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Abstract—This paper proposes a parallel adaptive filtering
algorithm via analysis of the mean-square deviation for large-
scale data. In this algorithm, large-scale data is divided into
several sub-blocks to reduce the computational cost. Based on
each data sub-block, a normalized least-mean-square algorithm
estimates the parameters of interest at each sub-filter. Fur-
thermore, the mean-square deviation analysis of the estimation
result at each sub-filter leads to a variable step-size method
and an intermittent-update method. These methods provide not
only fast convergence rate and small steady-state error but also
high computational efficiency. Finally, the estimation results of
each sub-filter are combined through a combination method by
determining the weights for each estimation result based on
their error variance. The proposed combination method provides
robustness to abnormalities of the data. Simulation results show
that the proposed algorithm performs well for estimation with
large-scale data.

I. INTRODUCTION

Large-scale data has received wide attention from re-
searchers in various fields because volumes of data are rapidly
grown by the Internet, social media, and mobile devices. In
this era of data deluge, handling large-scale data has been one
of the most noteworthy research in signal processing areas
[1-6].

There are important challenges to deal with large-scale
data because it often degrades performance of traditional
signal processing methods. Using large-scale data sets without
considering the characteristic of the data may be infeasible
or limit the applicability of traditional methods. Many signal
processing areas are currently facing this challenge of coping
with massive volume and dimensionality of data [7]. As part
of response to these challenges, Large-scale data optimization
problems have been widely studied such as compressed sens-
ing methods [8-10], high-order tensors [11], [12], coordinate
descent methods [13-15].

Furthermore, adaptive stochastic gradient algorithms such
as least-mean-square (LMS) and recursive least-squares (RLS)
algorithms for big data have also received a great deal of
attention [16]. Such adaptive filtering algorithms can be widely
used in online learning for large-scale data analytics because of
its computational simplicity and ease of implementation [16-
18]. Analyzing and processing of large-scale data poses signif-
icant challenges in the adaptive filtering algorithms because of
the data dimensionality. In general, sub-samples of given large-
scale data are used for solving optimization problems [19-22].

They choose and use only a few specific sub-sample data to
alleviate the computational burden. However, each sub-sample
of data can have valuable and important information even if
it is not chosen. Therefore, new paradigms and techniques
are required for large-scale data on the adaptive filters, which
can consider not only the computational efficiency but also
importance of all the given data.

Fig. 1. Parallel-processing framework for adaptive filtering of large-scale data.

This paper proposes a parallel-processing framework (Fig.
1) to solve the parameter estimation problem for adaptive
filtering of large-scale data. Given large-scale data is de-
composed into several data sub-blocks. This decomposition
reduces the computational complexity and makes the adaptive

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

143978-988-14768-8-3/20/$31.00 ©2020 APSIPA APSIPA-ASC 2020



filters implementable and scalable for large-scale data. Based
on each data sub-block with adequate size, the normalized
least-mean-square (NLMS) algorithm is derived to estimate
the target parameter at each sub-filter. Furthermore, the vari-
able step-size method and the intermittent-update method
are derived by analyzing the mean-square deviation (MSD)
performance of the NLMS algorithm at each sub-filter. The
variable step-size method controls the step size to improve
the performance in terms of the convergence rate and the
steady-state error. The intermittent-update method performs
occasional updates to improve the computational efficiency by
avoiding the redundant updates. As can be seen in Fig. 1, the
output of each sub-filter is combined with the other outputs
through a combination method. By adopting the combination
concept in diffusion adaptive filtering algorithms [23], the
combination method combines all outputs of the sub-filters
through the weighted sum based on their inverse of the error
variance. Because the preciseness of each output is assumed
to be proportional to its inverse of the error variance, the
proposed combination method provides effective and robust
weights for combining each output. The performance of the
proposed algorithmic framework for large-scale data is verified
by simulations. Because the adaptive filters contribute an
important part of statistical signal processing, the proposed
framework provides new capabilities and opportunities for
signal processing of big data.

In this paper, bold symbols are used for column vectors
(lower-case) and matrices (upper-case). For arbitrary nonneg-
ative integers a and b, the following notations are used:

(·)T transpose of a vector or matrix;
Tr(·) trace of a matrix;
E(·) expectation of a random variable;
Ra×b set of real matrices of dimension a× b;
‖ · ‖ Euclidean norm of a vector;
Ia identity matrix of dimension a× a.

II. PARALLEL ADAPTIVE FILTERING FOR LARGE-SCALE
DATA

Fig. 2. Block diagram of parameter estimation using adaptive filter

Consider a parameter estimation model (Fig. 2). The un-
known weight vector that is to be estimated is represented as
wo ∈ RM×1. The weight vector of the adaptive filter at any
particular iteration n is represented as wn ∈ RM×1. The input
data is considered as a large-scale matrix, which is represented

at iteration n for arbitrary positive integers 0 < L < M as

Un = [u1,n,u2,n, · · · ,uL,n] ∈ RM×L, (1)

where ui,n = [ui,n, ui,n−1, · · · , ui,n−M+1]T ∈ RM×1 and
ui,n for all i ∈ [1, · · · , L] is comprised of a zero-mean white
Gaussian signal. The measurement noise vector at iteration n
is defined as

vn = [v1,n, v2,n, · · · , vL,n]T ∈ RL×1, (2)

which is comprised of a zero-mean white Gaussian signal with
variance σ2

v and it is assumed to be independent from the input
matrix Un. Then, the desired vector measured at iteration n
is represented via a linear regression model as

dn = UT
nwo + vn ∈ RL×1,

= [d1,n, d2,n, · · · , dL,n]T , (3)

where di,n = uT
i,nwo + vi,n. The structure of large-scale

data is similar to that of the affine projection algorithm
(APA). However, statistical properties of data are different
because data matrix of the APA are made by stacking several
past input vectors. In general, the estimate of the unknown
weight vector can be obtained via the gradient-based recursion
such as iterative solver including interior point methods and
centralized online schemes. For large-scale data, however,
estimation problem reinvents itself because their sizes are too
large to process locally. The implementation of such estimators
requires heavy computational resources.

A. Decomposition of large-scale data

As mentioned earlier, the size of the data can significantly
degrade the performance of the adaptive filtering algorithms
in the aspect of computational complexity. Therefore, the
large-scale data that is arising in (3) might cause problems
of computational burden. To overcome this drawback, given
large-scale data Un is decomposed into N sub-blocks as

Un =

 Ū1,n Ū2,n · · · ŪN,n

 , (4)

where Ūk,n denotes the k-th data sub-block for k ∈
[1, · · · , N ]. From the decomposed data, the unknown system
is estimated in parallel way at the sub-filter based on each
data sub-block. Because each sub-block has reasonable size,
the problem of computational complexity can be efficiently
solved. The input data, the measurement noise vector, and the
desired vector for k-th sub-filter are expressed as

Ūk,n = [uSk(1),n,uSk(2),n, · · · ,uSk(L̄),n] ∈ RM×L̄, (5)

vk,n = [vSk(1),n, vSk(2),n, · · · , vSk(L̄),n]T ∈ RL̄×1, (6)

dk,n = [dSk(1),n, dSk(2),n, · · · , dSk(L̄),n]T ∈ RL̄×1, (7)
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where L̄ , L/N , Sk(i) , (k − 1)L̄ + i. Then, the desired
signal of block k can be represented as

dk,n = ŪT
k,nwo + vk,n. (8)

Based on the above measurements of k-th data sub-block, the
output of k-th sub-filter is defined as an estimated weight
vector using k-th data sub-block such that wk,n. Then, an
a priori error vector of k-th sub-filter can be defined as

ek,n , dk,n − ŪT
k,nwk,n. (9)

B. NLMS algorithm at each sub-filter

Based on the each data sub-block, the NLMS algorithm is
adopted to estimate the unknown system wo at each sub-filter.
From [17], the weight update equation of the NLMS algorithm
of k-th sub-filter is represented as

wk,n+1 = wk,n + µk,nŪk,n(ŪT
k,nŪk,n)−1ek,n, (10)

where µk,n is a step size.

C. Mean-square deviation analysis of each sub-filter

The weight error vector of k-th sub-filter is defined as

w̃k,n , wo −wk,n. (11)

Then, the a priori error (9) and the NLMS algorithm (10) can
be described in terms of w̃k,n as

w̃k,n+1 = w̃k,n − µk,nŪk,nGk,nek,n (12)

ek,n = ŪT
k,nw̃k,n + vk,n, (13)

where Gk,n , (ŪT
k,nŪk,n)−1. The transition matrix is defined

as

Φk,(n+1,n) , IM − µk,nŪk,nGk,nŪT
k,n, (14)

Φk,(n,n) , IM , (15)

Φk,(n,m) , Φk,(n,l)Φk,(l,m), (16)

where IM ∈ RM×M is the identity matrix. Because there is no
dependency between vk,n+1 and vk,n, an augmented model
can be derived from (12), (13), and (14) as

w̃k,n+1 =
[
−µk,nŪk,nGk,n Φk,(n+1,n)

] [vk,n

w̃k,n

]
. (17)

The conditional covariance matrix of w̃k,n is defined as

Pk,n , E
(
w̃k,nw̃T

k,n|Ūk,n
)

(18)

for a given set Ūk,n = {Ūk,j |1 ≤ j < n}. Then, the MSD of
k-th sub-filter is defined as

pk,n , E(w̃T
k,nw̃k,n|Ūk,n) = Tr(Pk,n). (19)

Because vk,n consists the white Gaussian signal and the
dependencies of w̃k,n and vk,n can be neglected, post-
multiplying the transpose of (17) to itself and taking condi-
tional expectation leads to

Pk,n+1

= E
(
w̃k,n+1w̃

T
k,n+1|Ūk,n

)
=
[
−µk,nŪk,nGk,n Φk,(n+1,n)

] [σ2
vIL̄ 0
0 Pk,n

]
×
[
−µk,nGk,nŪT

k,n

ΦT
k,(n+1,n)

]
, (20)

where 0 is a zero matrix with appropriate dimensions. From
(20), the recursion of the covariance matrix Pk,n is derived as

Pk,n+1 = Φk,(n+1,n)Pk,nΦT
k,(n+1,n)

+ µ2
k,nσ

2
vŪk,nG2

k,nŪT
k,n

= Pk,n − µk,nŪk,nGk,nŪT
k,nPk,n

− µk,nPk,nŪk,nGk,nŪT
k,n

+ µ2
k,nŪk,nGk,nŪT

k,nPk,nŪk,nGk,nŪT
k,n

+ µ2
k,nσ

2
vŪk,nG2

k,nŪT
k,n. (21)

By taking the trace on both sides of (21), the MSD recursion
of k-th sub-filter is derived as

pk,n+1 = pk,n − (2µk,n − µ2
k,n)Tr

(
Ūk,nGk,nŪT

k,nPk,n

)
+ µ2

k,nσ
2
vTr (Gk,n) . (22)

Since Ūk,nGk,nŪT
k,n and Pk,n are positive semi-definite

matrix, from [24], the values of Tr
(
Ūk,nGk,nŪT

k,nPk,n

)
can

be approximated as

Tr
(
Ūk,nGk,nŪT

k,nPk,n

)
≈ L̄

M
Tr (Pk,n) . (23)

Substituting (23) into (22) leads the MSD recursion to

pk,n+1 ≈
(

1− (2µk,n − µ2
k,n)

L̄

M

)
pk,n

+ µ2
k,nσ

2
vTr (Gk,n) . (24)

In the steady-state, the MSD of k-th sub-filter converges to its
steady-state value as pk,n ≈ pk,ss, where pk,ss is the steady-
state MSD of k-th sub-filter and defined as

pk,ss , lim
n→∞

pk,n. (25)

Because pk,n is equal to pk,n+1 in the steady-state, the steady-
state MSD is obtained from (24) as

pk,ss =
M

L̄

µk,nσ
2
vTr (Gk,n)

2− µk,n
. (26)

D. Performance improvements

To improve the estimation performance and reduce the
computational complexity, the variable step-size and the
intermittent-update methods are proposed from the mean-
square deviation analysis.
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1) Variable step-size method: To achieve improvements
of the performance, the step size is controlled through the
variable step-size method. By minimizing the MSD recursion
in (24) with respect to µk,n, the variable step size that leads to
the largest decrease the MSD of k-th sub-filter can be chosen.
According to

∂pk,n+1

∂µk,n
= (−2 + 2µk,n)

L̄

M
pk,n + 2µk,nσ

2
vTr (Gk,n)

= 0, (27)

the variable step size is obtained as follows:

µk,n =
L̄
M pk,n

L̄
M pk,n + σ2

vTr (Gk,n)
. (28)

By using the variable step size, the NLMS algorithm can
achieve fast convergence rate and small steady-state estimation
error. For the proposed algorithm with the variable step size,
the convergence of the MSD recursion of k-th sub-filter is
verified. Because pk,n and σ2

vTr (Gk,n) are always positive, it
is obvious that the proposed variable step size has boundary
as 0 < µn < 1. Substituting (28) into (24), the difference
equation of the MSD recursion of k-th sub-filter is derived as

pk,n+1 − pk,n = −µ2
k,n

(
L̄

M
pk,n + σ2

vTr (Gk,n)

)
< 0.

(29)

Consequently, the variable step size guarantees the monotonic
decrease of the MSD of k-th sub-filter. Furthermore, the
convergence of overall MSD for wn is also guaranteed because
the combination weight ak in (32) is a convex parameter.

2) Intermittent-update method: To increase the computa-
tional efficiency, the intermittent-update method is proposed.
The proposed method adjusts the update interval to perform
the intermittent update. That is, the NLMS adaptation is
intermittently performed from the previous adaptation. The
update interval of k-th sub-filter at iteration n is defined as
tk,n ∈ [1, · · · ,M ]. The update interval tk,n is dynamically
adjusted through the MSD information on whether the adaptive
filter reaches the steady state or not. From (24) and (26), the
update interval tk,n is adjusted according to the difference
between the current MSD value and the steady-state MSD
value as follows:

tk,n+1 ,

 min(M, tk,n + 1) if |pk,n − pk,ss| ≤ ζ1,
max(1, tk,n − 1) if |pk,n − pk,ss| > ζ2,
tk,n if ζ1 < |pk,n − pk,ss| ≤ ζ2,

(30)

where ζ1 and ζ2 are threshold parameters used to check
whether the filter reaches the steady state. It is satisfied
that ζ2 ≥ ζ1 > 0. Since the intermittent adaptation avoids
the redundant updates, the proposed algorithm requires fewer
updates and computations.

E. Combination of output at each sub-filter

At each sub-filter, the unknown system wo is estimated by
the improved NLMS algorithm with the variable step-size (28)
and the intermittent-update method (30). The estimation output

at each sub-filter should be combined to yield the estimate for
the given large-scale data. Therefore, it is needed to design a
combination strategy. To compute wn from wk,n for all k, a
combination method is proposed as follows:

wn =

N∑
k=1

akwk,n, (31)

where ak is a combination weight parameter. The estimate
wn is computed from weighted sum of wk,n for all k. To
satisfy

∑N
k=1 ak = 1 as a convex parameter, the weight ak is

determined as follows:

ak ,
σ−2
e,k(n)

N∑
m=1

σ−2
e,m(n)

, (32)

where σ2
e,k(n) is the variance of the error vector at k-th

sub-filter, which can be considered as the reliability indicator
because the inverse of the error variance provides information
that how much the estimation output of each sub-filter is
precise. Therefore, the combination method can effectively
combine the outputs of each sub-filter. The variance of the
error vector σ2

e,k(n) can be estimated by following time-
averaging method:

σ2
e,k(n+ 1) = δσ2

e,k(n) + (1− δ) 1

L̄
eT
k,nek,n, (33)

where δ is a forgetting factor. From the proposed combination
method, the estimate wn for given large-scale data is computed
as follows:

wn =

N∑
k=1

(
N∑

m=1

σ−2
e,m(n)

)−1

σ−2
e,k(n)wk,n. (34)

After combining all outputs, the estimate wk,n of k-th sub-
filter is replaced by the combined result wn for all k as

wk,n = wn for all k. (35)

This replacement extends the advantages of combining to each
sub-filter. Consequentially, the proposed parallel-processing
framework can provide not only high computational efficiency
but also enhancements of preciseness and robustness to abnor-
malities of the data.

Table I summarizes the proposed algorithm.

III. SIMULATION RESULTS

The computer simulations are performed to estimate an
unknown system wo, which is randomly generated with 3000
taps (M = 3000). The size of input data is set to Un ∈
R3000×2000. The input data is generated with zero-mean white
Gaussian distribution. The signal-to-noise ratio (SNR) for the
measurement is defined as follows:

SNR , 10 log10

E(yT
nyn)

E(vT
nvn)

, (36)

where yn = UT
nwo. For all simulations, SNR is set to 20 dB.

The noise variance σ2
v is assumed to be available. In practice,
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TABLE I
THE PROPOSED ALGORITHM SUMMARY

Initialization: pk,0 = 1, tk,0 = 1, and flagk = 0 for all k

N , δ, ζ1, ζ2 : user defined values

M , L̄, σ2
v : known values

for each iteration n

for each block k

ek,n = dk,n − ŪT
k,nwk,n

σ2
e,k(n) = δσ2

e,k(n− 1) + (1− δ) 1
L̄
eTk,nek,n

if n == flagk + tk,n

Gk,n = (ŪT
k,nŪk,n)−1

µk,n =
L̄
M
pk,n

L̄
M
pk,n + σ2

vTr
(
Gk,n

)
pk,n+1 =

(
1− (2µk,n − µ2

k,n) L̄
M

)
pk,n

+µ2
k,nσ

2
vTr
(
Gk,n

)
pk,ss =

M

L̄

µk,nσ
2
vTr
(
Gk,n

)
2− µk,n

tk,n+1 =


min(M, tk,n + 1) if |pk,n − pk,ss| ≤ ζ1,
max(1, tk,n − 1) if |pk,n − pk,ss| > ζ2,

tk,n if ζ1 < |pk,n − pk,ss| ≤ ζ2,
wk,n+1 = wk,n + µk,nŪk,nGk,nek,n

flagk = n

else

µk,n = µk,n−1, pk,n+1 = pk,n

wk,n+1 = wk,n

end

end for

wn+1 =
∑N

k=1

(∑N
m=1 σ

−2
e,m(n)

)−1
σ−2
e,k(n)wk,n+1

wk,n+1 = wn+1 for all k

end for

it can be easily estimated during silences [24]. The simulation
value of the MSD at iteration n can be computed as follows:

MSDn , E
(
‖wo −wn‖2

)
, (37)

where en = dn − ŪT
nwn. The normalized MSD (NMSD)

value is used to a performance index, which is defined as
NMSDn , E

(
‖wo −wn‖2/‖wo‖2

)
. For the proposed algo-

rithm, the user defined parameters are set to as λ = 0.99 (the
forgetting factor), ζ1 = 8× 10−5, and ζ2 = 1× 10−4.

A. Verification of the mean-square deviation analysis

A Monte-Carlo simulations are carried out in Fig. 3 to
discuss regarding the accuracy of the proposed theoretical
analysis (24) about the MSD recursions to predict the practical
MSD. It demonstrates how the proposed analysis precisely
predicts the MSD learning behavior of the proposed frame-
work. The simulation results show that the proposed analysis
excellently predicts the learning behavior of the practical
MSD. Therefore, proposed theoretical analysis of the mean-

Fig. 3. MSD learning curves of the simulation result (red line) and its
prediction (black line) using the proposed theoretical analysis for N = 1.

Fig. 4. Validation of the variable step-size method and the intermittent-update
method for N = 1 (a) variation of step sizes (b) variation of update intervals.

square deviation has enough accuracy to derive the variable
step-size method and the intermittent-update method.

Fig. 4 (a) shows that proposed variable step-size method is
works well. The step size automatically decreases to yield a
low steady-state error and a fast convergence rate. Fig. 4 (b)
show that the update interval is dynamically adjusted by the
proposed intermittent-update method. The intermittent-update
method improves the efficiency of the proposed algorithm by
reducing redundant adaptation processes.

B. Comparison of the learning behavior

Because there is no adaptive filtering algorithm to deal with
large-scale input matrix, the proposed algorithmic framework
is compared with the conventional NLMS algorithm which
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Fig. 5. NMSD learning curves of the conventional NLMS and the proposed
framework for N = 10.

Fig. 6. NMSD learning curves for the impulsive measurement noise. pr =
0.01 and N = 10 for the proposed algorithm.

is modified to fit the matrix input data to verify the learning
performance. The update equation of the NLMS algorithm for
large-scale data is defined as

wn = wn−1 + µUn(UT
nUn)−1en. (38)

Fig. 5 represents the NMSD learning curves versus those
computation times of the NLMS and the proposed algorithm
for large-scale data. Using simulations based on computation
times instead of iterations provides fair results, which is similar
to [13-15]. The computation time is obtained by recording
process time to perform the algorithms. As can be seen,
the proposed algorithm has the smaller steady-state error
and the faster convergence rate than the conventional NLMS
algorithm. When the larger data is applied to the system,

efficiencies of the proposed framework will be more improved
than the conventional algorithm.

An additional simulation is carried out in Fig. 6 when the
system measurement is disturbed by an impulsive noise In this
simulation, the measurement noise vector vn is considered
as a contaminated-Gaussian impulsive noise defined as ηn =
vn + Bngn, where

Bn ,


b1,n

b2,n
. . .

bL,n

 ∈ R
L×L (39)

is a square matrix with all entries outside the main diagonal
equal to zero and the diagonal elements bi,n is a switch
sequence of ones and zeros, which is modeled as a Bernoulli
random process with occurrence probability Pr(bi,n = 1) =
pr; gn = [g1,n, g2,n, · · · , gL,n]T ∈ RL×1 is zero-mean white
Gaussian sequences with variance σ2

g = 1000σ2
y . As can be

seen in Fig. 6, the conventional NLMS algorithm is very sen-
sitive to disturbance on the system measurement. Therefore,
it suffers from performance degradation in the presence of
impulsive noise. However, the proposed framework shows the
good performance because the parallel-processing effectively
suppress the effect of bad information from the combination
method in (31) and (32).

IV. CONCLUSION

This paper proposed a parallel adaptive filtering algorithm
for large-scale data. In the proposed algorithm, large-scale data
was divided into several data sub-blocks to reduce the size of
data. Based on each data sub-block, the NLMS algorithm esti-
mated the unknown parameters and outputs of each sub-filter
were effectively and robustly combined by the combination
method. Furthermore, the mean-square deviation analysis of
each sub-filter led to the variable step-size method and the
intermittent-update method, which improved the performance
of the proposed algorithm in terms of the convergence rate,
the steady-state error, and the computational complexity. Sim-
ulations showed that the proposed algorithm works well for
large-scale data.
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