possible cross-correlations
of simultaneous movement patterns of several variables over
time as in Eq. (2) and Eq. (3) into account. Since it is not
possible to establish a total ordering between vector-valued
time steps, a trivial generalisation of the PE algorithm to
the multivariate case is not possible. Further proposals, which
deal with a multivariate version of PE and the consideration
of correlations, exist, e.g., from Mohr et al. [19] and may
contribute to an understanding of multivariate Permutation
Entropy on multivariate fractional Brownian motion.
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