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Abstract—It is an established fact that malicious users in
networks are able to mislead other users since the presence
of herd behaviors, which will further amplify the hazards of
these malicious behavior. Due to the aforementioned scenarios
in many practical applications, the study of decision fusion in
the presence of such malicious users (often called Byzantines)
is receiving increasing attentions. In this paper, we propose an
evolutionary game theoretical model for decision fusion in the
presence of Byzantines (EGT-DFB) to measure the hazard of
Byzantines and to perform decision fusion. Specifically, we derive
the evolution dynamics and the corresponding evolutionary stable
states (ESS), which can be utilized to develop an optimum fusion
strategy for the fusion center (FC) based on maximum a posterior
probability criterion (MAP). Finally, simulation experiments are
conducted to validate the performance of the proposed model
and the effectiveness of decision fusion mechanism.

Index Terms—Adversarial signal processing, decision fusion,
Byzantine nodes, graphical evolutionary game theory.

I. INTRODUCTION

Decision fusion in the presence of malicious nodes, often
referred to as Byzantines [1], has received increasing attention
due to its practicality in several applications, including cog-
nitive radio, sensor networks, social networks, etc. In most
scenarios, a fusion center is required to make a decision
based on the reports given by local nodes on a multi-sensor
network, while the byzantine nodes deliberately provide false
information to mislead the center. A real-life example is
quality evaluation for online products, which, for consumers,
mainly depends on the reviews (the reports in the above
description) given by previous buyers. The Byzantines who
create false reviews could have a great impact on consumers’
shopping choices, which will lead to the disruption of normal
market competition and cause many undesirable consequences.
Therefore, it is of great importance to model the behavior of
Byzantines and study the optimum decision fusion in such an
adversarial setting.

Early research on decision fusion did not take the Byzan-
tines into consideration, and the systematic local observation
error is the main factor affecting the decision results. In this
case, the works in [2] and [3] determined the optimum algo-
rithm to combine the local reports according to the Bayesian
approach, which is called Chair-Varshney rule. This method
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degenerates into a simple majority-based decision when local
error probabilities are equal for all nodes. The problem of dis-
tributed detection in the presence of Byzantines is considered
in [4], which formulates decision fusion as a Neyman-Pearson
setup and determines the fraction of Byzantines impeding
any correct decision. Also, the work in [4] assumes that the
Byzantines cooperate with each other to infer the exact status
of the system and to attack the system accordingly. Analysis in
[4] is extended in [5], which models the interplay between the
Byzantines and fusion center as a zero-sum game. The authors
in [5] also determine the minimum fraction of Byzantines
impeding any correct decision with both cooperative and non-
cooperative Byzantines. One way to get better results is to
collect reports from different time windows and gradually
identify and eliminate Byzantines in the process, which is
also adopted in [5]. In [5], the report results at different
moments are comprehensively analyzed to assign a reputation
measure to each node, which is used to isolate Byzantines
whose reputation is below a certain threshold, also is known
as Hard Isolation. There is also a Soft Isolation method based
on adaptive learning described in [6], where the observed
behavior of the nodes is compared with the expected behavior
of honest nodes. What makes this method special is that it
works even when the majority of the nodes are byzantine.
However, it requires very long state vectors to achieve good
performances, which limits its capabilities. The authors in [7]
analyze the decision fusion when some additional knowledge
about the byzantine behavior is available. The results show
that with the knowledge about how often byzantine report
false information (Pmal) and the number of Byzantines in
the networks, better decision results can be obtained. In [8], a
game-theoretic approach is used to find the optimum strategies
for the Byzantines and the fusion center. It is found that
the optimal strategy for byzantines is to always report false
information, which is consistent with the conclusion of [7].
A decision fusion method based on the maximum posterior
probability criterion is proposed in [9], and its performance
with different types of prior knowledge is also analyzed.

Although many previous works have achieved relatively
satisfactory results, they all assume that all nodes report their
observations independently and they do not influence each
other’s decision. In the real world, when there are a large
number of talks about an event, an ordinary person is likely
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to choose to follow the crowd and change his/her mind even
if his/her original conclusions are correct. The phenomenon is
also known as the herd behavior [10], where people sometimes
ignore their own information or preferences and follow others
when making decisions. In other words, the originally honest
nodes may be influenced by malicious nodes and report false
information, thus making the decision fusion process more
challenging for the Fusion Center (FC).

To address this challenge, in this work, we study the
interplay between different users, and analyze its impact on
the fusion center. We use graphical evolutionary game theory
[11], [12] to analyze the microscopic interactions among users
and to study the impact of byzantines on other nodes as well as
the fusion center. Graphical evolutionary game theory has been
used to study crowd behavior in many scenarios, such as in-
formation diffusion over social networks [13], crowd dynamic
analysis in emergency evacuation [14], and antagonistic crowd
behaviors in cases of serious conflict [15]. Thus, in this work,
we use graphical evolutionary game to analyze the impact of
byzantines on other users’ behavior.

Our contributions include:
1) Different from all prior works in decision fusion, we

consider the scenario where users may influence each
other’s decision and propose a graphical evolutionary
game theoretic framework to study their interactions. We
analyze the evolution dynamics and quantify the impact
of byzantines on other users.

2) We then study the impact of such “ herding” behavior
among users on the fusion center, and introduce a fu-
sion method based on the maximum a posterior (MAP)
criterion. We consider two different scenarios, where the
fusion center has prior knowledge of the mean and the
upper bound of the number of Byzantines, respectively,
we show that our proposed fusion mechanism is more
effective in resisting byzantine attack.

II. PROBLEM FORMULATION

A. Decision Fusion Problem Formulation

The problem studied in this paper can be formulated into a
scenario described in Figure 1, which consists of three parts:
the system state, the user network, and the fusion center. In the
settings considered in our work, the system state is represented
by a sequence θt = (θ1, θ2...θt). The tth elements of θt may
correspond to system states at different epoch. To simplify the
problem, we assume that θt is a binary vector, which means
that θt ∈ {0, 1}.

As shown in Figure 1, each user in the network makes an
observation of the system state at each fixed epoch to obtain its
local result, which can be expressed as an observation vector
(ut1, u

t
2, u

t
3...u

t
n). We take the system errors in the observation

process into consideration, which means that the user may
observe a wrong system state (the user cannot know whether
the observed result is correct). In this paper, we assume that
the system error occurs with a fixed probability ε, and the
errors for different users at different epochs are i.i.d. After that,

Fusion center

Malicious users
(Byzantines)

Ordinary users

User 
network

System state 0/1
Observations 𝑢𝑢𝑖𝑖𝑖𝑖

Reports 𝑟𝑟𝑖𝑖𝑖𝑖

Affected users

Fig. 1. Decision fusion under adversarial conditions. The orange circles
represent the ordinary users who are affected by the surrounding Byzantines.

each user returns a report to the fusion center, which can be
expressed as a report vector Rt = (rt1, r

t
2, r

t
3...r

t
n). In this step,

the report returned to the center may be intentionally modified
by Byzantines whose purpose is to mislead the center. Another
case where the returned report is different from the observed
value is that an ordinary user is affected by the aforementioned
herding effect and makes a decision to lie. For example, if a
user finds that the reports of all surrounding users are different
from his/hers, he/she will doubt the authenticity of his/her
observations and may choose to modify his/her report to be
consistent with those around him/her for his/her own benefit.
The fusion center needs to perform decision fusion based on
the reports received, so as to infer the true system status as
much as possible. For the second case of reports modification
mentioned above, we use graphical evolutionary game theory
to describe the interaction between ordinary users and their
neighbors, including ordinary and malicious ones.

B. Basic Elements of Graphical Evolutionary Game Theory

Generally, graphical evolutionary game theory contains the
following basic elements: users, graph structure, strategy,
fitness, and evolutionary stable states (ESS).
Users and Graph Structure: The user network is repre-
sented using an undirected and connected graph, where each
node represents a user, and each edge represents the mutual
relationship between a pair of users. The graph consists of
ordinary users, who adopt a specific strategy updating rule,
and Byzantines, who use a fixed malicious strategy. For the
convenience of math derivation, we use β to represent the ratio
of Byzantines to ordinary users, that is, β is the ratio of the
number of Byzantines to the number of ordinary users.
Strategies: At epoch t, the true system state is θt, and user
i receives an observation uti. Each user has two strategies to
choose from when reporting to FC: to lie (Sl) or to be honest
(Sn). Specifically, under the definition of our binary system
state, adopting the lying strategy means user i’s reported value
rti = ūti where ·̄ is the NOT logic operator; while adopting
the Sn strategy means rti = uti and user i reports his/her
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original observation to the fusion center. Let pl represents the
percentage of ordinary users who adopt the Sl strategy. Thus,
the percentage of ordinary users who adopt the Sn strategy is
(1− pl).

Due to the existence of system error, a user’s reported value
is not only related to his/her own strategy but also related
to whether there are errors (uti 6= θt) in its observation.
Considering both system errors and users’ possible lying
behavior, we observe the following change in users’ reported
values, as illustrated in Figure 2.

𝑘𝑘𝑛𝑛⋅(1−𝜀𝜀)𝑘𝑘𝑙𝑙𝑘𝑘𝑛𝑛

𝑘𝑘𝑛𝑛 ⋅ 𝜀𝜀

𝑘𝑘𝑙𝑙 ⋅ 𝜀𝜀

𝑘𝑘𝑙𝑙 ⋅ (1 − 𝜀𝜀)

Strategy System

System error 𝜀𝜀

Changes in the 
number of users

Fig. 2. An illustration of how the system error influences the users’ decision.

Among the k neighbor’s of a focal user, assume kl of them
use strategy Sl and flip their observation results, and kn =
k − kl them choose strategy Sn and report their observations
to the fusion center. Given the system error probability ε, let
kSn be the number of neighbors whose reported value are the
same as the true system state, and kSl = k−kSn is the number
of neighbors whose reported values are different from the true
system state. Then, we have:

kSl = (1− ε)kl + εkn, (1)

kSn = (1− ε)kn + εkl. (2)

Fitness: Generally, the evolutionary game theory defines
users’ fitness as follows:

π = (1− α)B + αU, (3)

where B is the baseline fitness, and we let B = 1 in our
work. α is a weak selection coefficient. In the literature of
graphical evolutionary game theory [16]–[18], α is usually
considered to be very small and we also make this assumption
in our work. U is the payoff matrix quantifying the payoff
users receive by interacting with their neighbors. In our work,
we assume that users do not know their neighbors’ adopted
strategies but can observe their neighbors’ reported values.
Depending on whether their reported values are the same, they
receive different payoffs as shown below.

Ss Sd
Sl
Sn

(
uls uld
uns und

)
.

(4)

In Eq. (4), at epoch t, when user i adopts strategy Sl and
rti = s̄ti, if neighbor j’s reported value is the same as his/her
flipped observation, that is, rti = rtj , then user i receives payoff
uls during this interaction with user j; while when rti 6= rtj user
i receives payoff uld during this interaction. Similarly, when

user i adopts strategy Sn and reports the original observation,
he/she receives payoff uns and und when rti = rtj and rti 6= rtj ,
respectively. At this time, the user receives the payoff uls;
Similarly, Sd represents the neighbor is different from its own,
and the payoff received by the user is uld; it is similar when
the user adopts the Sn strategy.

𝐻𝐻0

𝐻𝐻0

𝐻𝐻1
𝐻𝐻0

𝐻𝐻1
𝐻𝐻1

𝐻𝐻1

Observed correctly , adopted 𝑆𝑆𝑛𝑛.

𝐻𝐻0

𝐻𝐻1
𝐻𝐻0

𝐻𝐻1
𝐻𝐻1

𝐻𝐻1

𝐻𝐻1

𝑢𝑢𝑛𝑛𝑛𝑛
𝑢𝑢𝑛𝑛𝑛𝑛

𝑢𝑢𝑛𝑛𝑛𝑛
𝑢𝑢𝑛𝑛𝑛𝑛

𝑢𝑢𝑛𝑛𝑛𝑛

𝑢𝑢𝑛𝑛𝑛𝑛 𝑢𝑢𝑛𝑛𝑛𝑛

𝑢𝑢𝑛𝑛𝑛𝑛

𝑢𝑢𝑛𝑛𝑛𝑛
𝑢𝑢𝑛𝑛𝑛𝑛

𝑢𝑢𝑛𝑛𝑛𝑛

𝑢𝑢𝑛𝑛𝑛𝑛

𝜋𝜋𝑛𝑛𝐵𝐵𝜋𝜋𝑛𝑛𝐴𝐴

Observed incorrectly and adopted 𝑆𝑆𝑛𝑛.

System State: 𝑯𝑯𝟎𝟎

Fig. 3. Calculation of the fitness π in two scenarios (with or without system
error).

Given the above definition, the next step is to define the
fitness function. Note that users do not know whether their ob-
servations include system errors. Therefore, we first consider
the scenario where user i’s observation is error free and is the
same as the true system state, that is, uti = θt. Therefore, if
user i adopts strategy Sl and rti = ūti 6= θt, then user i receives
payoff uld when interacting with each of the kSn neighbors
whose reported values are the same as θt, and user i receives
payoff uls when interacting with each of the kSl neighbors
whose reported values are different from θt. Therefore, user
i’s fitness is Eq. (5). Similarly, when user i adopts strategy
Sn and reports the original observation with rti = uti = θt,
and his/her fitness is Eq. (6). In the second scenario, user
i’s observation includes error, and uti = θ̄t. Using the same
analysis as above, user i’s fitness when adopting strategy Sl
and Sn are eq. (7), and eq. (8), respectively.

Therefore, we divide the situation into two types according
to whether system error occurs, and calculate the fitness of
users who adopt the strategy Sl and the strategy Sn when
system errors exist and the fitness of users who adopt the
strategy Sl and the strategy Sn when the observation is error-
free respectively. The above process can be derived as follows:
• Scenario A: observation is correct

πAl = 1− α+ α
[
kSl uls +

(
k − kSl

)
uld
]
, (5)

πAn = 1− α+ α
[
kSnuns +

(
k − kSn

)
und
]
, (6)

• Scenario B: observation is incorrect

πBl = 1− α+ α
[
kSnuls +

(
k − kSn

)
uld
]
, (7)

πBn = 1− α+ α
[
kSl uns +

(
k − kSl

)
und
]
. (8)

Strategy Update Rule: In the long iteration process, or-
dinary users may be affected by their neighbors to update
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their strategies. In evolutionary game theory, there are three
most prevalent strategy update rules, namely birth-death (BD),
death-birth (DB), and imitation (IM). Same as [16], we adopt
the Death-Birth update rule and adjust it to our scenario.
For DB strategy update rule, a random player is chosen
to abandon his/her current strategy (Death process). Then,
the chosen player adopts one of his/her neighbors’ strategies
with the probability being proportional to their fitness (Birth
process). In this work, users can only observe others’ reported
values but not their strategies. Therefore, in our research, each
user can only infer the strategies adopted by others through
comprehensively considering the reports of others and their
own observations. The specific details of this process will be
elaborated in Section III. The other update rules are similar
and omitted here. And analysis of the other update rules are
similar and omitted here.
ESS: ESS is defined as an evolutionary stable state [19]. After
the evolutionary process reaches ESS, even if some mutant
populations appear (mutants can be understood as decision-
makers taking new different strategies), the system can auto-
matically eliminate these small disturbances and return to the
stable state. At the ESS, the evolution dynamics satisfy ṗl = 0,
that is, the proportion of ordinary users with strategy Sl does
not change. Let (p∗l , p

∗
n) be the percentage of users adopting

strategy Sl and Sn, respectively, at the ESS.

III. EVOLUTIONARY DYNAMICS OF THE USER NETWORK
WITH BYZANTINES

In this section, we will find the dynamics of network strat-
egy proportion pl and the corresponding evolutionary stable
states (ESS). The obtained evolutionary dynamic equation and
ESS link the user’s strategy-making process and the final
evolutionary stable state with the user’s payoff matrix, system
error, and proportion of Byzantines.

The study of the dynamic evolution process in this section
is based on the following two assumptions: (a) each user does
not know whether other users are Byzantines and (b) the user
knows all of his/her neighbors’ previous reports.

At each epoch during the evolution process, An ordinary
user is randomly selected from the network as the focal
user to update the strategy. According to the DB update
rule, the focal user will adopt the strategy of its neighbors,
and the probability of adopting is proportional to the user
fitness. However, since the user does not know whether there
is an observation error, it has no way of knowing whether
the neighbor has an observation error. What needs to be
clarified is that the user’s fitness calculation is performed
locally based on his/her observations. Specifically, each user
believes that his/her observation is definitely correct and uses
it as a reference to calculate the fitness of their neighbors. In
the fitness calculation process of the focal user, the neighbors
whose reports are consistent with his/her own observation
results are considered to have adopted the strategy Sn, and
neighbors whose reports are different are considered to have
adopted strategy Sl.

𝐻𝐻0

𝐻𝐻0

𝐻𝐻1
𝐻𝐻0

𝐻𝐻1
𝐻𝐻1

𝐻𝐻1

𝜋𝜋𝑙𝑙𝐵𝐵

𝜋𝜋𝑛𝑛𝐴𝐴𝜋𝜋𝑛𝑛𝐵𝐵

𝜋𝜋𝑙𝑙𝐴𝐴

𝜋𝜋𝑙𝑙𝐴𝐴

𝜋𝜋𝑙𝑙𝐴𝐴

Observed correctly , adopted 𝑆𝑆𝑛𝑛.

𝐻𝐻0

𝐻𝐻1
𝐻𝐻0

𝐻𝐻1
𝐻𝐻1

𝐻𝐻1

𝜋𝜋𝑛𝑛𝐵𝐵

𝜋𝜋𝑙𝑙𝐴𝐴𝜋𝜋𝑛𝑛𝐵𝐵

𝜋𝜋𝑙𝑙𝐴𝐴

𝜋𝜋𝑙𝑙𝐴𝐴

𝜋𝜋𝑙𝑙𝐴𝐴

𝐻𝐻1

𝑃𝑃𝑛𝑛→𝑙𝑙𝐴𝐴

Observed correctly , adopted 𝑆𝑆𝑙𝑙.

System State: 𝑯𝑯𝟎𝟎

Strategy
Update

Fig. 4. An example of strategy updating process for the central user who has
a correct observation and adopts strategy Sl.

According to the DB update rule, the probability that the
central user changes his/her strategy from Sn to Sl is as
follows:
• Scenario A: Focal user has no observation error

PAn→l =

kl(1− ε) · πAl + knε · πBn[
kn(1− ε) · πAn + εkl · πBl

]
+
[
kl(1− ε) · πAl + εkn · πBn

] .
(9)

• Scenario B: Focal user has observation error

PBn→l =

kn(1− ε) · πAn + klε · πBl[
kn(1− ε) · πAn + εkl · πBl

]
+ [kl(1− ε) · πl1 + εkn · πBn ]

.

(10)
Combining Eq. (9) and Eq. (10) yields the probability that

any ordinary user in the network changes strategy from Sn to
Sl , which is shown as Eq. (11) at the bottom of next page.
Note that in Eq. (9) and Eq. (10), we need to know kl and
kn, the number of neighbors adopting strategy Sl and Sn,
respectively. In the following, we will study how to analyze
kl and kn.

Assume an ordinary user has k ordinary neighbors and kbl
byzantine neighbors. From Section II, we assume that the ratio
of byzantines to ordinary users are β, and we assume that
byzantine users are uniformly distributed throughout the entire
network. Therefore, we use the approximation kbl = β

1+βk in
the following analysis. Among the k ordinary neighbors, kol
of them adopt strategy Sl and the rest kon = k − kol adopt
strategy Sn. Note that pl is the percentage of ordinary users
in the network adopting strategy Sl. Therefore, given k, kol is
a binomial random variable with probability mass function

θ (k, kol) =

(
k
kol

)
pkoll (1− pl)k−kol . (12)

In summary, among the k ordinary neighbors and kbl
byzantines, kl = kol + kbl of them adopt strategy Sl and
kn = kon = k − kol of them adopt strategy Sn.

Summarizing the above analysis, we can get
E [Pn→l (k, kol)], the expected probability of ordinary
user’s strategy changing from Sn to Sl. At this time, the
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number of ordinary users who adopt the strategy Sl will
increase by 1, and pl will increase by 1/N , which happens
with probability:

P
(

∆pl =
1

N

)
= (1− pl)E [Pn→l (k, kl)] , (13)

where ∆ indicates the increment. With a similar argument as
above, one can compute the probability that a user changes its
strategy from Sl to Sn. We thus obtain:

P
(

∆pl = − 1

N

)
= pl(1− E [Pn→l (k, kl)]), (14)

Summarizing Eq. (13) and Eq. (14), we deduce the dynamic
of pl:

ṗl = − 1

N
P
(

∆pl = − 1

N

)
+

1

N
P
(

∆pl =
1

N

)
. (15)

Hence, substituting the expressions of users’ fitness π in
Eqs. (5) - (8), Eq. (11) and Eqs. (13) - (14) into Eq. (15),
we let ṗl = 0 to get the proportion of ordinary users who
use the strategy Sl when the user network is in a stable
state (ESS). In other words, we get the proportion of ordinary
users who are affected by Byzantines. Due to the influence of
group effects, their behavior made them unconsciously become
“Byzantines”. The above process is calculated using Wolfram
Mathematica 12.1 software, and the analytical solution is very
complex and cannot be displayed in the paper. Therefore, we
will mainly analyze the numerical solution of this part in the
simulation section of this paper.

IV. DECISION FUSION IN THE PRESENCE OF BYZANTINES
AND HERD BEHAVIOR

In this section, based on the evolutionary game theoretic
study of how byzantines influence ordinary users in the
previous section, we propose the optimal fusion strategy.

A. The Optimum Decision Rule

The optimum decision rule by adopting a maximum the
posterior probability criterion has been proposed in [9], as-
suming that ordinary users will always honest report their
observations with rti = uti and byzantines flip their observa-
tions with probability Pmal. the ordinary users will always
honestly report the observed system status. For the honest
nodes rti = uti always holds, and for malicious nodes, they
flip uti with a certain probability Pmal . Given the received
reports vector Rt = (rt1, r

t
2, r

t
3...r

t
n), the optimum decision

fusion results θt,∗ in [9] minimizing the error probability is
shown as follows:

θt,∗ = arg max
θt

P
(
θt|Rt

)
, (16)

By applying Bayes rule and using the fact that all state
sequences have equal probabilities, we get:

θt,∗ = arg max
θt

P
(
Rt|θt

)
, (17)

Similar to the work in [9], let ξn = (ξ1, ξ2...ξn) be a binary
random sequence in which ξi = 0 if node i is an ordinary
user, and ξi = 1 when user i is a byzantine user, and let P (ξ)
be the probability distribution of byzantines across the entire
network. Using the same method in [9], the optimal θt,∗ given
ξi and θj is:

θt,∗ = arg max
θt

∑
ξn

 n∏
i=1

t∏
j=1

P
(
rji |ξi, θ

j
)P (ξn) , (18)

which will be used in our future analysis.

B. Measuring the Hazard of Byzantines

In our work, Byzantines can not only attack the decision
fusion process by directly submitting false reports but also
indirectly affect the fusion process by influencing ordinary
users. Therefore, we use the model in Section III to predict
and measure the hazard of Byzantines. After that, we utilize
the expected proportion of ordinary users who are affected by
Byzantines pl to recalculate the optimum decision rule that
minimizes the fusion error probability.

First of all, we calculate the direct hazard of the Byzantines,
and the probability δ that the FC receives a wrong report is:

δ = ε (1− Pmal) + (1− ε)Pmal. (19)

Note that with the existence of herd effects, we have calcu-
lated the proportion of ordinary users affected by Byzantines in
ESS, which is the solution of the model in the previous section.
We define this proportion as pl, that is, the proportion of
ordinary users who will flip the observation report. Therefore,
the probability that the FC receives a wrong report from an
ordinary user is:

γ = (1− ε) · pl + ε · (1− pl) . (20)

From the above analysis, we can conclude that the value
of P

(
rji |ξi, θj

)
can be divided into the following four types

according to ξi and θj :

P
(
rji |ξi, θ

j
)

=


γ Ordinary users, with error

1− γ Ordinary users, error free
δ Byzantine users, with error

1− δ Byzantine users, error free,
(21)

Pn→l = (1− ε) · PAn→l + ε · PBn→l =
ε ·
[
kn(1− ε) · πAn + klε · πBl

]
+ (1− ε) ·

[
kl(1− ε) · πl1 + knε · πBn

][
kn(1− ε) · πAn + εkl · πBl

]
+ [kl(1− ε) · πl1 + εkn · πBn ]

. (11)
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Substituting (21) into (18), the optimum decision rule in
this scenario can be written as:

θt,∗ = arg max
θt

∑
ξn

 ∏
i:ξi=0

(1− γ)teq(i)γt−teq(i)

∏
i:ξi=1

(1− δ)teq(i)δt−teq(i)
P (ξn) .

(22)

where teq(i) is the number of j’s for which rji = θj . In (22),∏
i:ξi=0(1 − γ)teq(i)γt−teq(i) corresponds to ordinary users,

and
∏
i:ξi=1(1− δ)teq(i)δt−teq(i) corresponds Byzantines.

It can be observed from the above equation that the com-
plexity of this problem grows exponentially with the number
of states of the system t, so the decision fusion will be limited
by the number of the state of the system.

To simply the analysis, same as in [9], we consider the
distribution of different Byzantines and find the optimal fusion
strategy accordingly, as shown below.

C. Addressing Different Distribution of Byzantines

Similar to the work in [9], in this work, we use “distribution
of byzantines” to refer to the prior knowledge of bzyantines
known to the fusion center. Here, two cases are considered in
our work. In the first one, the FC knows the expected fraction
of byzantines users in the network. In the second case, the FC
knows only an upper bound of the number of Byzantines.

Maximum Entropy With Given E[β] : In the first case,
a simple distribution is considered that the ratio of ordinary
users to Byzantines is known to FC. Then the probability that
a user is byzantine is β

1+β and these probabilities for different
users are independent of each other. Therefore, eq. (22) can
be rewritten as:

θt,∗ = arg max
θt

n∏
i=1

[
1

1 + β
(1− γ)teq(i)γt−teq(i)

+
β

1 + β
(1− δ)teq(i)δt−teq(i)

]
.

(23)

Here, as we assume that the probability of each node being
a byzantine is independent of other nodes’, the complexity of
the algorithm only increases linearly with the number of nodes
n.

Maximum Entropy With Given Upper Bound on the
Possible Number of Byzantines: In many realistic scenarios,
we do not know the number or proportion of malicious users
in the network, but we can roughly estimate the upper limit
of malicious users. Therefore, in the second case, we focus on
analyzing this scenario.

In this case, we assume the FC knows that the number of
Byzantines NB will be lower than a certain upper bound h (eg:
h = N/2). Since we are considering the maximum entropy
distribution, in the fusion process we assume that all possible
values of NB with NB < h are equally likely. To solve this
problem, let I be the indexing set {1, 2...n}. We denote with
Ik the set of all the possible k-subsets of I. Enumerate every

I ∈ Ik, and treat the users at the subscripts in I as Byzantines
each time, which means a user i is byzantine if i ∈ I , ordinary
otherwise. With this notation, (22) can be modified to:

θt,∗ = arg max
θt

h−1∑
k=0

∑
I∈Ik

(∏
i∈I

(1− δ)teq(i)δt−teq(i)

∏
i∈I\I

(1− γ)teq(i)γt−teq(i)

 .

(24)

Obviously, the complexity of this algorithm grows exponen-
tially not only with the number of system states t, but also with
the number of users n, which makes the algorithm difficult
to implement, so in the experiment, we used the dynamic
programming algorithm in [9] to find the optimal solution of
(24).

V. SIMULATION RESULTS

In this section, our simulation is divided into two parts. First,
we verify and analyze the theoretical analysis in Section III to
measure the hazard of Byzantines. Then we use the analytical
results of the proposed graph evolutionary game to perform
decision fusion on a random network that takes herd behavior
into consideration.

A. Evolutionary Dynamics of Byzantine Users

We first verify the effectiveness of the theoretical analysis
of the hazards of Byzantine users through Monte Carlo simu-
lation experiments. Two commonly used network structures
are considered in the experiment: uniform degree (regular)
network and the Barabási-Albert (BA) scale-free network. The
parameters set in our simulations are as follows: the size of the
network is 1000, the degree for regular networks and average
degree for scale free networks are k = 10, and the weak
selection coefficient α is 0.0001. The payoff matrix is set to
uns = 0.8, unn = 0.6, uls = 0.6, uln = 0.4. And the initial
proportion is pl = 0.2. For each type of network, 5 graphs are
randomly generated, and 96 simulation runs are conducted for
each graph. Besides, the number of generations for graphical
EGT is set to 300.

Fig. 5 shows the evolutionary dynamics of pl on the BA
network where all users use the DB update rule. Our simu-
lation results show that the network structure does not affect
our simulation results on pl, and thus, we omit the results on
regular networks here. We can see that the theoretical results
can fit well with simulation results with different experimental
parameter settings, and the number of ordinary users adopting
the Sl strategy gradually increases to a stable value (ESS)
with time due to the influence of byzantine users. Besides,
we evaluate the performance under different parameters on
networks. Fig. 5(a) shows that as the system observation error
increases, the number of users who adopt the two strategies in
the group tends to be similar, that is, the proportion of users
who adopt the Sl strategy tends to 0.5. Fig. 5(b) shows that
as the number of Byzantines increases, the number of users
adopting Sl strategies in the group will also increase. These
findings are also shown in Figure 6.
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Fig. 5. The evolutionary dynamics of pl on BA scale-free networks (k̄ = 10) with (a) different system errors ε = 0.1, 0.15, 0.20, and (b) different percentages
of byzantines β = 0.3, 0.5, 0.8.
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Fig. 6. The ESS (p∗l ) on BA scale-free networks (k̄ = 10) with (a) different system errors ε = 0.1, 0.15, 0.20, and (b) different percentages of byzantines
β = 0.4, 0.6, 0.8.

Then we evaluate the ESS under different parameters on
networks. Fig. 6(a), 6(b) show the impact of the system error
rates and the proportion of Byzantines on the ordinary user
group, respectively. From Fig. 6(a), we can see that as the
system error rate increases, the proportion of ordinary users
influenced by byzantines (p∗l ) gradually approaches 0.5. This
is because when the system error rate is too large, users can
no longer make any meaningful decisions and thus adopt a
strategy similar to “tossing a coin”. Then, from Fig. 6(b), it can
be seen that when the system error rate is small, the number
of Byzantines has a greater impact on the network and vice
versa, which is also consistent with the conclusions of previous
experiments. Besides, through experiments, we also find that

the network structure has little effect on the model.
In addition, the experimental results show that Byzantines

are very harmful to the network. When the system error is
small, only a few Byzantines are needed to affect the majority
of ordinary users, which is also consistent with the conclusion
in [13]. Meanwhile, the increase in system error rate will
reduce this phenomenon, but the proportion of ordinary users
will still be affected by more than 50%, so it is valuable to
study effective methods to resist byzantine attacks.

B. Decision Fusion with Herd Behavior

After validating the correctness of our analysis in our
model in Section III, we further use this result to verify the
performance of the proposed decision fusion algorithm.
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In the presence of herd behavior, we first compare the accu-
racy of the original fusion strategy with our newly proposed
fusion strategy. Similar to the previous experiment, we first
compare the impact of different system error rates on algo-
rithm performance under the same proportion of Byzantines,
as shown in Table I. Here, we still run 300 simulations each
time, but the fusion time window t is 10, and the average
value of the fusion accuracy rate is obtained by repeating 1000
trials in the Monte Carlo method. Previous works have either
shown that Pmal = 1 is a dominant strategy [20], [21], so we
similarly set parameters Pmal = 1 like this. Since it was found
that the graph structure has little effect on the network, so
for simplicity, we use a random uniform network to perform
fusion experiments. In addition, we consider two scenarios
in this work: in scenario 1 (SC1) ordinary users will only
submit honest reports and scenario 2 (SC2) is the main study
object of this paper, where ordinary users will be affected by
byzantine users to flip reports. Comparing the accuracy of the
OPT method in [9] and after the scene change, we prove the
effectiveness of the proposed EGT-DFB method proposed in
this paper.

TABLE I
ACCURACY OF THE FUSION ALGORITHMS IN TWO SCENARIOS WITH

ε = 0.1

Method
Scenario

β
0.3 0.5 0.7 0.9

OPT [9] SC1 0.9985 0.9982 0.9981 0.9980

OPT [9] SC2 0.0073 0.0033 0.0033 0.0033

EGT-DFB SC2 0.9953 0.9967 0.9967 0.9968

TABLE II
ACCURACY OF THE FUSION ALGORITHMS IN TWO SCENARIOS WITH

ε = 0.2

Method
Scenario

β
0.3 0.5 0.7 0.9

OPT [9] SC1 0.9985 0.9985 0.9983 0.9268

OPT [9] SC2 0.0145 0.0046 0.0053 0.0033

EGT-DFB SC2 0.9940 0.9959 0.9964 0.9967

From Table I and Table II, we can see that the original
method (OPT) proposed in [9] had remarkable fusion accuracy
when ordinary users were not influnced by others and submit
their observations independently in scenario (SC1), but it fails
to get accurate estimates of the system states when users
can see others’ reported values and when they influence each
other’s decision. The proposed fusion strategy (EGT-DFB) can
still achieve high estimation accuracy even when byzantines
may greatly influence others’ decisions. under the situation of
ordinary users being affected. The worst case when ε = 0.1
fusion accuracy rate is only 3.3e − 3. When ε is larger in
TableII, our model even has a higher fusion accuracy than
the original model in the original scene when β = 0.9 . The
results show that although Byzantines can be very detrimental

to the network through herd behavior, we can still predict the
dynamic changes of the network through our graphical EGT
model and achieve better decision fusion results.

TABLE III
ACCURACY OF THE FUSION ALGORITHMS IN TWO SCENARIOS WITH

β = 0.3

.

Method
Scenario

ε
0.05 0.10 0.15 0.20

OPT [9] SC1 0.9985 0.9985 0.9982 0.9985

OPT [9] SC2 0.0093 0.0037 0.0071 0.0145

EGT-DFB SC2 0.9904 0.9953 0.9926 0.9949

Under the same experimental settings, we explored the
performance of the algorithm under different system error
rates, and the results are shown in Table III. From Table III
we can see that the system error rate has almost no effect on
the fusion accuracy. In addition, as the number of Byzantines
increases, the accuracy rate of the proposed fusion rules also
increases. Then, we conduct experiments on different prior
knowledge of Byzantine distribution whose results are shown
in Table IV.

TABLE IV
ACCURACY OF THE FUSION RESULTS WITH DIFFERENT DISTRIBUTION OF

BYZANTINES

Byzantines h 30% 50%

Distribution β 0.2 0.3 0.4 0.3 0.5 0.8

Known upper bound 0.9998 1.0000 1.0000 0.9998 1.0000 1.0000

Known Byzantine ratio 0.9892 0.9953 0.9956 0.9953 0.9967 0.9967

It can be seen from Table IV that when the FC has some
prior knowledge of Byzantines, such as the upper limit of the
Byzantine population as a percentage of the total population
h ≥ β

1+β 100%, the accuracy of decision fusion is higher
than before. Particularly, for the case where the upper limit
of the number of Byzantines is known, the closer the known
upper limit is to the real number, the higher the accuracy. In
addition, the algorithm performs better when the upper limit
of the number is known than the specific ratio of Byzantines
is known. This is because when we only know the upper limit,
all possibilities are considered in our fusion strategy, but this
also greatly increases the computational complexity. Overall,
the fusion mechanism can achieve a well fusion effect in both
cases.

VI. CONCLUSIONS

In this paper, we delved into a new scenario of decision
fusion, where ordinary users will be affected by Byzantines
due to the existence of herd behavior phenomena and may
use the same strategy as the Byzantines. We propose to utilize
graphical EGT to analyze the user’s behavior and measure the
hazard impact of Byzantines. Then we derive the evolution
dynamics and the corresponding evolutionary stable states
(ESSs). Next, we propose an effective fusion mechanism for
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the FC based on the prediction results of the graphical EGT
model and a decision fusion method based on the maximum
a posterior criterion. Our simulation results show that the
graphical EGT model can predict the number of lies in a
group and the hazards of Byzantines. In addition, we show that
our proposed fusion strategy can effectively resist byzantine
attacks even when malicious users may greatly influence
others’ decisions.

REFERENCES

[1] A. Vempaty, L. Tong, and P. Varshney, “Distributed inference with
byzantine data: State-of-the-art review on data falsification attacks,”
Signal Processing Magazine, IEEE, vol. 30, pp. 65–75, 09 2013.

[2] Z. Chair and P. K. Varshney, “Optimal data fusion in multiple sensor
detection systems,” IEEE Transactions on Aerospace and Electronic
Systems, vol. AES-22, no. 1, pp. 98–101, 1986.

[3] P. K. Varshney, Distributed detection and data fusion. Springer Science
& Business Media, 2012.

[4] S. Marano, V. Matta, and L. Tong, “Distributed detection in the presence
of byzantine attacks,” IEEE Transactions on Signal Processing, vol. 57,
no. 1, pp. 16–29, 2009.

[5] A. S. Rawat, P. Anand, H. Chen, and P. K. Varshney, “Collaborative
spectrum sensing in the presence of byzantine attacks in cognitive radio
networks,” IEEE Transactions on Signal Processing, vol. 59, no. 2, pp.
774–786, 2011.

[6] A. Vempaty, K. Agrawal, P. Varshney, and H. Chen, “Adaptive learning
of byzantines’ behavior in cooperative spectrum sensing,” in 2011 IEEE
wireless communications and networking conference. IEEE, 2011, pp.
1310–1315.

[7] A. Abrardo, M. Barni, K. Kallas, and B. Tondi, “Decision fusion with
corrupted reports in multi-sensor networks: A game-theoretic approach,”
in 53rd IEEE Conference on Decision and Control, 2014, pp. 505–510.

[8] B. Kailkhura, S. Brahma, Y. S. Han, and P. K. Varshney, “Optimal
distributed detection in the presence of byzantines,” in 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing,
2013, pp. 2925–2929.

[9] A. Abrardo, M. Barni, K. Kallas, and B. Tondi, “A game-theoretic
framework for optimum decision fusion in the presence of byzantines,”
IEEE Transactions on Information Forensics and Security, vol. 11, no. 6,
pp. 1333–1345, 2016.

[10] R. M. Raafat, N. Chater, and C. Frith, “Herding in humans,” Trends in
Cognitive Sciences, vol. 13, no. 10, pp. 0–428, 2009.

[11] C. Jiang, Y. Chen, and K. J. R. Liu, “Modeling information diffusion
dynamics over social networks,” in 2014 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2014, pp. 1095–
1099.

[12] C. Jiang, Y. Chen, and K. R. Liu, “Graphical evolutionary game for
information diffusion over social networks,” IEEE Journal of Selected
Topics in Signal Processing, vol. 8, no. 4, pp. 524–536, 2014.

[13] H. Zhang, Y. Li, Y. Hu, Y. Chen, and H. V. Zhao, “Measuring the hazard
of malicious nodes in information diffusion over social networks,” in
2019 Asia-Pacific Signal and Information Processing Association Annual
Summit and Conference (APSIPA ASC), 2019, pp. 476–481.

[14] A. Mohd Ibrahim, I. Venkat, and P. De Wilde, “The impact of potential
crowd behaviours on emergency evacuation: An evolutionary game
theoretic approach,” Journal of Artificial Societies and Social Simulation,
The, vol. 22, 01 2019.

[15] C. Li, P. Lv, D. Manocha, H. Wang, Y. Li, B. Zhou, and M. Xu, “Acsee:
Antagonistic crowd simulation model with emotional contagion and
evolutionary game theory,” IEEE Transactions on Affective Computing,
pp. 1–1, 2019.

[16] X. Cao, Y. Chen, C. Jiang, and K. J. Ray Liu, “Evolutionary information
diffusion over heterogeneous social networks,” IEEE Transactions on
Signal and Information Processing over Networks, vol. 2, no. 4, pp.
595–610, 2016.

[17] C. Jiang, Y. Chen, and K. J. R. Liu, “Evolutionary dynamics of infor-
mation diffusion over social networks,” IEEE Transactions on Signal
Processing, vol. 62, no. 17, pp. 4573–4586, 2014.

[18] Y. Li, Y. Li, H. Hu, H. V. Zhao, and Y. Chen, “Graphical evolutionary
game theoretic analysis of super users in information diffusion,” in
ICASSP 2020 - 2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2020, pp. 5650–5654.

[19] P. D. Taylor and L. B. Jonker, “Evolutionary stable strategies and game
dynamics,” Mathematical biosciences, vol. 40, no. 1-2, pp. 145–156,
1978.

[20] A. S. Rawat, P. Anand, H. Chen, and P. K. Varshney, “Collaborative
spectrum sensing in the presence of byzantine attacks in cognitive radio
networks,” IEEE Transactions on Signal Processing, vol. 59, no. 2, pp.
774–786, 2010.

[21] B. Kailkhura, S. Brahma, Y. S. Han, and P. K. Varshney, “Optimal
distributed detection in the presence of byzantines,” in 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing.
IEEE, 2013, pp. 2925–2929.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

169


