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Abstract—This paper proposes to introduce greedy pursuit, a
conceptually simple hard thresholding pursuit algorithm called
Signal Space Subspace Pursuit (SSSP) for calculating spare
signal representations with overcomplete dictionaries whenever
the sensing matrix (sampling operator) satisfies the Restricted
Isometry Property adapted to Dictionary (D-RIP). Signal space
greedy method has the ability to optimally compute (near)
best projections that allow one to identify the most related a
small number of dictionary atoms of an arbitrary signal in
this setting. More practically, standard recovery algorithms are
applicable to such projections while maintaining accurate signal
recovery. Simulation results with a typical hyperspectral data set
demonstrate the superiority of the proposed approach.

I. INTRODUCTION

Compressive sensing (CS) [1], [2] has emergenced as a
novel paradigm to recovery signals, which are assumed to be
sparse in a certain domain, from a small set of compressed
measurements. Until now, applications of CS are widespread
and range from signal processing applications [3], [4], which
includes image [5], [6], audio [7], video [8], and so forth.

CS claims that a k sparse signal x ∈ Rn is sampled by
using a small amount of m compressive measurements, or in
matrix notation

y = Ax+ e, (1)

where y ∈ Rm denotes the measurement vector, A ∈ Rm×n

stands for the sensing matrix with m � n whose entries
are random Gaussian variables, and e is the measurement
error vector due to the real signal architecture. Assume that
x is sparse in some basis such that x = ψa with a has
at most k nonzero entries. CS freamework indicates that
such unknown signal can be recovered correctly provided by
only m = O(klogn) using y and A, which results in low
computational complexity and cost reduction.

The recovery of seeking any sparse signal from linear
measurements can be considered a highly non-linear process
obtained by the sampling process. A nature approach to
mathematically capture the sparse solution by solving the
following l1-minimization problem

x̂ = arg min ‖x‖1 s.t. ‖y −Ax‖2 ≤ ε, (2)

where ‖x‖1 =
∑
|xi| refers to the l1-norm, ‖·‖2 is the norm of

standard Enclidean, and ε > 0 is decided by the upper bound

of ‖e‖2. The restricted isometry property (RIP) provides a
sufficient condition for accurate recovery of a signal x with
not entirely sparse but nearly sparse representation from the
observation y via problem (2).

Definition 1 [9]: The sensing matrix A ∈ Rm×n

follows the RIP of order k if the smallest restricted isometry
constant (RIC) δk ∈ (0, 1)

(1− δk) ‖x‖ 2
2 ≤ ‖Ax‖

2
2 ≤ (1 + δk) ‖x‖22 , (3)

holds for all k sparse signals. It is well known that many
random matrices have very small RICs with high probability
when m is large reasonably.

Assuming that A describes the RIP, the problem (2) is
ensured to stability and robustness recover it from the noisy
measurements y = Ax+ e. Then the solution x̂ of (2) follows

‖x̂− x‖2 ≤ c1
‖x− xk‖1√

k
+ c2ε,

with,

c1 =
2 + (2

√
2− 2)δ2k

1− (
√

2 + 1)δ2k
, c2 =

4
√

1 + δ2k

1− (
√

2 + 1)δ2k
,

(4)

where c1, c2 are positive constants, xk is an approximation
to x with k largest nonzero entries with δ2k is the order
2k RIC of A. Eq. (4) shows that the resulting recovery
error is proportional to the noise level and the signal tail,
which means that the coefficients of the compressible signals
follows a power law decay such that x̂ is said properly to be
approximately x. Based on this concept, several methods can
address the NP-hard problem and computationally infeasible
with signal dimension increasing, which depended on A and
y, such as linear programming [1], convex [10], gradient
[11], and greedy [12], [13]. Among them, two families of
approaches are basis pursuit (BP) based methods and matching
pursuit (MP) based method.

However, a real signal is not exactly sparse in an orthonor-
mal [14]–[16]. Specifically, these results do not hold when ψ is
an orthonormal basis, but hold for an overcomplete dictionary,
which means that the signal f ∈ Rn can now be expressed as
f = Da, where D ∈ Rn×d (d > n) is a given overcomplete
dictionary called as sparsifying basis with a ∈ Rd being the
sparse coefficient vector. Therefore, this paper aims to propose
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a variant of MP, which is known as Signal Space Subspace
Pursuit (SSSP). SSSP is a hard thresholding pursuit algorithm
nearly likes MP, which minimizes the l1-norm of the sparse
coefficient vector via constructing the representation by select-
ing atoms from an arbitrary overcomplete dictionary instead of
an orthonormal basis per iteration. Ultimately, one can allows
us to thoroughly understand that these sample vectors derived
from the sparsity-dictionary signals can be recovered from a
small set of linear measurements, which is depended on the
information level and noise level. Assume that the sampling
operator/sensing matrix satisfies the D-RIP that can be seen as
the extension of the standard RIP in compressive sensing, two
relative simple families of methods, i.e., BP based methods and
MP based [17]–[19], can calculate the required near optimal
projections to approximate the optimal projections subject to
a given iteration number constraint.

II. PROBLEM FORMULATION

We consider a sparse-dictionary signal recovery problem
from a set of noisy measurements like the framework in [20].
Let us denote x ∈ Rn is the unknown signal vector. Assume
that the unknown signal vector is k sparse, where k is sparsity
level and known a priori, x can be sparsely expressed related
to the linear combination of an overcomplete dictionary

x = Da, (5)

where D ∈ Rn×d can be regarded as the sparsifying basis,
e.g., an overcomplete dictionary, which is assumed to be a
tight frame such that DD

T

= In with T being the transpose
operator. Analogous to the traditional CS, the sampling of
each component of the input signal x is realized by using a
linear operator A. One can obtain the following random linear
projection in matrix notation as

y = Ax+ e. (6)

To the best of our knowledge, it has been shown that the
broadly used D-RIP as a useful tool provides one of the most
important conditions to alternatively estimate the quality of
a sensing matrix for the exactly recovery of a not entirely
sparse but nearly sparse signal x corrupted by additional noise
from its observations y, which can be regarded as the natural
extension of the standard RIP.

Definition 2: Let D ∈ Rn×d be an overcomplete
dictionary and a tight frame. We say that a sensing matrix
A follows the restricted isometry property adapted to D
(abbreviated D-RIP) with the smallest constant δk such that

(1− δk) ‖Da‖22 ≤ ‖ADa‖
2
2 ≤ (1 + δk) ‖Da‖22 (7)

holds for all k sparse signals with ‖a‖0 ≤ k. Eq. (7) claims
that nearly all the random matrices whose entries are drawn
from the Gaussian, subgaussian or Bernoulli distribution with
measurement number on the order of klog(d/k) satisfy the
D-RIP with very high probability, which exploits the nearly
mutually orthogonal of the columns of a sensing matrix.

Assume now that A and D exhibit the D-RIP. Another
novel way based on the property of highly correlated of the

overcomplete dictionary D for recovering a sparse-dictionary
signal f from its noisy measurements y = ADa + e un-
der a stronger assumption that f is k-analysis-sparse, i.e.,
DTx ∈ Rd is k-sparse, is to acquire the solution via the
relaxed l1-minimization problem, which states

x̂ = argmin
x̃∈Rn

∥∥DTx̃
∥∥

1
s.t.‖y −Ax̃‖2 ≤ ε, (8)

where again ε > 0 is likely an upper bound that is proportional
to the noise level ‖e‖2.

Then the solution of (9) follows

‖x̂− x‖2 ≤ c1

∥∥DTx− (DTx)k
∥∥

1√
k

+ c2ε, (9)

where some numerical constants c1 > 0 and c2 > 0 may only
rely on δ2k, and (DTx)k denotes the best approximation of
DTx within all the k-largest nonzero entries in l1-norm, which
is analogous to the soulution of (4). Thus, the recovery error
‖x̂− x‖2 is depends on the noise level ‖e‖2 and the ”tail” of

the analysis vector
‖DTx−(DTx)k‖

1√
k

, which results in rapidly
decays of the error caused by a fixed iteration number. As these
results hold even when the columns of a particular dictionary
are highly correlated, the general setting related to this paper
allows us to mathematically deduce the results similar to MP
based methods with the introduction of previous restrictions.
Without loss of generality, the convergence for the algorithm
is similar to that for the l1-analysis methods.

III. SIGNAL SPACE SUBSPACE PURSUIT ALGORITHM

Our proposed algorithm as a adaptation of the MP based
methods recover the signal x using an overcomplete dictionary
D from its compressive measurements in the noisy case y =
Ax+ e, which is listed below.

TABLE I: SIGNAL SPACE SUBSPACE PURSUIT ALGO-
RITHM

Algorithm: Signal Space Subspace Pursuit
Input:
A, D, y, k, stopping criterion ε
Initialization:
l = 0, I = ∅; r0 = y, x0 = 0
while halting criterion is not satisfied do
1: identify the index set Ω = supp(D,2k)(A

Tr)
2: find the support estimation T = Ω ∪ I
3: compute the approximation: x̃ = arg minz‖y −Az‖2
s.t. z ∈ R(DT )
4: shrink the index I = supp(x̃, k) ={index corresponding to
the largest magnitude entries of estimation x̃}
5: compute the new signal estimation: xl+1 = PI x̃
6: compute the latest residual: rl+1 = y −Axl+1

end while: l = MaxIter or
∥∥xl+1 − xl

∥∥
2
/
∥∥xl

∥∥
2
≤ ε

is satisfied
Output:
x̂ = xl+1 = SSSP (A,D, y, k)

The overall procedure for the modified algorithm in term of
the MP based methods is consisted of six steps. The first step
is called identifying, the second step is called the merging, and
the third step is called updating integrated from step 3 to step
6. In the first step, the algorithm is used to identify the support
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estimation Ω by iteratively introducing multiple indices with
2k largest related values in magnitude provided by some inputs
A, D and y, and the initialization x0 = 0. In the third step,
the cardinality of the updated support set I corresponding to
the sparsity level k is updated using shrinking obtained by
merging in the second step, which leads to a relatively sparse
solution based on the trimmed set and a least square solution.
Finally, the stopping criteria selection plays an important role
for the algorithm.

Similar to the classical MP based methods, Signal space
subspace pursuit (SSSP) is a hard thresholding pursuit algo-
rithm that greedily finds the support estimation, i.e., index set,
performs such projection, and constructs the sparse representa-
tion, which is provided by a finite iteration number. The main
idea behind the proposed algorithm depends on the correct
selection of the support estimation subject to an overcom-
plete dictionary constraint during each iteration. As depicted
in Algorithm 1, the proposed sparse recovery algorithm is
somewhat different from the traditional MP based methods
via one of the most crucial steps involved by replacing simple
hard thresholding to calculate the projection the, i.e., project
x in signal space onto the set of k sparse signals over the
dictionary D, which is given by

Λopt(x, k) = arg min
Λ:‖Λ‖0≤k

‖x− PΛx‖2, (10)

where PΛ is simply a hard thresholding operator applied to
the optimal projection of a general vector x ∈ Rn onto
the columns of D subject to the index set Λ constraint.
In particular, the calculation of such projection is obtained
by utilizing the proxy AT r if it has at most k nonzero
entries, which provides a probably guarantee to approximate
the desired sparse solution.

Recall that in (10) a vector x has a sparse representation
in terms of D, which is caused by minimizing ‖x− PΛx‖2.
Assume that calculation of the optimal projection PΛx is
generally unworkable and nontrivial provided by any A, D
and r, one alternative way allows us to apply near-optimal
projection to capture a near approximation of PΛx such that∥∥∥Psupp(D,k)(ATr)x− x

∥∥∥
2
≤ c1 ‖PΛx− x‖2∥∥∥Psupp(D,k)(ATr)x− x

∥∥∥
2
≤ c2 ‖PΛx‖2

(11)

for some constants c1 ≥ and c2 ≥ 0. Notably, near-optimal
projection is equal to optimal projection even when the
columns of D are highly correlative under the assumption
that c1 = 0 or c2 = 0, i.e., Psupp(D,k)(ATr)x = PΛx , which
leads to accurate signal recovery. We then consider the least-
squares problem based on the calculation of Psupp(D,k)(ATr)x
instead of that of PΛx. Specifically, the algorithm establishes
the signal estimation x̃ via the dominant least squares problem
of the merging step provided by T such that

x̂ = argmin
z

‖y −Az‖2 s.t. z ∈ R(DT ) (12)

with 2k largest nonzero entries of DT(ATr). Similarly, one
can obtain the solution of (16) via calculating

x̂ = DT Ã
†
T y = DT ((ÃT

T ÃT )−1ÃT
T y), (13)

where AT is the submatrix of A indexed by T . More prac-
tically, numerous empirical researches verify that the above-
mentioned standard CS recovery algorithms can be used to
calculate such near-optimal projection.

IV. SIMULATION RESULTS

In this experiment, The cameraman hyperspectral images
have a spatial resolution of 256 × 256 pixels with L = 24
bands ranging from 450 nm to 700 nm at steps of 10 nm. Fig.
1 depicts an RGB profile of the test datacube decomposed
by the spectral bands. Each spatial information of the images
is broken down into 1024 nonoverlapping of size 8 × 8
pixel patches, which forms the columns of the signal to be
reconstructed. We use the proposed algorithm to recover the
underlying datacube from the CASSI measurements corrupted
by the sensing noise with zero-mean and variance δ2 = 10−4.
The standard baseline methods act as the benchmark to recover
the images due to their reasonable computation complexity.
The peak signal-to-noise ratio (PSNR) is used to evaluate
the recovered image quality, which is given by PSNR =

10log10
‖x̂‖2
‖x−x̂‖2

, where x is the original image and x̂ is the
recovered image in this case.

Fig. 1: A RGB decomposed representation of the original
bands for the test data set used in simulations.

Fig. 2 and Table II show higher quality of recovered
bands obtained from the proposed algorithm provided by the
structure of H using a random coded aperture in term of
PSNR compared to the baselined methods. Notice that all
the entries lie in a random code are following subgaussian
distribution. The results visually show the recovered bands
with the proposed algorithm are superior. Otherwise, these
baseline methods get poor results because they fail to consider
the near-optimal projection scheme. Fig.3 further provides a
visual comparison of recovered quality of the whole datacube
to further proof the validity of the proposed algorithm.

TABLE II: AVERAGE PSNR FOR THE RECOVERED
BANDS OF MULTISPECTRAL SCENE IN dB

PSNR(dB)
Metohds Band 1 Band 2 Band 3 Band 4 Band 5 Band 6
OMP 14.25 14.32 14.24 14.93 14.21 14.57
SP 16.32 16.58 16.43 16.59 16.42 16.58
CoSaMP 17.33 17.46 17.44 17.52 17.39 17.55
LP 27.33 27.31 27.75 27.81 27.77 27.41
SSSP 27.32 27.55 27.83 27.41 27.92 27.55
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Fig. 2: Simulation results show the reconstruction of a subset
of bands for the hyperspectral images with different algo-
rithms: OMP (first row), (2) SP (second row), (3) CoSaMP
(third row), (4) LP (fourth row), and (5) SSSP (fifth row).

Fig. 3: Simulation results demonstrate the reconstruction of a
RGB representation of the hyperspectral dataset using different
algorithms: OMP (first one), (2) SP (second one), (3) CoSaMP
(third one), (4) LP (fourth one), and (5) SSSP (fifth one)
compared to the original spectral datacube (last one).

V. CONCLUSIONS

This paper presents a near-optimal projection scheme real-
ized by some existing MP and BP based methods to solve the
sparse signal recovery problem constraint to an overcomplete
dictionary. Inspired by this scheme, we thus develop a fast hard
threshold pursuit algorithm adapted to the dictionary algorithm
to iteratively identify the atoms from the dictionary provided
by the correct support set, which leads to a similar recovery
guarantees. Under specific assumption on the signal structure,

we verify that the signal space method is alternatively used
to approximate the optimal projection such that providing
theoretical backing to clearly explain the observed phenomena.
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